Abstract
Attempts have been made by conventional gene therapy to suppress hepatic fibrogenesis, but potential oncogenic activity may prevent its clinical use. Recently, a novel major approach has been developed for resolution of liver fibrosis and cirrhosis: inactivation of hepatic stellate cells (HSC) using the endogenous expressing gene, which could mediate the homeostatic adaptation of liver. Cytoglobin (Cygb), originally identified in cultured rat HSC, is in a new class of heme containing proteins known as the hexacoordinate globin superfamily. These proteins exhibit peroxidase activity against hydrogen peroxides and lipid hydroperoxides. Considerable attention has been focused on the potential benefits of use of Cygb in fibrosis therapy, as up-regulation of Cygb expression could reduce oxidant stress, suppress HSC differentiation to a myofibroblast-like phenotype and eventually prevent the progress of liver fibrosis. Cygb has also been found to be a candidate tumor suppressor gene that might provide a new option for cancer gene therapy. In this review we systematically analyze the potential of Cygb as a prospective gene medicine for curing fibrosis, cancer, and other diseases such as diabetes. The molecular structure, regulation and subcellular location of Cygb are reviewed as well.
Keywords: Hexacoordination, oxidative stress, hypoxia, up-regulation, stellate cell, tumor suppressor, hypermethylated, gene therapy
Current Gene Therapy
Title: Cytoglobin:A Novel Potential Gene Medicine for Fibrosis and Cancer Therapy
Volume: 8 Issue: 4
Author(s): Yinghui Lv, Qizhao Wang, Yong Diao and Ruian Xu
Affiliation:
Keywords: Hexacoordination, oxidative stress, hypoxia, up-regulation, stellate cell, tumor suppressor, hypermethylated, gene therapy
Abstract: Attempts have been made by conventional gene therapy to suppress hepatic fibrogenesis, but potential oncogenic activity may prevent its clinical use. Recently, a novel major approach has been developed for resolution of liver fibrosis and cirrhosis: inactivation of hepatic stellate cells (HSC) using the endogenous expressing gene, which could mediate the homeostatic adaptation of liver. Cytoglobin (Cygb), originally identified in cultured rat HSC, is in a new class of heme containing proteins known as the hexacoordinate globin superfamily. These proteins exhibit peroxidase activity against hydrogen peroxides and lipid hydroperoxides. Considerable attention has been focused on the potential benefits of use of Cygb in fibrosis therapy, as up-regulation of Cygb expression could reduce oxidant stress, suppress HSC differentiation to a myofibroblast-like phenotype and eventually prevent the progress of liver fibrosis. Cygb has also been found to be a candidate tumor suppressor gene that might provide a new option for cancer gene therapy. In this review we systematically analyze the potential of Cygb as a prospective gene medicine for curing fibrosis, cancer, and other diseases such as diabetes. The molecular structure, regulation and subcellular location of Cygb are reviewed as well.
Export Options
About this article
Cite this article as:
Lv Yinghui, Wang Qizhao, Diao Yong and Xu Ruian, Cytoglobin:A Novel Potential Gene Medicine for Fibrosis and Cancer Therapy, Current Gene Therapy 2008; 8 (4) . https://dx.doi.org/10.2174/156652308785160656
DOI https://dx.doi.org/10.2174/156652308785160656 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Molecular Link Mechanisms between Inflammation and Cancer
Current Pharmaceutical Design Glutamate-Mediated Signaling and Autism Spectrum Disorders: Emerging Treatment Targets
Current Pharmaceutical Design Patent Selections
Recent Patents on DNA & Gene Sequences Radioiodination of Pimonidazole as a Novel Theranostic Hypoxia Probe
Current Radiopharmaceuticals Impact of Cellular Senescence in Aging and Cancer
Current Pharmaceutical Design Liposomes as Anticancer Therapeutic Drug Carrier’s Systems: More than a Tour de Force
Current Nanomedicine Extracellular Ca<sup>2+</sup> Selectively Enhances Adriamycin-induced Cell Death in Human Hepatoma Cells
Current Cancer Drug Targets How is Gene Transfection Able to Improve Current Chemotherapy? The Role of Combined Therapy in Cancer Treatment
Current Medicinal Chemistry Editorial
Combinatorial Chemistry & High Throughput Screening Hypothyroidism and Nephrotic Syndrome: Why, When and How to Treat
Current Vascular Pharmacology Studies on Cancer Cell Cytotoxicity, Antimicrobial Activity of Sol-Gel Synthesized Willemite for Biomedical Applications
Current Nanoscience Triazole-linked Chalcone and Flavone Hybrid Compounds Based on AZT Exhibiting In Vitro Anti-Cancer Activity
Letters in Drug Design & Discovery Cathelicidins: Peptides with Antimicrobial, Immunomodulatory, Anti- Inflammatory, Angiogenic, Anticancer and Procancer Activities
Current Protein & Peptide Science Application of Chitosan and Propolis in Endodontic Treatment: A Review
Mini-Reviews in Medicinal Chemistry Blocking IL-6/GP130 Signaling Inhibits Cell Viability/Proliferation, Glycolysis, and Colony Forming Activity in Human Pancreatic Cancer Cells
Current Cancer Drug Targets Emerging Immunotargets and Immunotherapies in Prostate Cancer
Current Drug Targets Acknowledgements to Reviewers
Recent Patents on Anti-Cancer Drug Discovery Use of Radiopharmaceuticals for Diagnosis, Treatment, and Follow-Up of Differentiated Thyroid Carcinoma
Anti-Cancer Agents in Medicinal Chemistry SNP Technologies for Drug Discovery: A Current Review
Current Drug Discovery Technologies Beyond RAS: The Role of Epidermal Growth Factor Receptor (EGFR) and its Network in the Prediction of Clinical Outcome During Anti-EGFR Treatment in Colorectal Cancer Patients
Current Drug Targets