Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Insight into the Synthesis and Photocatalytic Applications of Bismuth Vanadate-based Nanocomposites

Author(s): Amit Hooda, Pooja Rawat and Dipti Vaya*

Volume 19, Issue 5, 2023

Published on: 03 October, 2022

Page: [697 - 714] Pages: 18

DOI: 10.2174/1573413718666220509130006

Price: $65

Abstract

To cope with environmental issues, scientists strive to develop innovative materials and methods. Bismuth vanadate (BiVO4) has attracted attention because of its significant characteristics like low toxicity, corrosion resistance, photo-stability, narrow band-gap, and ability to provide better efficiency invisible light. However, fast recombination of charge carriers limits its photocatalytic activity. Many researchers have improved BiVO4 properties by metal doping and coupling with other semiconductors to improve charge separation and photocatalytic activity. This review addressed the recent improvement in BiVO4 structural modification by doping and composite formation using metal and non-metals and compared the efficiency with pure one. In addition, BiVO4 synthesis and application are also extensively discussed, such as dye degradation, water splitting, and water purification. This review can be beneficial for researchers and those interested in exploring and evolving BiVO4-based material as an efficient photocatalyst.

Keywords: BiVO4, semiconductor, photocatalyst, dye degradation, water splitting, doping.

Graphical Abstract

[1]
Fujishima and Honda. Molecular electrochemical photolysis of water at a semiconductor electrode one and two-dimensional structure of alpha-helix and beta-sheet forms of poly (L-Alanine) shown by specific heat measurements at low temperatures (1.5-20 K). Nature, 1972, 238, 37-38.
[2]
Escobar Barrios, A.; Verónica Sánchez Rodríguez, D.; Ayerim Cervantes Rincón, N.; Berenice Jasso-Salcedo, A. Modified metallic oxides for efficient photocatalysis. Intechopen, 2019, 2019, 80834.
[http://dx.doi.org/10.5772/intechopen.80834]
[3]
Tsoutsos, T.; Frantzeskaki, N.; Gekas, V. Environmental impacts from the solar energy technologies. Energy Policy, 2005, 33(3), 289-296.
[http://dx.doi.org/10.1016/S0301-4215(03)00241-6]
[4]
Khan, M.M.; Adil, S.F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi Chem. Soc., 2015, 19(5), 462-464.
[http://dx.doi.org/10.1016/j.jscs.2015.04.003]
[5]
Mishra, G.; Mukhopadhyay, M. TiO2 decorated functionalized halloysite nanotubes (TiO2@HNTs) and photocatalytic PVC membranes synthesis, characterization and its application in water treatment. Sci. Rep., 2019, 9(1), 1-17.
[http://dx.doi.org/10.1038/s41598-019-40775-4] [PMID: 30626917]
[6]
Tekin, D.; Tekin, T.; Kiziltas, H. Photocatalytic degradation kinetics of Orange G dye over ZnO and Ag/ZnO thin film catalysts. Sci. Rep., 2019, 9(1), 17544.
[http://dx.doi.org/10.1038/s41598-019-54142-w] [PMID: 31772243]
[7]
Sarkar, S.; Osama, K.; Jamal, Q.M.S.; Kamal, M.A.; Sayeed, U.; Khan, M.K.A.; Siddiqui, M.H.; Akhtar, S. Advances and implications in nanotechnology for lung cancer management. Curr. Drug Metab., 2017, 18(1), 30-38.
[http://dx.doi.org/10.2174/1389200218666161114142646] [PMID: 27842486]
[8]
Verma, N.; Chundawat, T.S.; Vaya, D. Role of N-ZnO/GO and Fe2O3-ZnO in photocatalytic activity. In: AIP Conf. Proc; , 2021; 2015, p. 020083.
[http://dx.doi.org/10.1063/5.0061215]
[9]
Singh, M.; Vaya, D.; Kumar, R.; Das, B. Role of EDTA capped cobalt oxide nanomaterial in photocatalytic degradation of dyes. J. Serb. Chem. Soc., 2021, 86(3), 327-340.
[http://dx.doi.org/10.2298/JSC200711074S]
[10]
Ghazkoob, N.; Zargar Shoushtari, M.; Kazeminezhad, I.; Lari Baghal, S.M. Investigation of structural, magnetic, optical and photocatalytic properties of zinc ferrite nanowires/bismuth vanadate composite. J. Alloys Compd., 2021, 900, 163467.
[http://dx.doi.org/10.1016/j.jallcom.2021.163467]
[11]
Fu, S.C.; Zhong, X.L.; Zhang, Y.; Lai, T.W.; Chan, K.C.; Lee, K.Y.; Chao, C.Y.H. Bio-inspired cooling technologies and the applications in buildings. Energy Build., 2020, 225, 110313.
[http://dx.doi.org/10.1016/j.enbuild.2020.110313]
[12]
Tang, J.; Zou, Z.; Ye, J. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Ed., 2004, 43(34), 4463-4466.
[http://dx.doi.org/10.1002/anie.200353594] [PMID: 15340944]
[13]
Duy Trinh, N.; Hoang, H.H.; Xuan Linh, N.; Huu Vinh, N.; Thi Vu, H.; Thanh Nguyen, H.; Vo, D.V.N.; Do, S.T.; Tri Duc, L. A facile synthesis and properties of bismuth vanadate (BiVO4) photocatalyst by hydrothermal method. IOP Conf. Series Mater. Sci. Eng., 2019, 542(1), 012059.
[http://dx.doi.org/10.1088/1757-899X/542/1/012059]
[14]
Gim, S.; Bisquert, J.; Principles, F.B.; Devices, A. Photoelectrochemical Solar Fuel Production; Springer, 2016.
[15]
Soltani, T.; Lee, B-K. Ag-doped BiVO4/BiFeO3 photoanode for highly efficient and stable photocatalytic and photoelectrochemical water splitting. Sci. Total Environ., 2020, 736, 138640.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138640] [PMID: 32487354]
[16]
Malathi, A.; Madhavan, J.; Ashokkumar, M.; Arunachalam, P. A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Appl. Catal. A Gen., 2018, 555, 47-74.
[http://dx.doi.org/10.1016/j.apcata.2018.02.010]
[17]
Cooper, J.K.; Gul, S.; Toma, F.M.; Chen, L.; Liu, Y-S.; Guo, J.; Ager, J.W.; Yano, J.; Sharp, I.D. Indirect bandgap and optical properties of monoclinic bismuth vanadate. J. Phys. Chem. C, 2015, 119(6), 2969-2974.
[http://dx.doi.org/10.1021/jp512169w]
[18]
Luo, Y.; Tan, G.; Dong, G.; Ren, H.; Xia, A. Effects of structure, morphology, and up-conversion on Nd-Doped BiVO4 system with high photocatalytic activity. Ceram. Int., 2015, 41(2), 3259-3268.
[http://dx.doi.org/10.1016/j.ceramint.2014.11.016]
[19]
Ullah, H.; Tahir, A.A.; Mallick, T.K. Structural and electronic properties of oxygen defective and Se-doped p-type BiVO4(001) thin film for the applications of photocatalysis. Appl. Catal. B, 2018, 224, 895-903.
[http://dx.doi.org/10.1016/j.apcatb.2017.11.034]
[20]
Xie, M.; Bian, J.; Humayun, M.; Qu, Y.; Feng, Y.; Jing, L. The promotion effect of surface negative electrostatic field on the photogenerated charge separation of BiVO4 and its contribution to the enhanced PEC water oxidation. Chem. Commun. (Camb.), 2015, 51(14), 2821-2823.
[http://dx.doi.org/10.1039/C4CC08835B] [PMID: 25579796]
[21]
Yang, R.; Zhu, Z.; Hu, C.; Zhong, S.; Zhang, L.; Liu, B.; Wang, W. One-step preparation (3D/2D/2D) BiVO4/FeVO4@rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water. Chem. Eng. J., 2020, 390, 124522.
[http://dx.doi.org/10.1016/j.cej.2020.124522]
[22]
Jain, A.; Vaya, D. Photocatalytic activity of TiO2 nanomaterial. J. Chil. Chem. Soc., 2017, 62(4), 3683-3690.
[http://dx.doi.org/10.4067/s0717-97072017000403683]
[23]
da Silva Araújo, M.; Barretto, T.R.; Galvão, J.C.R.; Tarley, C.R.T.; Dall’Antônia, L.H.; de Matos, R.; Medeiros, R.A. Visible light photoelectrochemical sensor for acetaminophen determination using a glassy carbon electrode modified with BiVO4 nanoparticles. Electroanalysis, 2021, 33(3), 663-671.
[http://dx.doi.org/10.1002/elan.202060031]
[24]
Ganeshbabu, M.; Kannan, N.; Sundara Venkatesh, P.; Paulraj, G. BiVO4 nanoparticles for environmental applications. RSC Advances, 2020, 10, 18315.
[http://dx.doi.org/10.1039/D0RA01065K]
[25]
Zhao, Z.; Li, Z.; Zou, Z. Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys., 2011, 13(10), 4746-4753.
[http://dx.doi.org/10.1039/c0cp01871f] [PMID: 21283853]
[26]
Zhang, L.; Tan, G.; Wei, S.; Ren, H.; Xia, A.; Luo, Y. Microwave hydrothermal synthesis and photocatalytic properties of TiO2/BiVO4 composite photocatalysts. Ceram. Int., 2013, 39(8), 8597-8604.
[http://dx.doi.org/10.1016/j.ceramint.2013.03.106]
[27]
Vo, T.G.; Chiu, J.M.; Tai, Y.; Chiang, C.Y. Turnip-inspired BiVO4/CuSCN nanostructure with close to 100% suppression of surface recombination for solar water splitting. Sol. Energy Mater. Sol. Cells, 2018, 185, 415-424.
[http://dx.doi.org/10.1016/j.solmat.2018.05.054]
[28]
Wang, M.; Che, Y.; Niu, C.; Dang, M.; Dong, D. Effective visible light-active boron and europium co-doped BiVO4 synthesized by sol-gel method for photodegradion of methyl orange. J. Hazard. Mater., 2013, 262, 447-455.
[http://dx.doi.org/10.1016/j.jhazmat.2013.08.063] [PMID: 24076480]
[29]
Liu, W.; Cao, L.; Su, G.; Liu, H.; Wang, X.; Zhang, L. Ultrasound assisted synthesis of monoclinic structured spindle BiVO4 particles with hollow structure and its photocatalytic property. Ultrason. Sonochem., 2010, 17(4), 669-674.
[http://dx.doi.org/10.1016/j.ultsonch.2009.12.012] [PMID: 20053578]
[30]
Shang, M.; Wang, W.; Zhou, L.; Sun, S.; Yin, W. Nanosized BiVO4 with high visible-light-induced photocatalytic activity: Ultrasonic-assisted synthesis and protective effect of surfactant. J. Hazard. Mater., 2009, 172(1), 338-344.
[http://dx.doi.org/10.1016/j.jhazmat.2009.07.017] [PMID: 19632047]
[31]
Liu, W.; Yu, Y.; Cao, L.; Su, G.; Liu, X.; Zhang, L.; Wang, Y. Synthesis of monoclinic structured BiVO4 spindly microtubes in deep eutectic solvent and their application for dye degradation. J. Hazard. Mater., 2010, 181(1-3), 1102-1108.
[http://dx.doi.org/10.1016/j.jhazmat.2010.05.128] [PMID: 20576353]
[32]
Tan, G.; Zhang, L.; Ren, H.; Huang, J.; Yang, W.; Xia, A. Microwave hydrothermal synthesis of N-doped BiVO4 nanoplates with exposed (040) facets and enhanced visible-light photocatalytic properties. Ceram. Int., 2014, 40(7), 9541-9547.
[http://dx.doi.org/10.1016/j.ceramint.2014.02.028]
[33]
Ma, Y.; Jiang, H.; Zhang, X.; Xing, J.; Guan, Y. Synthesis of hierarchical M-BiVO4 particles via hydro-solvothermal method and their photocatalytic properties. Ceram. Int., 2014, 40(PB), 16485-16493.
[http://dx.doi.org/10.1016/j.ceramint.2014.07.158]
[34]
Jiang, H.; Nagai, M.; Kobayashi, K. Enhanced photocatalytic activity for degradation of methylene blue over V2O5/BiVO4 composite. J. Alloys Compd., 2009, 479(1-2), 821-827.
[http://dx.doi.org/10.1016/j.jallcom.2009.01.051]
[35]
Yan, M.; Yan, Y.; Wu, Y.; Shi, W.; Hua, Y. Microwave-assisted synthesis of monoclinic-tetragonal BiVO4 heterojunctions with enhanced visible-light-driven photocatalytic degradation of tetracycline. RSC Advances, 2015, 5(110), 90255-90264.
[http://dx.doi.org/10.1039/C5RA13684A]
[36]
Gupta, D.; Jamwal, D.; Rana, D.; Katoch, A. Microwave Synthesized Nanocomposites for Enhancing Oral Bioavailability of Drugs; Elsevier Inc., 2018.
[http://dx.doi.org/10.1016/B978-0-12-813741-3.00027-3]
[37]
Hu, Y.; Li, D.; Zheng, Y.; Chen, W.; He, Y.; Shao, Y.; Fu, X.; Xiao, G. BiVO4/TiO2 nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl. Catal. B, 2011, 104(1–2), 30-36.
[http://dx.doi.org/10.1016/j.apcatb.2011.02.031]
[38]
Longchin, P.; Pookmanee, P.; Satienperakul, S.; Sangsrichan, S.; Puntharod, R.; Kruefu, V.; Kangwansupamonkon, W.; Phanichphant, S. Characterization of Bismuth Vanadate (BiVO4) nanoparticle prepared by Solvothermal Method. Integr. Ferroelectr., 2016, 175(1), 18-24.
[http://dx.doi.org/10.1080/10584587.2016.1199845]
[39]
Wang, M.; Niu, C.; Liu, Q.; Che, Y.; Liu, J. Enhanced photo-degradation Methyl Orange by N-F Co-Doped BiVO4 synthesized by Sol-Gel Method. Mater. Sci. Semicond. Process., 2014, 25, 271-278.
[http://dx.doi.org/10.1016/j.mssp.2013.12.031]
[40]
Pookmanee, P.; Kojinok, S.; Puntharod, R.; Sangsrichan, S.; Phanichphant, S. Preparation and characterization of BiVO4 powder by the Sol-Gel Method. Ferroelectrics, 2013, 456(1), 45-54.
[http://dx.doi.org/10.1080/00150193.2013.846197]
[41]
Parashar, M.; Shukla, V.K.; Singh, R. Metal oxides nanoparticles via sol-gel method: A review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron., 2020, 31(5), 3729-3749.
[http://dx.doi.org/10.1007/s10854-020-02994-8]
[42]
Lim, A.R.; Choh, S.H.; Jang, M.S. Domain Structure of Ferroelastic BiVO4 Studied by 209Bi NMR. Solid State Commun., 1996, 97(8), 699-702.
[http://dx.doi.org/10.1016/0038-1098(95)00630-3]
[43]
Zhang, L.; Chen, D.; Jiao, X. Monoclinic structured BiVO4 nanosheets: Hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B, 2006, 110(6), 2668-2673.
[http://dx.doi.org/10.1021/jp056367d] [PMID: 16471870]
[44]
Shen, Y.; Huang, M.; Huang, Y.; Lin, J.; Wu, J. The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradiation. J. Alloys Compd., 2010, 496(1-2), 287-292.
[http://dx.doi.org/10.1016/j.jallcom.2010.01.144]
[45]
Li, H.; Zhang, J.; Huang, G.; Fu, S.; Ma, C.; Wang, B.; Huang, Q.; Liao, H. Hydrothermal synthesis and enhanced photocatalytic activity of hierarchical flower-like Fe-Doped BiVO4. Trans. Nonferrous Met. Soc. China, 2017, 27(4), 868-875.
[http://dx.doi.org/10.1016/S1003-6326(17)60102-X]
[46]
Zhang, Z.; Ma, Y.; Bu, X.; Wu, Q.; Hang, Z.; Dong, Z.; Wu, X. Facile one-step synthesis of TiO2/Ag/SnO2 ternary heterostructures with enhanced visible light photocatalytic activity. Sci. Rep., 2018, 8(1), 10532.
[http://dx.doi.org/10.1038/s41598-018-28832-w] [PMID: 30002407]
[47]
Liu, J.B.; Wang, H.; Wang, S.; Yan, H. Hydrothermal preparation of BiVO4 powders. Mater. Sci. Eng. B, 2003, 104(1–2), 36-39.
[http://dx.doi.org/10.1016/S0921-5107(03)00264-2]
[48]
Garcı, U.M. Photocatalytic properties of BiVO4 prepared by the co-precipitation method: Degradation of rhodamine B and possible reaction mechanisms under visible irradiation. Mater. Res. Bull., 2010, 45(2), 135-141.
[http://dx.doi.org/10.1016/j.materresbull.2009.09.029]
[49]
Yu, J.; Zhang, Y.; Kudo, A. Synthesis and photocatalytic performances of BiVO4 by Ammonia Co-Precipitation Process. J. Solid State Chem., 2009, 182(2), 223-228.
[http://dx.doi.org/10.1016/j.jssc.2008.10.021]
[50]
Pérez, U.M.G.; Guzmán, S.S.; De Cruz, A.M.; Peral, J. Selective synthesis of monoclinic bismuth vanadate powders by surfactant-assisted co-precipitation method: Study of their electrochemical and photocatalytic properties. Int. J. Electrochem. Sci., 2012, 7, 9622-9632.
[51]
Phanichphant, S.; Nakaruk, A.; Chansaenpak, K.; Channei, D. Evaluating the photocatalytic efficiency of the BiVO4/rGO photocatalyst. Sci. Rep., 2019, 9(1), 16091.
[http://dx.doi.org/10.1038/s41598-019-52589-5] [PMID: 31695107]
[52]
Colmenares, J.C.; Kuna, E.; Lisowski, P. Synthesis of photoactive materials by sonication: Application in photocatalysis and solar cells. Top. Curr. Chem. (Cham), 2016, 374(5), 59.
[http://dx.doi.org/10.1007/s41061-016-0062-y] [PMID: 27573501]
[53]
Sánchez-martínez, D.; Torres-martínez, L.M. Photocatalytic Properties of Bi2O3 Powders obtained by an ultrasound-assisted precipitation method. Ceram. Int., 2020, 42(1), 2013-2020.
[http://dx.doi.org/10.1016/j.ceramint.2015.10.007]
[54]
Abdullah, A.H.; Moey, H.J.; Yusof, N.A.; Yusof, N.A. Response surface methodology analysis of the photocatalytic removal of Methylene Blue using bismuth vanadate prepared via polyol route. J. Environ. Sci. (China), 2012, 24(9), 1694-1701.
[http://dx.doi.org/10.1016/S1001-0742(11)60966-2] [PMID: 23520879]
[55]
Bhattacharya, A.K.; Mallick, K.K.; Hartridge, A. Phase transition in BiVO4. Mater. Lett., 1997, 30(1), 7-13.
[http://dx.doi.org/10.1016/S0167-577X(96)00162-0]
[56]
Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc., 1999, 121(14), 11459-11467.
[http://dx.doi.org/10.1021/ja992541y]
[57]
Sleight, A.W.; Chen, H.; Ferretti, A.; Cox, D.E. Crystal growth and structure of BiVO4. Mater. Res. Bull., 1979, 208(12), 1571-1581.
[http://dx.doi.org/10.1016/0025-5408(72)90227-9]
[58]
Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with Scheelite structure and their photocatalytic properties. Chem. Mater., 2001, 13(19), 4624-4628.
[http://dx.doi.org/10.1021/cm0103390]
[59]
Trung, D.; Trinh, T.; Khanitchaidecha, W.; Channei, D. Synthesis, Characterization and Environmental Applications of Bismuth Vanadate; Springer: Netherlands, 2019.
[http://dx.doi.org/10.1007/s11164-019-03912-2]
[60]
Bierlein, J.D.; Sleight, A.W. Ferroelasticity in BiVO4. Solid State Commun., 1975, 16(2182), 69-70.
[http://dx.doi.org/10.1016/0038-1098(75)90791-7]
[61]
Kim, J.H.; Lee, J.S. BiVO4-based heterostructured photocatalysts for solar water splitting: A review. Energy Environ. Focus, 2014, 3, 339-353.
[http://dx.doi.org/10.1166/eef.2014.1121]
[62]
Nerine, J.C.; Dorion, B.L.; Jennifer, A.L.; Hongmei, D.; Zhang, J.Z. Ultrafast studies of photoexcited electron dynamics in γ- and r-Fe2O3 semiconductor nanoparticles. J. Phys. Chem. B, 1998, 5647(5), 770-776.
[http://dx.doi.org/10.1021/jp973149e]
[63]
Abdi, F.F.; Han, L.; Smets, A.H.M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun., 2013, 4(1), 2195.
[http://dx.doi.org/10.1038/ncomms3195] [PMID: 23893238]
[64]
Gao, X.; Wang, Z.; Fu, F.; Li, W. Effects of PH on the hierarchical structures and photocatalytic performance of Cu-doped BiVO4 prepared via the hydrothermal method. Mater. Sci. Semicond. Process., 2015, 35, 197-206.
[http://dx.doi.org/10.1016/j.mssp.2015.03.012]
[65]
Huang, C.; Wu, T.; Huang, C.; Lai, C.; Wu, M.; Lin, Y. Enhanced photocatalytic performance of BiVO4 in aqueous AgNO3 solution under visible light irradiation. Appl. Surf. Sci., 2017, 399, 10-19.
[http://dx.doi.org/10.1016/j.apsusc.2016.12.038]
[66]
Regmi, C.; Kshetri, Y.K.; Kim, T-H.; Pandey, R.P.; Lee, S.W. Visible-light-induced Fe-Doped BiVO4 photocatalyst for contaminated water treatment. Mol. Catal., 2017, 432, 220-231.
[http://dx.doi.org/10.1016/j.mcat.2017.02.004]
[67]
Nishimoto, S.; Mano, T.; Kameshima, Y.; Miyake, M. Photocatalytic water treatment over WO3 under visible light irradiation combined with ozonation. Chem. Phys. Lett., 2010, 500(1-3), 86-89.
[http://dx.doi.org/10.1016/j.cplett.2010.09.086]
[68]
Singh, G.; Vaish, R. Melt quenched V2O5/BiVO4 composite: A novel and promising adsorbent and photocatalyst. Mater. Chem. Phys., 2020, 240, 122238.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122238]
[69]
Lili, L.; Luo, X.G.; Lin, X.Y.; Xu, C.G.; Zhao, Z. Preparation and characterization of Fe-doped BiVO4. Mater. Sci. Forum, 2009, 620-622, 655-658.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.620-622.655]
[70]
Shan, L.; Liu, Y. Er3+, Yb3+ Doping induced core–shell structured BiVO4 and near-infrared photocatalytic properties. J. Mol. Catal. Chem., 2016, 416, 1-9.
[http://dx.doi.org/10.1016/j.molcata.2016.02.013]
[71]
Wang, M.; Yang, G.; You, M.; Xie, Y.; Wang, Y.; Han, J.; Zhu, T. Effects of Ni doping contents on photocatalytic activity of B − BiVO4 synthesized through Sol-Gel and impregnation two-step method. Trans. Nonferrous Met. Soc. China, 2017, 27(9), 2022-2030.
[http://dx.doi.org/10.1016/S1003-6326(17)60227-9]
[72]
Xu, X.; Du, M.; Chen, T.; Xiong, S.; Wu, T.; Zhao, D.; Fan, Z. New insights into Ag-doped BiVO4 microspheres as visible light photocatalysts. RSC Advances, 2016, 6(101), 98788-98796.
[http://dx.doi.org/10.1039/C6RA20850A]
[73]
Regmi, C.; Kshetri, Y.K.; Pandey, R.P.; Kim, T.H.; Gyawali, G.; Lee, S.W. Understanding the multifunctionality in Cu-doped BiVO4 semiconductor photocatalyst. J. Environ. Sci. (China), 2019, 75(75), 84-97.
[http://dx.doi.org/10.1016/j.jes.2018.03.005] [PMID: 30473310]
[74]
Xue, S.; He, H.; Wu, Z.; Yu, C.; Fan, Q.; Peng, G.; Yang, K. An Interesting Eu, F-Codoped BiVO4 microsphere with enhanced photocatalytic performance. J. Alloys Compd., 2017, 694, 989-997.
[http://dx.doi.org/10.1016/j.jallcom.2016.10.146]
[75]
Zhao, Z.; Dai, H.; Deng, J.; Liu, Y.; Au, C.T. Effect of Sulfur doping on the photocatalytic performance of BiVO4 under visible light illumination. Chin. J. Catal., 2013, 34(8), 1617-1626.
[http://dx.doi.org/10.1016/S1872-2067(12)60632-9]
[76]
Lee, D.K.; Cho, I.S.; Lee, S.; Bae, S.T.; Noh, J.H.; Kim, D.W.; Hong, K.S. Effects of Carbon content on the photocatalytic activity of C/BiVO4 composites under visible light irradiation. Mater. Chem. Phys., 2010, 119(1-2), 106-111.
[http://dx.doi.org/10.1016/j.matchemphys.2009.08.028]
[77]
Miao, G.; Huang, D.; Ren, X.; Li, X.; Li, Z.; Xiao, J. Visible-light induced photocatalytic oxidative desulfurization using BiVO4/C3N4@SiO2 with air/cumene hydroperoxide under ambient conditions. Appl. Catal. B, 2016, 192, 72-79.
[http://dx.doi.org/10.1016/j.apcatb.2016.03.033]
[78]
Zhang, J.; Yan, M.; Yuan, X.; Si, M.; Jiang, L.; Wu, Z.; Wang, H.; Zeng, G. Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation. J. Colloid Interface Sci., 2018, 529, 11-22.
[http://dx.doi.org/10.1016/j.jcis.2018.05.109] [PMID: 29879678]
[79]
Li, Y.; Xing, X.; Pei, J.; Li, R.; Wen, Y.; Cui, S.; Liu, T. Automobile exhaust gas purification material based on physical adsorption of tourmaline powder and visible light catalytic decomposition of G-C3N4/BiVO4. Ceram. Int., 2020, 46(8), 12637-12647.
[http://dx.doi.org/10.1016/j.ceramint.2020.02.029]
[80]
Deng, Y.; Tang, L.; Zeng, G.; Wang, J.; Zhou, Y.; Wang, J.; Tang, J.; Wang, L.; Feng, C. Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light. J. Colloid Interface Sci., 2018, 509, 219-234.
[http://dx.doi.org/10.1016/j.jcis.2017.09.016] [PMID: 28915480]
[81]
Jiang, H.; Dai, H.; Deng, J.; Liu, Y.; Zhang, L.; Ji, K. Porous F-doped BiVO4: Synthesis and enhanced photocatalytic performance for the degradation of phenol under visible-light illumination. Solid State Sci., 2013, 17, 21-27.
[http://dx.doi.org/10.1016/j.solidstatesciences.2012.12.009]
[82]
Chang, X.; Wang, T.; Zhang, P.; Zhang, J.; Li, A.; Gong, J. enhanced surface reaction kinetics and charge separation of p-n Heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc., 2015, 137(26), 8356-8359.
[http://dx.doi.org/10.1021/jacs.5b04186] [PMID: 26091246]
[83]
Saravanan, R.; Gupta, V.K.; Narayanan, V.; Stephen, A. Comparative study on photocatalytic activity of ZnO prepared by Different Methods. J. Mol. Liq., 2013, 181, 133-141.
[http://dx.doi.org/10.1016/j.molliq.2013.02.023]
[84]
Rassoolkhani, A.M.; Cheng, W.; Lee, J.; McKee, A.; Koonce, J.; Coffel, J.; Ghanim, A.H.; Aurand, G.A.; Soo Kim, C.; Ik Park, W.; Jung, H.; Mubeen, S. Nanostructured bismuth vanadate/tungsten oxide photoanode for chlorine production with hydrogen generation at the dark cathode. Commun. Chem., 2019, 2(1), 1-7.
[http://dx.doi.org/10.1038/s42004-019-0156-x]
[85]
Li, H.; Chen, Y.; Zhou, W.; Jiang, H.; Liu, H.; Chen, X.; Guohui, T. WO3/BiVO4/BiOCl porous nanosheet composites from a biomass template for photocatalytic organic pollutant degradation. J. Alloys Compd., 2019, 802, 76-85.
[http://dx.doi.org/10.1016/j.jallcom.2019.06.187]
[86]
Shan, L.; Liu, H.; Wang, G. Preparation of Tungsten-Doped BiVO4 and enhanced photocatalytic activity. J. Nanopart. Res., 2015, 17(4), 181.
[http://dx.doi.org/10.1007/s11051-015-2996-3]
[87]
Kalanoor, B.S.; Seo, H.; Kalanur, S.S. Recent developments in photoelectrochemical water-splitting using WO3/BiVO4 heterojunction photoanode: A review. Mater. Sci. Energy Technol., 2018, 1(1), 49-62.
[http://dx.doi.org/10.1016/j.mset.2018.03.004]
[88]
Luo, Y.; Tan, G.; Dong, G.; Ren, H.; Xia, A. A comprehensive investigation of tetragonal Gd-Doped BiVO4 with enhanced photocatalytic performance under sun-light. Appl. Surf. Sci., 2015, 364, 156-165.
[http://dx.doi.org/10.1016/j.apsusc.2015.12.100]
[89]
Monfort, O.; Sfaelou, S.; Satrapinskyy, L.; Plecenik, T.; Roch, T.; Plesch, G.; Lianos, P. Comparative study between Pristine and Nb-Modified BiVO4 films employed for photoelectrocatalytic production of H2 by water splitting and for photocatalytic degradation of organic pollutants under simulated solar light. Catal. Today, 2017, 280, 51-57.
[http://dx.doi.org/10.1016/j.cattod.2016.07.006]
[90]
Luo, Y.; Tan, G.; Dong, G.; Zhang, L.; Huang, J.; Yang, W.; Zhao, C.; Ren, H. Structural transformation of Sm3+ Doped BiVO4 with high photocatalytic activity under simulated sun-light. Appl. Surf. Sci., 2015, 324, 505-511.
[http://dx.doi.org/10.1016/j.apsusc.2014.10.168]
[91]
Wang, M.; Guo, P.; Chai, T.; Xie, Y.; Han, J.; You, M.; Wang, Y.; Zhu, T. Effects of Cu dopants on the structures and photocatalytic performance of cocoon-like Cu-BiVO4 prepared via ethylene glycol solvothermal method. J. Alloys Compd., 2017, 691, 13-15.
[http://dx.doi.org/10.1016/j.jallcom.2016.08.198]
[92]
Obregón, S.; Colón, G. Heterostructured Er3+ Doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism. Appl. Catal. B, 2014, 158–159, 242-249.
[http://dx.doi.org/10.1016/j.apcatb.2014.04.029]
[93]
Geng, Y.; Zhang, P.; Li, N.; Sun, Z.; Zhang, P.; Li, N.; Sun, Z. Synthesis of Co Doped BiVO4 with enhanced visible-light photocatalytic activities. J. Alloys Compd., 2015, 744–748, 744-748.
[http://dx.doi.org/10.1016/j.jallcom.2015.08.123]
[94]
Zhou, B.; Zhao, X.; Liu, H.; Qu, J.; Huang, C.P. Visible-Light Sensitive Cobalt-Doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Appl. Catal. B, 2010, 99(1–2), 214-221.
[http://dx.doi.org/10.1016/j.apcatb.2010.06.022]
[95]
Sun, J.; Li, X.; Zhao, Q.; Tadé, M.; Liu, S. Quantum-sized BiVO4 modified TiO2 microflower composite heterostructure: Efficient production of hydroxyl radicals towards visible light-driven degradation of gaseous toluene. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(43), 21655-21663.
[http://dx.doi.org/10.1039/C5TA05659D]
[96]
Kanigaridou, Y.; Petala, A.; Frontistis, Z.; Antonopoulou, M.; Solakidou, M.; Konstantinou, I.; Deligiannakis, Y.; Mantzavinos, D.; Kondarides, D.I. Solar photocatalytic degradation of bisphenol A with CuOx/BiVO4: Insights into the unexpectedly favorable effect of bicarbonates. Chem. Eng. J., 2016, 318, 39-49.
[http://dx.doi.org/10.1016/j.cej.2016.04.145]
[97]
Zhai, Y.; Yin, Y.; Liu, X.; Li, Y.; Wang, J.; Liu, C.; Bian, G. Novel magnetically separable BiVO4/Fe3O4 photocatalyst: Synthesis and photocatalytic performance under visible-light irradiation. Mater. Res. Bull., 2017, 89, 297-306.
[http://dx.doi.org/10.1016/j.materresbull.2017.01.011]
[98]
Monfort, O.; Roch, T.; Gregor, M.; Satrapinskyy, L.; Dimitrios Raptis, P.L.; Plesch, G. Photooxidative Properties of Various BiVO4/TiO2 layered composite films and study of their photocatalytic mechanism in pollutant degradation. J. Environ. Chem. Eng., 2017, 5(5), 5143-5149.
[http://dx.doi.org/10.1016/j.jece.2017.09.050]
[99]
Pingmuang, K.; Chen, J.; Nattestad, A. Photocatalytic degradation of methylene blue by innovative BiVO4/TiO2 composite films under visible light irradiation. Int. Sci. J. Envirom. Sci., 2014, 5999-6004.
[100]
Wetchakun, N.; Chainet, S.; Phanichphant, S.; Wetchakun, K. Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites. Ceram. Int., 2015, 41(4), 2-7.
[http://dx.doi.org/10.1016/j.ceramint.2015.01.040]
[101]
Odling, G.; Robertson, N. BiVO4-TiO2 Composite photocatalysts for dye degradation formed using the SILAR method. ChemPhysChem, 2016, 17(18), 2872-2880.
[http://dx.doi.org/10.1002/cphc.201600443] [PMID: 27257947]
[102]
Zhu, Z.; Han, Q.; Yu, D.; Sun, J.; Liu, B.A. Ovel p-n heterojunction of BiVO4/TiO2/GO composite for enhanced visible-light-driven photocatalytic activity. Mater. Lett., 2017, 209(3), 379-383.
[http://dx.doi.org/10.1016/j.matlet.2017.08.045]
[103]
Yuan, Q.; Chen, L.; Xiong, M.; He, J.; Luo, S.; Au, C.; Yin, S. Cu2O/BiVO4 heterostructures : Synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr (VI) under visible light. Chem. Eng. J., 2014, 255, 394-402.
[http://dx.doi.org/10.1016/j.cej.2014.06.031]
[104]
Wang, M.; Zheng, H.; Liu, J.; Dong, D.; Che, Y.; Yang, C. Materials science in semiconductor processing enhanced visible-light-driven photocatalytic activity of B-Doped BiVO4 synthesized using a corn stem template. Mater. Sci. Semicond. Process., 2015, 30, 307-313.
[http://dx.doi.org/10.1016/j.mssp.2014.09.031]
[105]
Fang, S.; Xue, S.; Wang, C.; Wang, G.; Wang, X.; Liang, Q.; Li, Z. Fabrication and Characterization of CdS/BiVO4 nanocomposites with efficient visible light driven photocatalytic activities. Ceram. Int., 2015, 2015, 1-8.
[http://dx.doi.org/10.1016/j.ceramint.2015.11.126]
[106]
Lamdab, U.; Wetchakun, K.; Phanichphant, S.; Kangwansupamonkon, W.; Wetchakun, N. InVO4–BiVO4 composite films with enhanced visible light performance for photodegradation of methylene blue. Catal. Today, 2016, 278, 291-302.
[http://dx.doi.org/10.1016/j.cattod.2015.11.037]
[107]
Liu, Y.; Kong, J.; Yuan, J.; Zhao, W.; Zhu, X.; Sun, C.; Xie, J. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation. Chem. Eng. J., 2017, 2018(331), 242-254.
[http://dx.doi.org/10.1016/j.cej.2017.08.114]
[108]
Hu, Y.; Fan, J.; Pu, C.; Li, H.; Liu, E.; Hu, X. Facile synthesis of double cone-shaped Ag4V2O7/BiVO4 nanocomposites with enhanced visible light photocatalytic activity for environmental purification. J. Photochem. Photobiol. Chem., 2017, 337, 172-183.
[http://dx.doi.org/10.1016/j.jphotochem.2016.12.035]
[109]
Li, J.; Wang, F.; Meng, L.; Han, M.; Guo, Y.; Sun, C. Controlled synthesis of BiVO4/SrTiO3 composite with enhanced sunlight-driven photofunctions for sulfamethoxazole removal. J. Colloid Interface Sci., 2017, 485, 116-122.
[http://dx.doi.org/10.1016/j.jcis.2016.07.040] [PMID: 27662022]
[110]
Ju, P.; Wang, P.; Li, B.; Fan, H.; Ai, S.; Zhang, D.; Wang, Y. A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chem. Eng. J., 2014, 236, 430-437.
[http://dx.doi.org/10.1016/j.cej.2013.10.001]
[111]
Yuan, X.; Zhang, G.; Yang, X.; Li, X.; Zhou, J.; Yuan, X.; Zhang, G.; Yang, X.; Li, X.; Zhou, J.; Ou, W.; Zhang, J. Preparation of BiOBr/BiVO4 composite and its application for photocatalytic degradation under visible light. Mater. Res. Innov., 2016, 8917, 0-5.
[http://dx.doi.org/10.1080/14328917.2015.1131417]
[112]
Xu, X.; Song, W. Synthesis and photocatalytic activity of heterojunction ZnFe2O4-BiVO4. Mater. Technol., 2017, 7857(8), 472-479.
[http://dx.doi.org/10.1080/10667857.2016.1275453]
[113]
Li, J.; Han, M.; Guo, Y.; Wang, F.; Meng, L.; Mao, D.; Ding, S.; Sun, C. Hydrothermal synthesis of novel flower-like BiVO4/Bi2Ti2O7 with superior photocatalytic activity toward tetracycline removal. Appl. Catal. A Gen., 2016, 524, 105-114.
[http://dx.doi.org/10.1016/j.apcata.2016.06.025]
[114]
Abdi, F.F. Nature and light dependence of bulk recombination in Co-Pi- catalyzed BiVO4 photoanodes. J. Phys. Chem., 2012, 116, 9398-9404.
[115]
Jin, J.; Walczak, K.; Singh, M.R.; Karp, C.; Lewis, N.S.; Xiang, C. An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system. Energy Environ. Sci., 2014, 7(10), 3371-3380.
[http://dx.doi.org/10.1039/C4EE01824A]
[116]
Mcdowell, M.T.; Lichterman, M.F.; Spurgeon, J.M.; Hu, S.; Sharp, I.D.; Brunschwig, B.S.; Lewis, N.S. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer Thin TiO2/Ni coatings. J. Phys. Chem., 2014, •••, 19618-19624.
[117]
Lichterman, M.F.; Shaner, M.R.; Handler, S.G.; Brunschwig, B.S.; Gray, H.B.; Lewis, N.S.; Spurgeon, J.M. Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modi Fi Ed with a Cobalt Oxide catalytic layer produced by atomic layer deposition. J. Phys. Chem., 2013, 23, 4188-4191.
[118]
Wang, L.; Shi, X.; Jia, Y.; Cheng, H.; Wang, L.; Wang, Q. Recent advances in bismuth vanadate-based photocatalysts for photoelectrochemical water splitting. Chin. Chem. Lett., 2021, 32(6), 1869-1878.
[http://dx.doi.org/10.1016/j.cclet.2020.11.065]
[119]
Panda, C.; Debgupta, J.; Díaz Díaz, D.; Singh, K.K.; Sen Gupta, S.; Dhar, B.B. Homogeneous photochemical water oxidation by biuret-modified Fe-TAML: Evidence of Fe(V)(O) intermediate. J. Am. Chem. Soc., 2014, 136(35), 12273-12282.
[http://dx.doi.org/10.1021/ja503753k] [PMID: 25119524]
[120]
Tayebi, M.; Lee, B. Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renew. Sustain. Energy Rev., 2019, 111(May), 332-343.
[http://dx.doi.org/10.1016/j.rser.2019.05.030]
[121]
Pingmuang, K.; Chen, J.; Kangwansupamonkon, W.; Wallace, G.G.; Phanichphant, S.; Nattestad, A. Composite photocatalysts containing BiVO4 for degradation of cationic dyes. Sci. Rep., 2017, 7(1), 8929.
[http://dx.doi.org/10.1038/s41598-017-09514-5] [PMID: 28827594]
[122]
Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett., 2010, 1(18), 2655-2661.
[http://dx.doi.org/10.1021/jz1007966]
[123]
Huo, R.; Yang, X.L.; Yang, J.Y.; Yang, S.Y.; Xu, Y.H. Self-assembly synthesis of BiVO4/Polydopamine/g-C3N4 with enhanced visible light photocatalytic performance. Mater. Res. Bull., 2017, 98, 225-230.
[http://dx.doi.org/10.1016/j.materresbull.2017.10.016]
[124]
Kim, H.; Bae, S.; Jeon, D.; Ryu, J. Fully Solution-Processable Cu2O-BiVO4 photoelectrochemical cells for bias-free solar water splitting. Green Chem., 2018, 20(16), 3732-3742.
[http://dx.doi.org/10.1039/C8GC00681D]
[125]
Govindhan, M.; Mao, B.; Chen, A. Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting. Nanoscale, 2016, 8(3), 1485-1492.
[http://dx.doi.org/10.1039/C5NR06726J] [PMID: 26677009]
[126]
Shaner, M.R.; Atwater, H.A.; Lewis, N.S.; McFarland, E.W. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci., 2016, 9(7), 2354-2371.
[http://dx.doi.org/10.1039/C5EE02573G]
[127]
Alexander, B.D.; Kulesza, P.J.; Rutkowska, I.; Solarska, R.; Augustynski, J. Metal Oxide photoanodes for solar hydrogen production. J. Mater. Chem., 2008, 18(20), 2298-2303.
[http://dx.doi.org/10.1039/b718644d]
[128]
An, X.; Hu, C.; Lan, H.; Liu, H.; Qu, J. Strongly coupled metal Oxide/Reassembled Carbon Nitride/Co-Pi heterostructures for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces, 2018, 10(7), 6424-6432.
[http://dx.doi.org/10.1021/acsami.8b01070] [PMID: 29389108]
[129]
Hong, S.J.; Lee, S.; Jang, J.S.; Lee, J.S. Heterojunction BiVO4/WO3 Electrodes for enhanced photoactivity of water Oxidation. Energy Environ. Sci., 2011, 4(5), 1781-1787.
[http://dx.doi.org/10.1039/c0ee00743a]
[130]
Marks, R.; Doudrick, K. Photocatalytic reduction of chlorite in water using bismuth vanadate (BiVO4): Effect of irradiance conditions and presence of oxalate on the reactivity and by-product selectivity. Environ. Sci. Water Res. Technol., 2019, 5(11), 2015-2026.
[http://dx.doi.org/10.1039/C9EW00636B]
[131]
Regmi, C.; Dhakal, D.; Lee, S.W. Visible-light-induced Ag/BiVO4 semiconductor with enhanced photocatalytic and antibacterial performance. Nanotechnology, 2018, 29(6), 064001.
[http://dx.doi.org/10.1088/1361-6528/aaa052] [PMID: 29219840]
[132]
Yaqi, W.; Wu, J.; Yan, Y.; Li, L.; Lu, P.; Guan, J.; Lu, N.; Yuan, X. Black phosphorus-based semiconductor multi-heterojunction TiO2-BiVO4-BP/RP film with an in situ junction and Z-scheme system for enhanced photoelectrocatalytic activity. Chem. Eng. J., 2021, 403, 126313-126321.
[http://dx.doi.org/10.1016/j.cej.2020.126313]
[133]
Ma, C.; Wei, M. BiVO4-Nanorod-Decorated Rutile/Anatase TiO2 nanofibers with enhanced photoelectrochemical performance. Mater. Lett., 2020, 259, 126849.
[http://dx.doi.org/10.1016/j.matlet.2019.126849]
[134]
Kant, R. Textile dyeing industry an environmental hazard. Nat. Sci. (Irvine Calif.), 2012, 04(01), 22-26.
[http://dx.doi.org/10.4236/ns.2012.41004]
[135]
Girvar, P.; Rawat, P.; Vaya, D. Malachite green: Recent developments. In: Malachite Green: Properties and Uses; , 2020; pp. 1-35.
[136]
Rauf, M.A.; Ashraf, S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J., 2009, 151(1-3), 10-18.
[http://dx.doi.org/10.1016/j.cej.2009.02.026]
[137]
Vaya, D.; Kaushik, B.; Surolia, P.K. Recent advances in graphitic carbon nitride semiconductor: Structure, synthesis and applications. Mater. Sci. Semicond. Process., 2022, 137, 106181.
[http://dx.doi.org/10.1016/j.mssp.2021.106181]
[138]
Yadav, P.; Surolia, P.K.; Vaya, D. Synthesis and application of copper ferrite-graphene oxide nanocomposite photocatalyst for the degradation of Malachite Green. Mater. Today Proc., 2021, 43, 2949-2953.
[http://dx.doi.org/10.1016/j.matpr.2021.01.301]
[139]
Yadav, R.; Chundawat, T.S.; Rawat, P.; Rao, G.K.; Vaya, D. Photocatalytic degradation of Malachite Green Dye by ZnO and ZnO–β-Cyclodextrin nanocomposite. Bull. Mater. Sci., 2021, 44(4), 250.
[http://dx.doi.org/10.1007/s12034-021-02533-z]
[140]
Min, S.; Wang, F.; Jin, Z.; Xu, J. Cu2O Nanoparticles decorated BiVO4 as an effective visible-light-driven p-n Heterojunction photocatalyst for Methylene Blue degradation. Superlattices Microstruct., 2014, 74, 294-307.
[http://dx.doi.org/10.1016/j.spmi.2014.07.003]
[141]
Liu, W.; Wang, M.; Xu, C.; Chen, S.; Fu, X. Ag3PO4/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of rhodamine B. Mater. Res. Bull., 2012, 48(1), 106-113.
[http://dx.doi.org/10.1016/j.materresbull.2012.10.015]
[142]
Zhang, A.; Zhang, J. Effects of europium doping on the photocatalytic behavior of BiVO4. J. Hazard. Mater., 2010, 173(1-3), 265-272.
[http://dx.doi.org/10.1016/j.jhazmat.2009.08.079] [PMID: 19729243]
[143]
Zhang, A.; Zhang, J. Characterization and photocatalytic properties of Au/BiVO4 composites. J. Alloys Compd., 2010, 491(1–2), 631-635.
[http://dx.doi.org/10.1016/j.jallcom.2009.11.027]
[144]
He, X.; Wang, F.; Liu, H.; Wang, X.; Gao, J. Synthesis and coloration of highly dispersive SiO2/BiVO4 hybrid pigments with low cost and high NIR reflectance. Nanotechnology, 2019, 30(29), 295701.
[http://dx.doi.org/10.1088/1361-6528/ab0ce0] [PMID: 30836330]
[145]
Rauf, M.A.; Bukallah, S.B.; Hamadi, A.; Sulaiman, A.; Hammadi, F. The effect of operational parameters on the photoinduced decoloration of dyes using a hybrid catalyst V2O5/TiO2. Chem. Eng. J., 2007, 129(1-3), 167-172.
[http://dx.doi.org/10.1016/j.cej.2006.10.031]
[146]
Mahmoodi, N.M.; Arami, M.; Limaee, N.Y.; Tabrizi, N.S. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J. Colloid Interface Sci., 2006, 295(1), 159-164.
[http://dx.doi.org/10.1016/j.jcis.2005.08.007] [PMID: 16181631]
[147]
Fu, J.; Yu, J.; Jiang, C.; Cheng, B.G-C. 3 N4-Based heterostructured photocatalysts. Adv. Energy Mater., 2017, 1701503, 1-31.
[http://dx.doi.org/10.1002/aenm.201701503]
[148]
Cao, S.W.; Yin, Z.; Barber, J.; Boey, F.Y.C.; Loo, S.C.J.; Xue, C. Preparation of Au-BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts. ACS Appl. Mater. Interfaces, 2012, 4(1), 418-423.
[http://dx.doi.org/10.1021/am201481b] [PMID: 22141400]
[149]
Regmi, C.; Kim, T.H.; Ray, S.K.; Yamaguchi, T.; Lee, S.W. Cobalt-Doped BiVO4 (Co-BiVO4) as a visible-light-driven photocatalyst for the degradation of malachite green and inactivation of harmful microorganisms in wastewater. Res. Chem. Intermed., 2017, 43(9), 5203-5216.
[http://dx.doi.org/10.1007/s11164-017-3036-y]
[150]
Prado, T.M.; Carrico, A.; Cincotto, F.H.; Fatibello-Filho, O.; Moraes, F.C. Bismuth vanadate/graphene quantum dot: A new nanocomposite for photoelectrochemical determination of dopamine. Sens. Actuators B Chem., 2019, 285, 248-253.
[http://dx.doi.org/10.1016/j.snb.2019.01.059]
[151]
Liu, Y.; Yuan, A.; Xiao, Y.; Yu, H.; Dong, X. Two-Dimensional/Two-Dimensional Z-Scheme Photocatalyst of Graphitic Carbon Nitride/Bismuth Vanadate for Visible-Light-Driven Photocatalytic Synthesis of Imines. Ceram. Int., 2020, 46(10), 16157-16165.
[http://dx.doi.org/10.1016/j.ceramint.2020.03.171]
[152]
Wang, Y.; Yu, D.; Wang, W.; Gao, P.; Zhong, S.; Zhang, L.; Zhao, Q.; Liu, B. Synthesizing Co3O4-BiVO4/g-C3N4 Heterojunction composites for superior photocatalytic redox activity. Separ. Purif. Tech., 2020, 239, 116562.
[http://dx.doi.org/10.1016/j.seppur.2020.116562]
[153]
Zhao, X.; Lu, Z.; Ma, W.; Zhang, M.; Ji, R.; Yi, C.; Yan, Y. One-Step Fabrication of Carbon Decorated Co3O4/BiVO4 p-n heterostructure for enhanced visible-light photocatalytic properties. Chem. Phys. Lett., 2018, 706, 440-447.
[http://dx.doi.org/10.1016/j.cplett.2018.05.056]
[154]
Li, M.; Xu, G.; Guan, Z.; Wang, Y.; Yu, H.; Yu, Y. Synthesis of Ag/BiVO4/rGO composite with enhanced photocatalytic degradation of triclosan. Sci. Total Environ., 2019, 664, 230-239.
[http://dx.doi.org/10.1016/j.scitotenv.2019.02.027] [PMID: 30743116]
[155]
Patil, S.S.; Mali, M.G.; Hassan, M.A.; Patil, D.R.; Kolekar, S.S.; Ryu, S.W. One-pot in situ hydrothermal growth of BiVO4/Ag/rGO hybrid architectures for solar water splitting and environmental remediation. Sci. Rep., 2017, 7(1), 8404.
[http://dx.doi.org/10.1038/s41598-017-08912-z] [PMID: 28827768]
[156]
Durai, L.; Badhulika, S. Ultra-selective, trace level detection of As3+ ions in blood samples using PANI coated BiVO4 modified SPCE via differential pulse anode stripping voltammetry. Mater. Sci. Eng. C, 2020, 111, 110806.
[http://dx.doi.org/10.1016/j.msec.2020.110806] [PMID: 32279735]
[157]
Zhou, D.; Zhu, Z.; Liu, B. Solvothermal synthesis and characterization of a novel Reduced Graphene Oxide (RGO)/BiVO4/SiO2 Nanocomposites. Mater. Lett., 2016, 185, 32-35.
[http://dx.doi.org/10.1016/j.matlet.2016.08.098]
[158]
Xie, Y.; Zhang, M.; Bin, Q.; Xie, S.; Guo, L.; Cheng, F.; Lv, W. Photoelectrochemical immunosensor based on CdSe@BiVO4 Co-sensitized TiO2 for carcinoembryonic antigen. Biosens. Bioelectron., 2020, 150, 111949.
[http://dx.doi.org/10.1016/j.bios.2019.111949] [PMID: 31929086]
[159]
Shi, Q.; Li, Z.; Chen, L.; Zhang, X.; Han, W.; Xie, M.; Yang, J.; Jing, L. Synthesis of SPR Au/BiVO4 Quantum Dot/Rutile-TiO2 nanorod array composites as efficient visible-light photocatalysts to convert CO2 and mechanism insight. Appl. Catal. B, 2019, 244, 641-649.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.089]
[160]
Lu, Y.; Chu, Y.; Zheng, W.; Huo, M.; Huo, H.; Qu, J.; Yu, H.; Zhao, Y. Significant Tetracycline hydrochloride degradation and electricity generation in a visible-light-driven dual photoelectrode photocatalytic fuel cell using BiVO4/TiO2 NT photoanode and Cu2O/TiO2 NT Photocathode. Electrochim. Acta, 2019, 320, 181.
[http://dx.doi.org/10.1016/j.electacta.2019.134617]
[161]
Longo, G.; Fresno, F.; Gross, S.; Štangar, U.L. Synthesis of BiVO4/TiO2 composites and evaluation of their photocatalytic activity under indoor illumination. Environ. Sci. Pollut. Res. Int., 2014, 21(19), 11189-11197.
[http://dx.doi.org/10.1007/s11356-014-2624-2] [PMID: 24535667]
[162]
Lv, Y.R.; Liu, C.J.; He, R.K.; Li, X.; Xu, Y.H. BiVO4/TiO2 Heterojunction with enhanced photocatalytic activities and photoelectochemistry performances under visible light illumination. Mater. Res. Bull., 2019, 117, 35-40.
[http://dx.doi.org/10.1016/j.materresbull.2019.04.032]
[163]
Zhang, H.; Li, Y.; Wu, Y.; Wang, Y.; Lin, Z.; Cao, D.; Wang, Q. Construction of BiVO4 microspheres sensitized TiO2 NTAs for the enhanced photocatalytic mineralization of organic dyes. Ceram. Int., 2020, 46(9), 13433-13441.
[http://dx.doi.org/10.1016/j.ceramint.2020.02.126]
[164]
Drisya, K.T.; Solís-López, M.; Ríos-Ramírez, J.J.; Durán-Álvarez, J.C.; Rousseau, A.; Velumani, S.; Asomoza, R.; Kassiba, A.; Jantrania, A.; Castaneda, H. Electronic and optical competence of TiO2/BiVO4 nanocomposites in the photocatalytic processes. Sci. Rep., 2020, 10(1), 13507.
[http://dx.doi.org/10.1038/s41598-020-69032-9] [PMID: 32782289]
[165]
Chahkandi, M.; Zargazi, M. New water based EPD thin BiVO4 film: Effective photocatalytic degradation of Amoxicillin antibiotic. Elsevier B.V., 2020, 389, 121850.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121850] [PMID: 31862353]
[166]
Li, Y.; Liao, D.; Li, T.; Zhong, W.; Wang, X.; Hong, X.; Yu, H. Plasmonic Z-scheme Pt-Au/BiVO4 photocatalyst: Synergistic effect of crystal-facet engineering and selective loading of Pt-Au cocatalyst for improved photocatalytic performance. J. Colloid Interface Sci., 2020, 570, 232-241.
[http://dx.doi.org/10.1016/j.jcis.2020.02.093] [PMID: 32155501]
[167]
Zhang, Z.J.; Zheng, Q.C.; Sun, L. Synthesis of 2-D Nanostructured BiVO4:Ag hybrid as an efficient electrode material for supercapacitors. Ceram. Int., 2017, 43(18), 16217-16224.
[http://dx.doi.org/10.1016/j.ceramint.2017.08.200]
[168]
Trinh, D.T.T.; Channei, D.; Nakaruk, A.; Khanitchaidecha, W. New insight into the photocatalytic degradation of organic pollutant over BiVO4/SiO2/GO nanocomposite. Sci. Rep., 2021, 11(1), 4620.
[http://dx.doi.org/10.1038/s41598-021-84323-5] [PMID: 33633352]
[169]
Fan, Y.; Zhou, W.; Qiu, X.; Li, H.; Jiang, Y.; Sun, Z.; Han, D.; Niu, L.; Tang, Z. Selective Photocatalytic Oxidation of Methane by Quantum-Sized Bismuth Vanadate. Nat. Sustain., 2021, 4(6), 509-515.
[http://dx.doi.org/10.1038/s41893-021-00682-x]
[170]
Huang, J.; Wang, Y.; Chen, K.; Liu, T.; Wang, Q. Boosting the photoelectrochemical water oxidation performance of bismuth vanadate by ZnCo2O4 nanoparticles. Chin. Chem. Lett., 2021. Epub ahead of print
[http://dx.doi.org/10.1016/j.cclet.2021.08.082]
[171]
Sun, H.; Hua, W.; Liang, S.; Li, Y.; Wang, J-G. Boosting photoelectrochemical activity of bismuth vanadate by implanting oxygen-vacancy-rich cobalt (oxy)hydroxide. J. Colloid Interface Sci., 2022, 611, 278-286.
[http://dx.doi.org/10.1016/j.jcis.2021.12.086] [PMID: 34953460]
[172]
Prado, T.M.; Silva, F.L.; Carrico, A.; Lanza, M.R. de V.; Fatibello-Filho, O.; Moraes, F.C. Photoelectrocatalytic degradation of caffeine using bismuth vanadate modified with reduced Graphene Oxide. Mater. Res. Bull., 2021, 2022(145), 111539.
[http://dx.doi.org/10.1016/j.materresbull.2021.111539]
[173]
Rokesh, K.; Sakar, M.; Do, T.O. Integration of aminosilicate functionalized-Fullerene (C60) QDs on Bismuth Vanadate (BiVO4) nanolayers for the photocatalytic degradation of pharmaceutical pollutant. Catal. Today, 2021. Epub ahead of print
[http://dx.doi.org/10.1016/j.cattod.2021.10.006]
[174]
Koventhan, C.; Pandiyarajan, S.; Chen, S.M. Simple sonochemical synthesis of flake-ball shaped bismuth vanadate for voltammetric detection of Furazolidone. J. Alloys Compd., 2022, 895, 162315.
[http://dx.doi.org/10.1016/j.jallcom.2021.162315]
[175]
Derbali, M.; Othmani, A.; Kouass, S.; Touati, F.; Dhaouadi, H. BiVO4/TiO2 nanocomposite: Electrochemical sensor for hydrogen peroxide. Mater. Res. Bull., 2020, 125, 110771-110780.
[http://dx.doi.org/10.1016/j.materresbull.2020.110771]
[176]
Jerez, L.M.B.; Pérez, U.M.G.; Hernández, J. Carbon paste electrode modified with BiVO4 to sense metformin. Int. J. Electrochem. Sci., 2014, 9, 4643-4652.
[177]
Parida, R.K.; Pattanayak, D.K.; Mohanty, B.; Parida, B.N. Optical and transport properties of Double Perovskite Strontium Bismuth Vanadate. J. Mol. Struct., 2020, 1205, 127607.
[http://dx.doi.org/10.1016/j.molstruc.2019.127607]
[178]
Kaur, H.; Jayasimhadri, M. Color Tunable Photoluminescence properties in Eu3+ Doped Calcium Bismuth Vanadate Phosphors for Luminescent Devices. Ceram. Int., 2019, 45(12), 15385-15393.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.034]
[179]
Wei, Y.; Zhang, Y.; Miao, J.; Geng, W.; Long, M. In-situ utilization of piezo-generated hydrogen peroxide for efficient p-chlorophenol degradation by Fe loading bismuth vanadate. Appl. Surf. Sci., 2021, 543, 148791.
[http://dx.doi.org/10.1016/j.apsusc.2020.148791]
[180]
Li, J.; Zhao, W.; Guo, Y.; Wei, Z.; Han, M.; He, H.; Yang, S.; Sun, C. Facile synthesis and high activity of novel BiVO4/FeVO4 heterojunction photocatalyst for degradation of metronidazole. Appl. Surf. Sci., 2015, 351, 270-279.
[http://dx.doi.org/10.1016/j.apsusc.2015.05.134]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy