Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Mini-Review Article

Mucormycosis in India: Pathophysiology and Perspectives on Treatment and Management

Author(s): Utsav Gupta, Deepika Paliwal* and Samridhi Rawat

Volume 22, Issue 7, 2022

Published on: 27 July, 2022

Article ID: e090522204402 Pages: 9

DOI: 10.2174/1871526522666220509064659

Price: $65

Abstract

Mucormycosis, also known as "black fungus," is a potentially fatal disorder that causes blurred or double vision, chest pain, and breathing problems. The introduction of novel risk factors and causative agents, as well as the problems with controlling the disease, are all significant problems with mucormycosis in India. It is most common among COVID-19 patients. Mucormycosis is an invasive fungal disease that primarily affects immunosuppressant patients, mainly caused by mold fungi of the genus mucor, rhizopus, rhizomucor, and absidia, which are in the zygomycetes class and the Mucorales order. The most common risk factor is diabetes mellitus, followed by haematological malignancy and solid-organ transplantation. Reversal of underlying predisposing factors, surgical debridement of infected tissues, and proper antifungal therapy are all required for the treatment of mucormycosis. In this review, the epidemiology, pathogenesis, and symptoms of black fungus and its association with covid-19, treatment, and diagnosis are discussed.

Keywords: Mucormycosis, black fungus, COVID-19, diabetes, pathogenesis, diagnosis, treatment.

Graphical Abstract

[1]
Hibbett DS, Binder M, Bischoff JF, et al. A higher-level phylogenetic classification of the Fungi. Mycol Res 2007; 111(Pt 5): 509-47.
[http://dx.doi.org/10.1016/j.mycres.2007.03.004] [PMID: 17572334]
[2]
Dyer O. Covid-19: India sees record deaths as “black fungus” spreads fear. BMJ 2021; 373(1238): n1238.
[http://dx.doi.org/10.1136/bmj.n1238] [PMID: 33985993]
[3]
Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev 2000; 13(2): 236-301.
[http://dx.doi.org/10.1128/CMR.13.2.236] [PMID: 10756000]
[4]
Spellberg B, Edwards J Jr, Ibrahim A. Novel perspectives on mucormycosis: Pathophysiology, presentation, and management. Clin Microbiol Rev 2005; 18(3): 556-69.
[http://dx.doi.org/10.1128/CMR.18.3.556-569.2005] [PMID: 16020690]
[5]
Roden MM, Zaoutis TE, Buchanan WL, et al. Epidemiology and outcome of zygomycosis: A review of 929 reported cases. Clin Infect Dis 2005; 41(5): 634-53.
[http://dx.doi.org/10.1086/432579] [PMID: 16080086]
[6]
Frater JL, Hall GS, Procop GW. Histologic features of zygomycosis: Emphasis on perineural invasion and fungal morphology. Arch Pathol Lab Med 2001; 125(3): 375-8.
[http://dx.doi.org/10.5858/2001-125-0375-HFOZ] [PMID: 11231486]
[7]
Jeong W, Keighley C, Wolfe R, et al. The epidemiology and clinical manifestations of mucormycosis: A systematic review and meta-analysis of case reports. Clin Microbiol Infect 2019; 25(1): 26-34.
[http://dx.doi.org/10.1016/j.cmi.2018.07.011] [PMID: 30036666]
[8]
Reid G, Lynch JP III, Fishbein MC, Clark NM. Mucormycosis. Semin Respir Crit Care Med 2020; 41(1): 99-114.
[http://dx.doi.org/10.1055/s-0039-3401992] [PMID: 32000287]
[9]
Prakash H, Ghosh AK, Rudramurthy SM, et al. A prospective multicenter study on mucormycosis in India: Epidemiology, diagnosis, and treatment. Med Mycol 2019; 57(4): 395-402.
[http://dx.doi.org/10.1093/mmy/myy060] [PMID: 30085158]
[10]
Patel A, Kaur H, Xess I, et al. A multicentre observational study on the epidemiology, risk factors, management and outcomes of mu-cormycosis in India. Clin Microbiol Infect 2020; 26(7): 944.e9-944.e15.
[http://dx.doi.org/10.1016/j.cmi.2019.11.021] [PMID: 31811914]
[11]
Skiada A, Pagano L, Groll A, et al. Zygomycosis in Europe: Analysis of 230 cases accrued by the registry of the European confederation of medical mycology (ECMM) working group on zygomycosis between 2005 and 2007. Clin Microbiol Infect 2011; 17(12): 1859-67.
[http://dx.doi.org/10.1111/j.1469-0691.2010.03456.x] [PMID: 21199154]
[12]
Singh; Kumar, A.; Al., E. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab Syndr 2021.
[13]
Mehta S, Pandey A. Rhino-orbital mucormycosis associated with COVID-19. Curesu 2020; 12(9): e10726.
[14]
Chakrabarti A, Das A, Sharma A, et al. Ten years’ experience in zygomycosis at a tertiary care centre in India. J Infect 2001; 42(4): 261-6.
[http://dx.doi.org/10.1053/jinf.2001.0831] [PMID: 11545569]
[15]
Chakrabarti A, Das A, Mandal J, et al. The rising trend of invasive zygomycosis in patients with uncontrolled diabetes mellitus. Med Mycol 2006; 44(4): 335-42.
[http://dx.doi.org/10.1080/13693780500464930] [PMID: 16772227]
[16]
Chakrabarti A, Chatterjee SS, Das A, et al. Invasive zygomycosis in India: Experience in a tertiary care hospital. Postgrad Med J 2009; 85(1009): 573-81.
[http://dx.doi.org/10.1136/pgmj.2008.076463] [PMID: 19892892]
[17]
Manesh A, Rupali P, Sullivan MO, et al. Mucormycosis-A clinicoepidemiological review of cases over 10 years. Mycoses 2019; 62(4): 391-8.
[http://dx.doi.org/10.1111/myc.12897] [PMID: 30685896]
[18]
Chander J, Kaur M, Singla N, et al. Mucormycosis: Battle with the deadly enemy over a five-year period in India. J Fungi (Basel) 2018; 4(2): E46.
[http://dx.doi.org/10.3390/jof4020046] [PMID: 29642408]
[19]
Patel AK, Patel KK, Patel K, Gohel S, Chakrabarti A. Mucormycosis at a tertiary care centre in Gujarat, India. Mycoses 2017; 60(6): 407-11.
[http://dx.doi.org/10.1111/myc.12610] [PMID: 28276102]
[20]
Prakash H, Chakrabarti A. Global epidemiology of mucormycosis. J Fungi (Basel) 2019; 5(1): E26.
[http://dx.doi.org/10.3390/jof5010026] [PMID: 30901907]
[21]
Priya P, Rajendran T, Geni VG. Mucormycosis in a tertiary care center in South India: A 4-year experience. Indian J Crit Care Med Peer-reviewed, Off Publ Indian Soc. Crit Care Med 2020; 24(3): 168-71.
[http://dx.doi.org/10.5005/jp-journals-10071-23387]
[22]
Prakash H, Chakrabarti A. Epidemiology of Mucormycosis in India. Microorganisms 2021; 9(3): 1-12.
[http://dx.doi.org/10.3390/microorganisms9030523] [PMID: 33806386]
[23]
Chakrabarti A, Kaur H, Savio J, et al. Epidemiology and clinical outcomes of invasive mould infections in Indian intensive care units (FISF study). J Crit Care 2019; 51: 64-70.
[http://dx.doi.org/10.1016/j.jcrc.2019.02.005] [PMID: 30769292]
[24]
Koffi; David; Al., E. Estimates of serious fungal infection burden in Côte d’Ivoire and Country Health Profile. J Mycol Med 2021; 31(1): 101086.
[25]
Sahoo JP, Panda SJP. The unseen “Fungal infection”- an extra thrust aggravating covid second wave in India. Biotica Res Today 2021; pp. 354-6.
[26]
Ibrahim AS. J. EJ, Edwards Filler, SG. Zygomycosis. In: Clinical mycology. New York, NY: Oxford University Press 2003; pp. 241-51.
[27]
Ben-Ami R, Luna M, Lewis RE, Walsh TJ, Kontoyiannis DP. A clinicopathological study of pulmonary mucormycosis in cancer patients: Extensive angioinvasion but limited inflammatory response. J Infect 2009; 59(2): 134-8.
[http://dx.doi.org/10.1016/j.jinf.2009.06.002] [PMID: 19576639]
[28]
Ibrahim AS, Spellberg B, Walsh TJ, Kontoyiannis DP. Pathogenesis of mucormycosis. Clin Infect Dis 2012; 54 (Suppl. 1): S16-22.
[http://dx.doi.org/10.1093/cid/cir865] [PMID: 22247441]
[29]
Bouchara JP, Oumeziane NA, Lissitzky JC, Larcher G, Tronchin G, Chabasse D. Attachment of spores of the human pathogenic fungus Rhizopus oryzae to extracellular matrix components. Eur J Cell Biol 1996; 70(1): 76-83.
[PMID: 8738422]
[30]
Ibrahim AS, Spellberg B, Avanessian V, Fu Y, Edwards JE Jr. Rhizopus oryzae adheres to, is phagocytosed by, and damages endothelial cells in vitro. Infect Immun 2005; 73(2): 778-83.
[http://dx.doi.org/10.1128/IAI.73.2.778-783.2005] [PMID: 15664916]
[31]
Liu M, Spellberg B, Phan QT, et al. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. J Clin Invest 2010; 120(6): 1914-24.
[http://dx.doi.org/10.1172/JCI42164] [PMID: 20484814]
[32]
Lee AS. GRP78 induction in cancer: Therapeutic and prognostic implications. Cancer Res 2007; 67(8): 3496-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0325] [PMID: 17440054]
[33]
Ni M, Lee AS. ER chaperones in mammalian development and human diseases. FEBS Lett 2007; 581(19): 3641-51.
[http://dx.doi.org/10.1016/j.febslet.2007.04.045] [PMID: 17481612]
[34]
Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med 2006; 6(1): 45-54.
[http://dx.doi.org/10.2174/156652406775574523] [PMID: 16472112]
[35]
Wang M, Wey S, Zhang Y, Ye R, Lee AS. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neuro-logical disorders. Antioxid Redox Signal 2009; 11(9): 2307-16.
[http://dx.doi.org/10.1089/ars.2009.2485] [PMID: 19309259]
[36]
Chamilos G, Lewis RE, Hu J, et al. Drosophila melanogaster as a model host to dissect the immunopathogenesis of zygomycosis. Proc Natl Acad Sci USA 2008; 105(27): 9367-72.
[http://dx.doi.org/10.1073/pnas.0709578105] [PMID: 18583479]
[37]
Jeong M. COVID-19 increases black fungus infection risk in India. 2021. Available from: www.Medicalnewstoday.Com, https://www.medicalnewstoday.com/articles/covid-19-increases-black-fungus-infection-risk-in-india
[38]
Gangneux JP, Bougnoux ME, Dannaoui E, Cornet M, Zahar JR. Invasive fungal diseases during COVID-19: We should be prepared. J Mycol Med 2020; 30(2): 100971.
[http://dx.doi.org/10.1016/j.mycmed.2020.100971] [PMID: 32307254]
[39]
Potenza L, Vallerini D, Barozzi P, et al. Mucorales-specific T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk patients. Blood 2011; 118(20): 5416-9.
[http://dx.doi.org/10.1182/blood-2011-07-366526] [PMID: 21931119]
[40]
Pasero D, Sanna S, Liperi C, et al. Challenging complication following SARS-CoV-2 infection: A case of pulmonary mucormycosis. Infection 2021; 49(5): 1055-60.
[http://dx.doi.org/10.1007/s15010-020-01561-x] [PMID: 33331988]
[41]
Pilmis B, Alanio A, Lortholary O, Lanternier F. Recent advances in the understanding and management of mucormycosis. F1000 Res 2018; 7(0): 1-8.
[http://dx.doi.org/10.12688/f1000research.15081.1] [PMID: 30271573]
[42]
Chamilos G, Lewis RE, Kontoyiannis DP. Delaying amphotericin B-based frontline therapy significantly increases mortality among patients with hematologic malignancy who have zygomycosis. Clin Infect Dis 2008; 47(4): 503-9.
[http://dx.doi.org/10.1086/590004] [PMID: 18611163]
[43]
Prabhu RM, Patel R. Mucormycosis and entomophthoramycosis: A review of the clinical manifestations, diagnosis and treatment. Clin Microbiol Infect 2004; 10 (Suppl. 1): 31-47.
[http://dx.doi.org/10.1111/j.1470-9465.2004.00843.x] [PMID: 14748801]
[44]
Skiada A, Lass-Floerl C, Klimko N, Ibrahim A, Roilides E, Petrikkos G. Challenges in the diagnosis and treatment of mucormycosis. Med Mycol 2018; 56 (Suppl. 1): 93-101.
[http://dx.doi.org/10.1093/mmy/myx101] [PMID: 29538730]
[45]
Lass-Flörl C. Zygomycosis: Conventional laboratory diagnosis. Clin Microbiol Infect 2009; 15 (Suppl. 5): 60-5.
[http://dx.doi.org/10.1111/j.1469-0691.2009.02999.x] [PMID: 19754760]
[46]
Monheit JE, Cowan DF, Moore DG. Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch Pathol Lab Med 1984; 108(8): 616-8.
[PMID: 6204621]
[47]
Millon L, Herbrecht R, Grenouillet F, et al. Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: Retrospective analysis of 44 cases collected through the French surveillance network of invasive fungal infections (RESSIF). Clin Microbiol Infect 2016; 22(9): 810.e1-8.
[http://dx.doi.org/10.1016/j.cmi.2015.12.006] [PMID: 26706615]
[48]
Hsiao CR, Huang L, Bouchara JP, Barton R, Li HC, Chang TC. Identification of medically important molds by an oligonucleotide array. J Clin Microbiol 2005; 43(8): 3760-8.
[http://dx.doi.org/10.1128/JCM.43.8.3760-3768.2005] [PMID: 16081907]
[49]
Nagao K, Ota T, Tanikawa A, et al. Genetic identification and detection of human pathogenic Rhizopus species, a major mucormycosis agent, by multiplex PCR based on internal transcribed spacer region of rRNA gene. J Dermatol Sci 2005; 39(1): 23-31.
[http://dx.doi.org/10.1016/j.jdermsci.2005.01.010] [PMID: 15978416]
[50]
J, L.; M, M.; Al, B. K. et. Diagnosis of cutaneous mucormycosis Due to Rhizopus microsporus by an innovative PCR-restriction fragmentlength polymorphism method. Clin Infect Dis 2005; 41: 1362-5.
[http://dx.doi.org/10.1086/497078]
[51]
Machouart M, Larché J, Burton K, et al. Genetic identification of the main opportunistic mucorales by PCR-restriction fragment length pol-ymorphism. J Clin Microbiol 2006; 44(3): 805-10.
[http://dx.doi.org/10.1128/JCM.44.3.805-810.2006] [PMID: 16517858]
[52]
Nyilasi I, Papp T, Csernetics A. Krizsa’n, K.; E. Nagy1 and C. Va’gvo¨lgyi2; 1Hungarian. High-affinity iron permease (FTR1) gene sequence-based molecular identification of clinically important zygomycetes. Nautilus (Philadelphia) 2015; 129(4): 175-8.
[http://dx.doi.org/10.5924/abgri1972.1974.17]
[53]
Springer J, Lackner M, Ensinger C, et al. Clinical evaluation of a mucorales-specific real-time PCR assay in tissue and serum samples. J Med Microbiol 2016; 65(12): 1414-21.
[http://dx.doi.org/10.1099/jmm.0.000375] [PMID: 27902424]
[54]
Kasai M, Harrington SM, Francesconi A, et al. Detection of a molecular biomarker for zygomycetes by quantitative PCR assays of plasma, bronchoalveolar lavage, and lung tissue in a rabbit model of experimental pulmonary zygomycosis. J Clin Microbiol 2008; 46(11): 3690-702.
[http://dx.doi.org/10.1128/JCM.00917-08] [PMID: 18845827]
[55]
Caillot D, Valot S, Lafon I, et al. Is it time to include CT “Reverse halo sign” and qPCR targeting mucorales in serum to EORTC-MSG crite-ria for the diagnosis of pulmonary mucormycosis in leukemia patients? Open Forum Infect Dis 2016; 3(4): ofw190.
[http://dx.doi.org/10.1093/ofid/ofw190] [PMID: 28101518]
[56]
Nam BD, Kim TJ, Lee KS, Kim TS, Han J, Chung MJ. Pulmonary mucormycosis: Serial morphologic changes on computed tomography correlate with clinical and pathologic findings. Eur Radiol 2018; 28(2): 788-95.
[http://dx.doi.org/10.1007/s00330-017-5007-5] [PMID: 28812135]
[57]
Legouge C, Caillot D, Chrétien ML, et al. The reversed halo sign: Pathognomonic pattern of pulmonary mucormycosis in leukemic patients with neutropenia? Clin Infect Dis 2014; 58(5): 672-8.
[http://dx.doi.org/10.1093/cid/cit929] [PMID: 24352351]
[58]
Farmakiotis D, Kontoyiannis DP. Mucormycoses. Infect Dis Clin North Am 2016; 30(1): 143-63.
[http://dx.doi.org/10.1016/j.idc.2015.10.011] [PMID: 26897065]
[59]
Cornely OA, Alastruey-Izquierdo A, Arenz D, et al. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European confederation of medical mycology in cooperation with the Mycoses study group education and research consortium. Lancet Infect Dis 2019; 19(12): e405-21.
[http://dx.doi.org/10.1016/S1473-3099(19)30312-3] [PMID: 31699664]
[60]
Sabatelli F, Patel R, Mann PA, et al. In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob Agents Chemother 2006; 50(6): 2009-15.
[http://dx.doi.org/10.1128/AAC.00163-06] [PMID: 16723559]
[61]
Almyroudis NG, Sutton DA, Fothergill AW, Rinaldi MG, Kusne S. In vitro susceptibilities of 217 clinical isolates of zygomycetes to con-ventional and new antifungal agents. Antimicrob Agents Chemother 2007; 51(7): 2587-90.
[http://dx.doi.org/10.1128/AAC.00452-07] [PMID: 17452481]
[62]
Perkhofer S, Lechner V, Lass-Flörl C. In vitro activity of isavuconazole against Aspergillus species and zygomycetes according to the meth-odology of the European committee on antimicrobial susceptibility testing. Antimicrob Agents Chemother 2009; 53(4): 1645-7.
[http://dx.doi.org/10.1128/AAC.01530-08] [PMID: 19164153]
[63]
Chakrabarti Arunaloke, Singh S. Management of mucormycosis. Curr Fungal Infect Rep 2020; 14: 348-60.
[64]
Spanakis EK, Aperis G, Mylonakis E. New agents for the treatment of fungal infections: Clinical efficacy and gaps in coverage. Clin Infect Dis 2006; 43(8): 1060-8.
[http://dx.doi.org/10.1086/507891] [PMID: 16983621]
[65]
Sun QN, Fothergill AW, McCarthy DI, Rinaldi MG, Graybill JR. In vitro activities of posaconazole, itraconazole, voriconazole, amphotericin B, and fluconazole against 37 clinical isolates of zygomycetes. Antimicrob Agents Chemother 2002; 46(5): 1581-2.
[http://dx.doi.org/10.1128/AAC.46.5.1581-1582.2002] [PMID: 11959605]
[66]
Thompson GR III, Wiederhold NP. Isavuconazole: A comprehensive review of spectrum of activity of a new triazole. Mycopathologia 2010; 170(5): 291-313.
[http://dx.doi.org/10.1007/s11046-010-9324-3] [PMID: 20524153]
[67]
Arendrup MC, Jensen RH, Meletiadis J. In vitro activity of isavuconazole and comparators against clinical isolates of the mucorales order. Antimicrob Agents Chemother 2015; 59(12): 7735-42.
[http://dx.doi.org/10.1128/AAC.01919-15] [PMID: 26438494]
[68]
Ashley, Dodds E, Perfect. J R. Pharmacology of azoles. UpToDate. Kauffman Waltham, MA 2017.
[69]
Nithyanandam S, Jacob MS, Battu RR, Thomas MS, Correa MA, D’Souza O. Rhino-orbito-cerebral mucormycosis. A retrospective analysis of clinical features and treatment outcomes. Indian J Ophthalmol 2003; 51: 231-6.
[70]
Kontoyiannis DP, Wessel VC, Bodey GP, Rolston KVI. Zygomycosis in the 1990s in a tertiary-care cancer center. Clin Infect Dis 2000; 30(6): 851-6.
[http://dx.doi.org/10.1086/313803] [PMID: 10852735]
[71]
Asai K, Suzuki K, Takahashi T, Ito Y, Kazui T, Kita Y. Pulmonary resection with chest wall removal and reconstruction for invasive pul-monary mucormycosis during antileukemia chemotherapy. Jpn J Thorac Cardiovasc Surg 2003; 51(4): 163-6.
[http://dx.doi.org/10.1007/s11748-003-0055-y] [PMID: 12723589]
[72]
Sun HY, Aguado JM, Bonatti H, et al. Pulmonary zygomycosis in solid organ transplant recipients in the current era. Am J Transplant 2009; 9(9): 2166-71.
[73]
Sun HY, Forrest G, Gupta KL, et al. Rhino-orbital-cerebral zygomycosis in solid organ transplant recipients. Transplantation 2010; 90(1): 85-92.
[http://dx.doi.org/10.1097/TP.0b013e3181dde8fc] [PMID: 20626095]
[74]
Lee FY, Mossad SB, Adal KA. Pulmonary mucormycosis: The last 30 years. Arch Intern Med 1999; 159(12): 1301-9.
[http://dx.doi.org/10.1001/archinte.159.12.1301] [PMID: 10386506]
[75]
Gil-Lamaignere C, Simitsopoulou M, Roilides E, Maloukou A, Winn RM, Walsh TJ. Interferon- γ and granulocyte-macrophage colony-stimulating factor augment the activity of polymorphonuclear leukocytes against medically important zygomycetes. J Infect Dis 2005; 191(7): 1180-7.
[http://dx.doi.org/10.1086/428503] [PMID: 15747255]
[76]
Roilides E, Antachopoulos C, Simitsopoulou M. Pathogenesis and host defence against mucorales: The role of cytokines and interaction with antifungal drugs. Mycoses 2014; 57 (Suppl. 3): 40-7.
[http://dx.doi.org/10.1111/myc.12236] [PMID: 25175306]
[77]
Grimaldi D, Pradier O, Hotchkiss RS, Vincent JL. Nivolumab plus interferon-γ in the treatment of intractable mucormycosis. Lancet Infect Dis 2017; 17(1): 18.
[http://dx.doi.org/10.1016/S1473-3099(16)30541-2] [PMID: 27998559]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy