Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Purified Stigmasterol Related Novel Phytosterol from Chrysopogon zizanioides (L.) Roberty Root Extract Exhibits Strong Cholesterol Esterase (CEase) and Diabetic Foot Ulcer (DFU) Causing Bacterial Pathogens Inhibitory Properties

Author(s): Appakudal Venkataraman Venkatesh Arun, Rajendran Soundaram, Thiyagarajan Sathishkumar*, Kuppamuthu Kumaresan, Vinohar Stephen Rapheal and Natarajan Thirugnanam

Volume 19, Issue 2, 2023

Published on: 08 September, 2022

Article ID: e260422204090 Pages: 14

DOI: 10.2174/1573407218666220426132448

Price: $65

Abstract

Background: Chrysopogon zizanioides Roberty root extracts have documented amylase and α-glucosidase inhibition, hepatoprotection, antioxidant, antimicrobial, antihyperglycemic, antidepressant, and antitubercular properties but lack ample reports on health care applications of purified phytoconstituents.

Objective: To study the inhibitory properties of phytosterol eluate against cholesterol esterase (CEase) and diabetic foot ulcer (DFU) causing pathogens (clinical isolates).

Methods: The shake flask method was adopted to extract the phytoconstituents and standard spectrophotometric assays were carried out to quantify phytosterol constituent and CEase inhibitory activity. Central composite design (CCD) based response surface methodology (RSM) was adopted to observe the improvement of phytosterol constituent and CEase inhibitory activity. Two dimensional preparative thin layer chromatography (2D PTLC) technique was executed to purify the phytosterol content and HRLC-based APCI – Q-TOF/ MS2 analysis was done to predict the phytosterol structures. Standard disc assay was used to explore the inhibitory effect of extract and purified phytosterol content against DFU-causing pathogens.

Results: The crude extracts exhibited a moderate CEase inhibitory activity (Ethylacetate: 67 ± 3.2%) and appreciable phytosterol content (Acetone: 11.24 ± 0.52 mg/g tissue). CCD based RSM has improved the CEase inhibitory activity (Ethylacetate: 96.56 ± 1.1%) as well as the phytosterol content (6.45 ± 0.5 mg/g tissue). The purified phytosterol fractionate (PTLC eluate) was found to contain stigmasterol related novel phytosterol and revealed a significant CEase inhibitory activity (81 ± 2.5 %; Ki: 54.89 μg) with mixed type inhibition.

Conclusion: Both the extract and the PTLC eluate have recorded a substantial control over DFU causing bacterial pathogens.

Keywords: Cholesterol esterase, Diabetic foot ulcer, Stigmasterol, Chrysopogon zizanioides

Graphical Abstract

[1]
Chahal, K.K.; Bhardwaj, U.; Kaushal, S.; Sandhu, A.K. Chemical composition and biological properties of Chrysopogon zizanioides (L.) Roberty syn. Chrysopogon zizanioides (L.) Nash-a review. Indian J. Nat. Prod. Resour., 2015, 6(4), 251-260.
[2]
Balasankar, B.; Vanilarasu, K.; Selva Preetha, P.; Rajeswari, S.; Umadevi, M.; Bhowmik, D. Traditional and medicinal use of Vetiver. J Med Plant Stud., 2013, 1(3), 191-200.
[3]
Snigdha, M.; Kumar, S.S.; Sharmistha, M.; Deepa, C. An overview on Chrysopogon zizanioides. Res. J. Pharm. Biol. Chem. Sci., 2013, 4(3), 777-783.
[4]
Chowdhury, A.R.; Kumar, D.; Lohani, H. GC-MS analysis of essential oils of Chrysopogon zizanioides (L.) Nash roots. Fafai J., 2002, 4, 33-35.
[5]
Bhushan, B.; Sharma, S.; Singh, T.; Singh, L.; Arya, H. Chrysopogon zizanioides (linn.) Nash: A pharmacological overview. Int. Res. J. Pharm., 2013, 4(7), 18-20.
[http://dx.doi.org/10.7897/2230-8407.04704]
[6]
Muthukrishnan, S.; Manogaran, P. Phytochemical analysis and free radical scavenging potential activity of Chrysopogon zizanioides Linn. J. Pharmacogn. Phytochem., 2018, 7(2), 1955-1960.
[7]
Kumar, S.; Gayathri, K.; Kripa, K.G.; Prathyusha, T. Preliminary phytochemical analysis and in vitro pharmacological evaluation of phytosterol rich fraction from Chrysopogon zizanioides Nash. Int J Res Pharm Sci., 2018, 9(3), 922-930.
[8]
David, A.; Wang, F.; Sun, X.; Li, H.; Lin, J.; Li, P.; Deng, G. Chemical composition, antioxidant, and antimicrobial activities of Chrysopogon zizanioides (L.) Nash essential oil extracted by carbon dioxide expanded ethanol. Molecules, 2019, 24(10), 1897.
[http://dx.doi.org/10.3390/molecules24101897] [PMID: 31108854]
[9]
Parmar, M.Y.; Shah, P.A.; Thakkar, V.T.; Al-Rejaie, S.; Al-Assaf, A.H.; Gandhi, T.R. Hepatoprotective and antioxidant activity of methanolic extract of Chrysopogon zizanioides roots against paracetamol-induced liver damage in rats. Life Sci. J., 2013, 10(4), 1184-1190.
[10]
Sinha, S.; Jothiramajayam, M.; Ghosh, M.; Jana, A.; Chatterji, U.; Mukherjee, A. Vetiver oil (Java) attenuates cisplatin-induced oxidative stress, nephrotoxicity and myelosuppression in Swiss albino mice. Food Chem. Toxicol., 2015, 81, 120-128.
[http://dx.doi.org/10.1016/j.fct.2015.04.018] [PMID: 25910835]
[11]
Han, X.; Parker, T. Biological activity of vetiver (Chrysopogon zizanioides) essential oil in human dermal fibroblasts. Cogent Med., 2017, 4(1)1298176
[http://dx.doi.org/10.1080/2331205X.2017.1298176]
[12]
Karan, S.K.; Pal, D.; Mishra, S.K.; Mondal, A. Antihyperglycaemic effect of Chrysopogon zizanioides (L.) Nash root extract in alloxan induced diabetic rats. Asian J. Chem., 2013, 25(3), 1555-1557.
[13]
Raja, S.; Rani, J.; Mohapatra, S.; Alwin, D. Effect of Chrysopogon zizanioides on experimentally induced dyslipidemia. Int. J. Pharma Bio Sci., 2017, 8(4), 351-359.
[http://dx.doi.org/10.22376/ijpbs.2017.8.4.b351-359]
[14]
Ogbe, R.J.; Ochalefu, D.O.; Mafulul, S.G.; Olaniru, O.B. A review on dietary phytosterols: Their occurrence, metabolism and health benefits. Asian J Plant., 2015, 5(4), 10-21.
[15]
Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegård, L.; Jessup, W.; Jones, P.J.; Lütjohann, D.; Maerz, W.; Masana, L.; Silbernagel, G.; Staels, B.; Borén, J.; Catapano, A.L.; De Backer, G.; Deanfield, J.; Descamps, O.S.; Kovanen, P.T.; Riccardi, G.; Tokgözoglu, L.; Chapman, M.J. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis, 2014, 232(2), 346-360.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.11.043] [PMID: 24468148]
[16]
Wadikar, D.D.; Iyer, L.; Patki, P.E. Phytosterols: An Appraisal of Present Scenario. Act Sci Nutr Health., 2017, 1(1), 25-34.
[17]
Zubair, M. Glycosylated hemoglobin in diabetic foot and its correlation with clinical variables in a North Indian tertiary care hospital. J. Diabetes Metab., 2015, 6(07), 1-6.
[http://dx.doi.org/10.4172/2155-6156.1000571]
[18]
Tuttolomondo, A.; Maida, C.; Pinto, A. Diabetic foot syndrome as a possible cardiovascular marker in diabetic patients. J. Diabetes Res., 2015, 2015268390
[http://dx.doi.org/10.1155/2015/268390] [PMID: 25883983]
[19]
Kartono, T.; Mallapasi, M.; Mulawardi, M.; Laidding, S.; Aminyoto, M.; Prihantono, P. Correlation of HDL cholesterol serum and Wagner’s severity level of diabetic foot ulcers. Int. J. Res. Med. Sci., 2017, 5(12), 5129-5134.
[http://dx.doi.org/10.18203/2320-6012.ijrms20175431]
[20]
Sathishkumar, T.; Baskar, R. Screening and quantification of phytochemicals in the leaves and flowers of Tabernaemontana heyneana wall. - A near threatened medicinal plant. Indian J. Nat. Prod. Resour., 2014, 5, 237-243.
[21]
Saptarini, N.M.; Indriyati, W.; Shalihat, A. Colorimetric method for total phytosterols content analysis in soybean (Glycine max), soymilk, and soy yoghurt. J. Chem. Pharm. Res., 2016, 8(4), 1458-1464.
[22]
Kumar, A.P.; Sivashanmugam, A.T.; Umamaheswari, M.; Subhadradevi, V.; Jagannath, P. Cholesterol esterase enzyme inhibitory and antioxidant activities of leaves of Camellia sinensis (L.) Kuntze. using in vitro models. Int. J. Pharm. Sci. Res., 2011, 2(10), 2675-2680.
[23]
Raviadaran, R.; Chandran, D.; Shin, L.; Manickam, S. Optimization of palm oil in water nano-emulsion with curcumin using microfluidizer and response surface methodology. Lebensm. Wiss. Technol., 2018, 96, 58-65.
[http://dx.doi.org/10.1016/j.lwt.2018.05.022]
[24]
Waldi, D. Spray reagents for thin-layer chromatography. In: Stahl E. (eds) Thin-Layer Chromatography. Springer, Berlin, Heidelberg, 1965, 8, pp. 483-502.
[http://dx.doi.org/10.1007/978-3-662-01031-0_23]
[25]
Suttiarporn, P.; Chumpolsri, W.; Mahatheeranont, S.; Luangkamin, S.; Teepsawang, S.; Leardkamolkarn, V. Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients, 2015, 7(3), 1672-1687.
[http://dx.doi.org/10.3390/nu7031672] [PMID: 25756784]
[26]
Collee, J.; Duguid, J.P.; Fraser, A.G.; Marmion, B.P.; Simmons, A. Laboratory strategy in the diagnosis of infective syndromes. Mackie., McCartney. Mackie & McCartney Practical Medical Microbiology, 14th ed; Churchill Livingstone: New York, 1996, pp. 53-94.
[27]
Arumugam, S.; Gopal, M.; Gopalakrishnan, S.; Ravikanth, P.; Prakasam, G.; Anand, M.; Srivani, R. Screening of antibacterial properties of Indian medicinal plants against multi drug resistant diabetic foot ulcer isolates. Int. J. Phytopharmacol., 2012, 3(2), 139-146.
[28]
Ingudam, M.; Sarangthem, K.; Nirmala, C.; Bisht, M.S. Evaluation of phytosterols from juvenile shoots of an edible bamboo Dendrocalamus hamiltonii Arn. Ex Munro Proceedings of 10th World Bamboo Congress, Korea2015.
[29]
Ranjana.; Mishra, A.; Mishra, A.; Gupta, R. Determination of Gallic acid and –sitosterol in poly-herbal formulation by HPTLC. Pharm. Pharmacol. Int. J., 2016, 4(4), 373-379.
[30]
Kusuma, H.; Mahfud, M. Response surface methodology for optimization studies of microwave-assisted extraction of sandalwood oil. J. Mater. Environ. Sci., 2016, 7(6), 2028-2508.
[31]
Shree, V.S.; Sathishkumar, T.; Kumaresan, K.; Rapheal, V.S.; Muthukumaran, P.; Muthukumaran, V. Therapeutic effects of purified polyphenols from Coccinia grandis: Correlation between hypertension and diabetes mellitus. Adv. Tradit. Med., 2021, 21(3), 579-590.
[http://dx.doi.org/10.1007/s13596-020-00485-z]
[32]
Zhang, H.; Cao, X.; Liu, Y.; Shang, F. Rapid recovery of high content phytosterols from corn silk. Chem. Cent. J., 2017, 11(1), 108.
[http://dx.doi.org/10.1186/s13065-017-0277-1] [PMID: 29086835]
[33]
Abu Bakar, F.I.; Abu Bakar, M.F.; Abdullah, N.; Endrini, S.; Fatmawati, S. Optimization of extraction conditions of phytochemical compounds and anti-gout activity of Euphorbia Hirta L. (Ara Tanah) using response surface methodology and liquid chromatography-mass spectrometry (LC-MS) analysis. Evid. Based Complement. Alternat. Med., 2020, 20204501261
[http://dx.doi.org/10.1155/2020/4501261] [PMID: 32047524]
[34]
Chiou, S-Y.; Lai, G-W.; Lin, L-Y.; Lin, G. Kinetics and mechanisms of cholesterol esterase inhibition by cardiovascular drugs in vitro. Indian J. Biochem. Biophys., 2006, 43(1), 52-55.
[PMID: 16955753]
[35]
Hui, D.Y.; Howles, P.N. Carboxyl ester lipase: Structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J. Lipid Res., 2002, 43(12), 2017-2030.
[http://dx.doi.org/10.1194/jlr.R200013-JLR200] [PMID: 12454261]
[36]
Devi, V.S.; Asok Kumar, K.; Uma Maheswari, M.; Siva Shanmugam, A.T.; Sankar Anand, R. In vitro antibacterial activity of ethanolic extract of Chrysopogon zizanioides root. Int. J. Pharm. Sci. Res., 2010, 1(9), 120-124.
[37]
Efe, D. The evaluation of the antibacterial activity of Chrysopogon zizanioides (L.) Nash grown in Giresun, Turkey. Alinteri. J. Agr. Sci., 2019, 34(1), 21-24.
[38]
Yusuf, A.J.; Abdullahi, M.I.; Aleku, G.A.; Ibrahim, I.A.A.; Alebiosu, C.O.; Yahaya, M.; Adamu, H.W.; Sanusi, A.; Mailafiya, M.M.; Abubakar, H. Antimicrobial activity of stigmasterol from the stem bark of Neocarya macrophylla. J. Med. Plant Econ. Dev., 2018, 2(1), a38.
[http://dx.doi.org/10.4102/jomped.v2i1.38]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy