Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Research Article

Development and Characterization of Polymeric Microsponge as a New Vehicle to Deliver Urea Topically

Author(s): Lalit Kumar*, Rahul Kumar, Syed Basit Hussain, Shivali Kumari and Yash Pal

Volume 17, Issue 2, 2023

Published on: 06 July, 2022

Page: [131 - 143] Pages: 13

DOI: 10.2174/1872210516666220422134046

Price: $65

Abstract

Background: Topical delivery of therapeutic agents is considered beneficial due to various advantages like ease of administration, avoidance of the first-pass effect, and improved patient compliance. Therefore, scientists around the globe are exploring this route for the delivery of drugs nowadays.

Objective: The present patent investigation aimed to prepare, optimize, and characterize the urealoaded microsponges for efficient topical delivery in vitro.

Methods: Urea-loaded ethylcellulose microsponges were prepared using quasi emulsion solvent diffusion technique and optimized using Box–Behnken design (BBD). Furthermore, they were characterized in-vitro using various techniques like scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction analysis (XRD). In-vitro drug release and release kinetics analysis was also performed.

Results: Urea-loaded microsponges were spherical and porous. Optimized urea loaded microsponges showed a minimum size (39.78 ± 1.98 μm), high entrapment (74.56 ± 2.8%), acceptable polydispersity index (PDI) (0.224 ± 0.081) and zeta potential (-21.9 ± 2.9 mV). These microsponges were capable of sustaining the release of urea for 24 h (91.21 ± 5.20%), and the mechanism of release was the combination of diffusion and erosion.

Conclusion: The developed microsponge system could be beneficial for topical delivery of urea as it could reduce the dosing frequency of urea and increase patient compliance through its sustained release.

Keywords: Box–Behnken design (BBD), dosing frequency, ethylcellulose, microsponges, patient compliance, sustained release, urea.

Graphical Abstract

[1]
Celleno L. Topical urea in skincare: A review. Dermatol Ther 2018; 31(6): e12690.
[http://dx.doi.org/10.1111/dth.12690] [PMID: 30378232]
[2]
Verzì AE, Musumeci ML, Lacarrubba F, Micali G. History of urea as a dermatological agent in clinical practice. Int J Clin Pract 2020; 74(S187) (Suppl. 187): e13621.
[http://dx.doi.org/10.1111/ijcp.13621] [PMID: 33249707]
[3]
Friedman AJ, von Grote EC, Meckfessel MH. Urea: A clinically oriented overview from bench to bedside. J Drugs Dermatol 2016; 15(5): 633-9.
[PMID: 27168272]
[4]
Haddadi A, Farboud ES, Erfan M, Aboofazeli R. Preparation and characterization of biodegradable urea-loaded microparticles as an approach for transdermal delivery. J Microencapsul 2006; 23(6): 698-712.
[http://dx.doi.org/10.1080/02652040600789328] [PMID: 17118885]
[5]
Haddadi A, Aboofazeli R, Erfan M, Farboud ES. Topical delivery of urea encapsulated in biodegradable PLGA microparticles: O/W and W/O creams. J Microencapsul 2008; 25(6): 379-86.
[http://dx.doi.org/10.1080/02652040802000714] [PMID: 18465299]
[6]
Bettinger J, Gloor M, Gehring W, Wolf W. Influence of emulsions with and without urea on water-binding capacity of the stratum corneum. J Soc Cosmet Chem 1995; 46: 247-54.
[7]
Hantschel D, Sauermann G, Steinhart H, Hoppe U, Ennen J. Urea analysis of extracts from stratum corneum and the role of urea-supplemented cosmetics. J Cosmet Sci 1998; 49: 155-63.
[8]
Carneiro G, Santos DC, Oliveira MC, et al. Topical delivery and in vivo antileishmanial activity of paromomycin-loaded liposomes for treatment of cutaneous leishmaniasis. J Liposome Res 2010; 20(1): 16-23.
[http://dx.doi.org/10.3109/08982100903015025] [PMID: 19530897]
[9]
Moghddam SR, Ahad A, Aqil M, Imam SS, Sultana Y. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis. Mater Sci Eng C 2016; 69: 789-97.
[http://dx.doi.org/10.1016/j.msec.2016.07.043] [PMID: 27612773]
[10]
Fan C, Li X, Zhou Y, et al. Enhanced topical delivery of tetrandrine by ethosomes for treatment of arthritis. BioMed Res Int 2013; 2013: 161943.
[http://dx.doi.org/10.1155/2013/161943] [PMID: 24062995]
[11]
Gelfuso GM, Gratieri T, Simão PS, de Freitas LA, Lopez RF. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate. J Microencapsul 2011; 28(7): 650-8.
[http://dx.doi.org/10.3109/02652048.2011.604435] [PMID: 21824068]
[12]
Jain SK, Kaur M, Kalyani P, Mehra A, Kaur N, Panchal N. Microsponges enriched gel for enhanced topical delivery of 5-fluorouracil. J Microencapsul 2019; 36(7): 677-91.
[http://dx.doi.org/10.1080/02652048.2019.1667447] [PMID: 31509035]
[13]
Maiti S, Kaity S, Ray S, Sa B. Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium. Acta Pharm 2011; 61(3): 257-70.
[http://dx.doi.org/10.2478/v10007-011-0022-6] [PMID: 21945905]
[14]
Moin A, Deb TK, Osmani RA, Bhosale RR, Hani U. Fabrication, characterization, and evaluation of microsponge delivery system for facilitated fungal therapy. J Basic Clin Pharm 2016; 7(2): 39-48.
[http://dx.doi.org/10.4103/0976-0105.177705] [PMID: 27057125]
[15]
Jelvehgari M, Siahi-Shadbad MR, Azarmi S, Martin GP, Nokhodchi A. The microsponge delivery system of benzoyl peroxide: Preparation, characterization and release studies. Int J Pharm 2006; 308(1-2): 124-32.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.001] [PMID: 16359833]
[16]
Pawar AP, Gholap AP, Kuchekar AB, Bothiraja C, Mali AJ. Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. J Drug Deliv 2015; 2015: 261068.
[http://dx.doi.org/10.1155/2015/261068] [PMID: 25789176]
[17]
Vegerhof A, Barnoy EA, Motiei M, et al. Targeted magnetic nanoparticles for mechanical lysis of tumor cells by low-amplitude alternating magnetic field. Materials (Basel) 2016; 9(11): 943.
[http://dx.doi.org/10.3390/ma9110943] [PMID: 28774062]
[18]
Je G, Malka D, Kim H, Hong S, Shin B. A study on micro hydroforming using shock wave of 355 nm UV-pulsed laser. Appl Surf Sci 2017; 417: 244-9.
[http://dx.doi.org/10.1016/j.apsusc.2017.02.146]
[19]
Malka D, Berkovic G, Hammer Y, Zalevsky Z. Super-resolved raman spectroscopy. Spectrosc Lett 2013; 46(4): 307-13.
[http://dx.doi.org/10.1080/00387010.2012.728553]
[20]
Dadabayev R, Malka D. A visible light RGB wavelength demultiplexer based on polycarbonate multicore polymer optical fiber. Opt Laser Technol 2019; 116: 239-45.
[http://dx.doi.org/10.1016/j.optlastec.2019.03.034]
[21]
Dubey D, Malviya R, Sharma PK. Advancement in microsponge drug delivery system: Preparation methods, patents and commercial utility. Recent Pat Drug Deliv Formul 2014; 8(2): 101-10.
[http://dx.doi.org/10.2174/1872211308666140305222905] [PMID: 24548242]
[22]
Singhvi G, Manchanda P, Hans N, Dubey SK, Gupta G. Microsponge: An emerging drug delivery strategy. Drug Dev Res 2019; 80(2): 200-8.
[http://dx.doi.org/10.1002/ddr.21492] [PMID: 30456763]
[23]
Bhatia M, Saini M. Formulation and evaluation of curcumin microsponges for oral and topical drug delivery. Prog Biomater 2018; 7(3): 239-48.
[http://dx.doi.org/10.1007/s40204-018-0099-9] [PMID: 30242738]
[24]
Mahaparale PR, Ikam SAN, Chavan MS. Development and evaluation of terbinafine hydrochloride polymeric microsponges for topical drug delivery. Indian J Pharm Sci 2018; 80(6): 1086-92.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000459]
[25]
Kumar PM, Ghosh A. Development and evaluation of metronidazole loaded microsponge based gel for superficial surgical wound infections. J Drug Deliv Sci Technol 2015; 30: 15-29.
[http://dx.doi.org/10.1016/j.jddst.2015.09.006]
[26]
Ghose A, Nabi B, Rehman S, et al. Development and evaluation of polymeric nanosponge hydrogel for terbinafine hydrochloride: Statistical optimization, in vitro and in vivo studies. Polymers (Basel) 2020; 12(12): 2903.
[http://dx.doi.org/10.3390/polym12122903] [PMID: 33287406]
[27]
Amrutiya N, Bajaj A, Madan M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech 2009; 10(2): 402-9.
[http://dx.doi.org/10.1208/s12249-009-9220-7] [PMID: 19381834]
[28]
Kumar PM, Ghosh A. Development and evaluation of silver sulfadiazine loaded microsponge based gel for partial thickness (second degree) burn wounds. Eur J Pharm Sci 2017; 96: 243-54.
[http://dx.doi.org/10.1016/j.ejps.2016.09.038] [PMID: 27697504]
[29]
Comoğlu T, Gönül N, Baykara T. Preparation and in vitro evaluation of modified release ketoprofen microsponges. Farmaco 2003; 58(2): 101-6.
[http://dx.doi.org/10.1016/S0014-827X(02)00007-1] [PMID: 12581775]
[30]
Sareen R, Nath K, Jain N, Dhar KL. Curcumin loaded microsponges for colon targeting in inflammatory bowel disease: Fabrication, optimization, and in vitro and pharmacodynamic evaluation. BioMed Res Int 2014; 2014: 340701.
[http://dx.doi.org/10.1155/2014/340701] [PMID: 25093165]
[31]
Mwila C, Walker RB. Improved Stability of Rifampicin in the Presence of Gastric-Resistant Isoniazid Microspheres in Acidic Media. Pharmaceutics 2020; 12(3): 234.
[http://dx.doi.org/10.3390/pharmaceutics12030234] [PMID: 32151053]
[32]
Verma S, Utreja P. Transethosomes of econazole nitrate for transdermal delivery: Development, in-vitro characterization, and ex-vivo assessment. Pharm Nanotechnol 2018; 6(3): 171-9.
[http://dx.doi.org/10.2174/2211738506666180813122102] [PMID: 30101725]
[33]
Pandav S, Naik J. Preparation and in vitro evaluation of ethylcellulose and polymethacrylate resins loaded microparticles containing hydrophilic drug. J Pharm (Cairo) 2014; 2014: 904036.
[http://dx.doi.org/10.1155/2014/904036] [PMID: 26556206]
[34]
Jelvehgari M, Nokhodchi A, Rezapour M, Valizadeh H. Effect of formulation and processing variables on the characteristics of tolmetin microspheres prepared by double emulsion solvent diffusion method. Indian J Pharm Sci 2010; 72(1): 72-8.
[http://dx.doi.org/10.4103/0250-474X.62251] [PMID: 20582193]
[35]
Abdelmalak NS, El-Menshawe SF. A new topical fluconazole microsponge loaded hydrogel: Preparation and characterization. Int J Pharm Pharm Sci 2012; 4(1): 460-8.
[36]
Nagula RL, Wairkar S. Cellulose microsponges based gel of naringenin for atopic dermatitis: Design, optimization, in vitro and in vivo investigation. Int J Biol Macromol 2020; 164: 717-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.168] [PMID: 32698069]
[37]
Zaman M, Qureshi S, Sultana K, et al. Application of quasiemulsification and modified double emulsification techniques for formulation of tacrolimus microsponges. Int J Nanomedicine 2018; 13: 4537-48.
[http://dx.doi.org/10.2147/IJN.S166413] [PMID: 30127605]
[38]
Neamah WF, Maraie NK. Factors affecting preparation and evaluation of Kitorolac tromethamine microsponges for ocular use. Al Mustansiriyah. J Pharm Sci 2020; 20(3): 58-70.
[39]
Kumar L, Verma S, Jamwal S, Vaidya S, Vaidya B. Polymeric microparticles-based formulation for the eradication of cutaneous candidiasis: Development and characterization. Pharm Dev Technol 2014; 19(3): 318-25.
[http://dx.doi.org/10.3109/10837450.2013.778874] [PMID: 23560821]
[40]
Zhang X, Liu Y, Lu P, Zhang M. Preparation and properties of hydrogel based on sawdust cellulose for environmentally friendly slow-release fertilizers. Green Process Synth 2020; 9(1): 139-52.
[http://dx.doi.org/10.1515/gps-2020-0015]
[41]
Manivannan M, Rajendran S. Investigation of inhibitive action of urea–Zn 2+ system in the corrosion control of carbon steel in seawater. Int J Eng Sci Technol 2011; 3: 8048-60.
[42]
Verma S, Kaur S, Kumar L. Formulation, optimization, and ex-vivo evaluation of novel lipid carriers for enhanced transdermal delivery of hydroquinone. Micro Nanosyst 2021; 13(3): 303-18.
[http://dx.doi.org/10.2174/1876402912999200831105145]
[43]
Junqueira MV, Calçado SC, de Castro-Hoshino LV, et al. Influence of the ethanol/dichloromethane ratio on the preparation of micro-sponges composed of ethylcellulose and Eudragit or HPMCphthalate for hydrophilic drug delivery. J Mol Liq 2020; 303: 112633.
[http://dx.doi.org/10.1016/j.molliq.2020.112633]
[44]
Sadat SM, Islam MS, Jahan ST, Chowdhury JA, Jalil RU. Effect of cellulosic and polymethacrylic polymers on drug content, particle morphology, and carbamazepine release profiles from sustained release ethyl cellulose microspheres. Dhaka Uni J Pharm Sci 2010; 9(2): 75-82.
[http://dx.doi.org/10.3329/dujps.v9i2.7883]
[45]
Dash V, Mishra SK, Singh M, Goyal AK, Rath G. Release kinetic studies of aspirin microcapsules from ethyl cellulose, cellulose acetate phthalate and their mixtures by emulsion solvent evaporation method. Sci Pharm 2010; 78(1): 93-101.
[http://dx.doi.org/10.3797/scipharm.0908-09] [PMID: 21179372]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy