Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Impact of Drug Metabolism/Pharmacokinetics and its Relevance Considering Traditional Medicine-based Anti-COVID-19 Drug Research

Author(s): Da-Cheng Hao*, Fan Wang and Pei-Gen Xiao*

Volume 23, Issue 5, 2022

Published on: 17 June, 2022

Page: [374 - 393] Pages: 20

DOI: 10.2174/1389200223666220418110133

Price: $65

Abstract

Background: The representative anti-COVID-19 herbs, i.e., Poriacocos, Pogostemon, Prunus, and Glycyrrhiza plants, are commonly used in the prevention and treatment of COVID-19, a pandemic caused by SARSCoV- 2. Diverse medicinal compounds with favorable anti-COVID-19 activities are abundant in these plants, and their unique pharmacological/pharmacokinetic properties have been revealed. However, the current trends in Drug Metabolism/Pharmacokinetic (DMPK) investigations of anti-COVID-19 herbs have not been systematically summarized.

Methods: In this study, the latest awareness, as well as the perception gaps regarding DMPK attributes, in the anti- COVID-19 drug development and clinical usage was critically examined and discussed.

Results: The extracts and compounds of P.cocos, Pogostemon, Prunus, and Glycyrrhiza plants show distinct and diverse absorption, distribution, metabolism, excretion, and toxicity (ADME/T) properties. The complicated herbherb interactions (HHIs) and herb-drug interactions (HDIs) of anti-COVID-19 Traditional Chinese Medicine (TCM) herb pair/formula dramatically influence the PK/pharmacodynamic (PD) performance of compounds thereof, which may inspire researchers to design innovative herbal/compound formulas for optimizing the therapeutic outcome of COVID-19 and related epidemic diseases. The ADME/T of some abundant compounds in anti-COVID-19 plants have been elucidated, but DMPK studies should be extended to more compounds of different medicinal parts, species, and formulations and would be facilitated by various omics platforms and computational analyses.

Conclusion: In the framework of pharmacology and pharmacophylogeny, the DMPK knowledge base would promote the translation of bench findings into the clinical practice of anti-COVID-19 and speed up the anti-COVID-19 drug discovery and development.

Keywords: Traditional medicine, anti-COVID-19, drug metabolism, pharmacokinetics, Poria, Pogostemon, Prunus, Glycyrrhiza.

Graphical Abstract

[1]
Huang, W.; Rao, Y.L.; Sun, Q.G.; Li, C.Y.; Ba, Y.M. Study on medication laws of traditional Chinese medicine of 340 cases of COVID-19 based on data mining. Hainan Yixueyuan Xuebao, 2020, 26(12), 881-888.
[2]
Stukalov, A.; Girault, V.; Grass, V.; Karayel, O.; Bergant, V.; Urban, C.; Haas, D.A.; Huang, Y.; Oubraham, L.; Wang, A.; Hamad, M.S.; Piras, A.; Hansen, F.M.; Tanzer, M.C.; Paron, I.; Zinzula, L.; Engleitner, T.; Reinecke, M.; Lavacca, T.M.; Ehmann, R.; Wölfel, R.; Jores, J.; Kuster, B.; Protzer, U.; Rad, R.; Ziebuhr, J.; Thiel, V.; Scaturro, P.; Mann, M.; Pichlmair, A. Multilevel proteomics reveals host pertur-bations by SARS-CoV-2 and SARS-CoV. Nature, 2021, 594(7862), 246-252.
[http://dx.doi.org/10.1038/s41586-021-03493-4] [PMID: 33845483]
[3]
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14(8), 523-534.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[4]
Yang, Y.J. X.H., E.; Ren, H.W.; He, Y.; Zhou, S.P. Consideration of traditional Chinese medicine in treatment of highly pathogenic human coronaviruses SARS-CoV-2 and SARS-CoV. Chin. Tradit. Herbal Drugs, 2020, 51(6), 1427-1434.
[5]
Wang, C.; Ming, H.; Jia, W.; Su, W.; Zhan, L.R.; Luo, D.; Yang, J.Y. [Analysis of medication regularity and pharmacodynamic characteris-tics of traditional Chinese medicine treatment in 444 severe cases of COVID-19]. Zhongguo Zhongyao Zazhi, 2020, 45(13), 3007-3012.
[PMID: 32726005]
[6]
Yang, C.; Lyu, X.D.; Pang, L.J.; Wang, L.L.; Cong, G.Q.; Zhang, H.Y.; Wang, J.R.; Sheng, Y. Analysis of novel coronavirus pneumonia treatment with Chinese herbal compound. Hainan Yixueyuan Xuebao, 2020, 26(13), 961-966.
[7]
Chen, R.; Luo, Y.P.; Xu, X.H.; Miao, Q.; Wang, Y.G. TCM treatment of 52 cases of novel coronavirus pneumonia in Wuhan area and analysis of typical cases. J. TCM, 2020, 61(9), 741-744.
[8]
Xu, D.Y.; Xu, Y.L.; Wang, Z.W.; Lyu, Y.L.; Zhu, H.L.; Song, T. Study on the mechanism of Qingfei detoxification decoction in treating COVID-19 based on network pharmacology. Pharmacol. Clinic TCM, 2020, 36(1), 26-32.
[9]
Cai, H.; Cheng, Y.; Zhu, Q.; Kong, D.; Chen, X.; Tamai, I.; Lu, Y. Identification of triterpene acids in Poria cocos extract as bile acid up-take transporter inhibitors. Drug Metab. Dispos., 2021, 49(5), 353-360.
[http://dx.doi.org/10.1124/dmd.120.000308] [PMID: 33658229]
[10]
Swamy, M.K.; Sinniah, U.R. A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin benth.: An aromatic medicinal plant of industrial importance. Molecules, 2015, 20(5), 8521-8547.
[http://dx.doi.org/10.3390/molecules20058521] [PMID: 25985355]
[11]
Hong, S.J.; Cho, J.; Boo, C.G.; Youn, M.Y.; Pan, J.H.; Kim, J.K.; Shin, E.C. Inhalation of Patchouli (Pogostemon cablin benth.) essential oil improved metabolic parameters in obesity-induced Sprague Dawley rats. Nutrients, 2020, 12(7), 2077.
[http://dx.doi.org/10.3390/nu12072077] [PMID: 32668680]
[12]
Chen, Y.; Luo, Q.; Li, S.; Li, C.; Liao, S.; Yang, X.; Zhou, R.; Zhu, Y.; Teng, L.; Chen, H.; Yang, Y. Antiviral activity against porcine epi-demic diarrhea virus of Pogostemon cablin polysaccharide. J. Ethnopharmacol., 2020, 259, 113009.
[http://dx.doi.org/10.1016/j.jep.2020.113009] [PMID: 32450234]
[13]
Yao, G.; Drew, B.T.; Yi, T.S.; Yan, H.F.; Yuan, Y.M.; Ge, X.J. Phylogenetic relationships, character evolution and biogeographic diversifi-cation of Pogostemon s.l. (Lamiaceae). Mol. Phylogenet. Evol., 2016, 98, 184-200.
[http://dx.doi.org/10.1016/j.ympev.2016.01.020] [PMID: 26923493]
[14]
Hao, D.C.; Xiao, P.G. An introduction of plant pharmacophylogeny; Chemical Industry Press: Beijing, 2017.
[15]
Hao, D.C.; Xiao, P.G. Pharmaceutical resource discovery from traditional medicinal plants: Pharmacophylogeny and pharmacophylo-genomics. Chin. Herb. Med., 2020, 12(2), 104-117.
[http://dx.doi.org/10.1016/j.chmed.2020.03.002]
[16]
Hao, D.C.; Xiao, P.G. Plant pharmacophylogeny: Past, present and future. J. Chin. Pharm. Sci., 2020, 29(12), 831-854.
[http://dx.doi.org/10.5246/jcps.2020.12.075]
[17]
Joshi, R.K. Volatile constituents of leaf, stem and flower of the traditional shrub Pogostemon plectranthoides desf. From the Western Ghats, India. Nat. Prod. Res., 2022, 36(1), 411-413.
[http://dx.doi.org/10.1080/14786419.2020.1768092] [PMID: 32441157]
[18]
Shiva Kumar, A.; Jeyaprakash, K.; Chellappan, D.R.; Murugan, R. Vasorelaxant and cardiovascular properties of the essential oil of Pogo-stemon elsholtzioides. J. Ethnopharmacol., 2017, 199, 86-90.
[http://dx.doi.org/10.1016/j.jep.2017.01.036] [PMID: 28132862]
[19]
Murugan, R.; Mallavarapu, G.R.; Padmashree, K.V.; Rao, R.R.; Livingstone, C. Volatile oil composition of Pogostemon heyneanus and comparison of its composition with Patchouli oil. Nat. Prod. Commun., 2010, 5(12), 1961-1964.
[http://dx.doi.org/10.1177/1934578X1000501228] [PMID: 21299132]
[20]
Musarra-Pizzo, M.; Ginestra, G.; Smeriglio, A.; Pennisi, R.; Sciortino, M.T.; Mandalari, G. The antimicrobial and antiviral activity of poly-phenols from almond (Prunus dulcis L.) skin. Nutrients, 2019, 11(10), 2355.
[http://dx.doi.org/10.3390/nu11102355] [PMID: 31623329]
[21]
Sun, Z.G.; Zhao, T.T.; Lu, N.; Yang, Y.A.; Zhu, H.L. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev. Med. Chem., 2019, 19(10), 826-832.
[http://dx.doi.org/10.2174/1389557519666190119111125] [PMID: 30659537]
[22]
Li, N.; Zhou, T.; Wu, F.; Wang, R.; Zhao, Q.; Zhang, J.Q.; Yang, B.C.; Ma, B.L. Pharmacokinetic mechanisms underlying the detoxification effect of glycyrrhizae radix et rhizoma (Gancao): Drug metabolizing enzymes, transporters, and beyond. Expert Opin. Drug Metab. Toxicol., 2019, 15(2), 167-177.
[http://dx.doi.org/10.1080/17425255.2019.1563595] [PMID: 30582378]
[23]
Zhong, L.L.D.; Lam, W.C.; Yang, W.; Chan, K.W.; Sze, S.C.W.; Miao, J.; Yung, K.K.L.; Bian, Z.; Wong, V.T. Potential targets for treatment of coronavirus disease 2019 (COVID-19): A review of qing-fei-pai-du-tang and its major herbs. Am. J. Chin. Med., 2020, 48(5), 1051-1071.
[http://dx.doi.org/10.1142/S0192415X20500512] [PMID: 32668969]
[24]
Feng, G.; Li, S.; Liu, S.; Song, F.; Pi, Z.; Liu, Z. Targeted screening approach to systematically identify the absorbed effect substances of Poria cocos in vivo using ultrahigh performance liquid chromatography tandem mass spectrometry. J. Agric. Food Chem., 2018, 66(31), 8319-8327.
[http://dx.doi.org/10.1021/acs.jafc.8b02753] [PMID: 29985616]
[25]
Zheng, Y.; Yang, X.W. [Absorption of triterpenoid compounds from Indian bread (Poria cocos) across human intestinal epithelial (Caco-2) cells in vitro]. Zhongguo Zhongyao Zazhi, 2008, 33(13), 1596-1601.
[PMID: 18837324]
[26]
Zheng, Y.; Yang, X.W. Absorption and transport of pachymic acid in the human intestinal cell line Caco-2 monolayers. J. Chin. Integr. Med., 2008, 6(7), 704-710.
[http://dx.doi.org/10.3736/jcim200800709] [PMID: 18601852]
[27]
Zheng, Y.; Feng, G.; Sun, Y.; Liu, S.; Pi, Z.; Song, F.; Liu, Z. Study on the compatibility interactions of formula ding-zhi-xiao-wan based on their main components transport characteristics across Caco-2 monolayers model. J. Pharm. Biomed. Anal., 2018, 159, 179-185.
[http://dx.doi.org/10.1016/j.jpba.2018.06.067] [PMID: 29990884]
[28]
Lee, H.; Cha, H.J. Poria cocos Wolf extracts represses pigmentation in vitro and in vivo. Cell. Mol. Biol., 2018, 64(5), 80-84.
[http://dx.doi.org/10.14715/cmb/2018.64.5.13] [PMID: 29729698]
[29]
Zhang, J.; Guo, H.; Yan, F.; Yuan, S.; Li, S.; Zhu, P.; Chen, W.; Peng, C.; Peng, D. An UPLC - Q - orbitrap method for pharmacokinetics and tissue distribution of four triterpenoids in rats after oral administration of Poria cocos ethanol extracts. J. Pharm. Biomed. Anal., 2021, 203, 114237.
[http://dx.doi.org/10.1016/j.jpba.2021.114237] [PMID: 34242946]
[30]
Ding, B.; Ji, X.; Sun, X.; Zhang, T.; Mu, S. In vitro effect of pachymic acid on the activity of cytochrome P450 enzymes. Xenobiotica, 2020, 50(8), 913-918.
[http://dx.doi.org/10.1080/00498254.2020.1727062] [PMID: 32026737]
[31]
Zhang, J.; Liu, L.; Li, H.; Zhang, B. Pharmacokinetic study on the interaction between pachymic acid and bavachin and its potential mech-anism. Pharm. Biol., 2021, 59(1), 1256-1259.
[http://dx.doi.org/10.1080/13880209.2021.1942924] [PMID: 34517743]
[32]
Dong, H.Y.; Shao, J.W.; Chen, J.F.; Wang, T.; Lin, F.P.; Guo, Y.H. [Transcriptional regulation of cytochrome P450 3A4 by four kinds of traditional Chinese medicines]. Zhongguo Zhongyao Zazhi, 2008, 33(9), 1014-1017, 1089.
[PMID: 18652346]
[33]
Wang, Y.Y. Effects of Poria cocos on cytochrome P450 enzyme activity and mRNA expression in rats, MSc thesis, Anhui University of TCM, 2017.
[34]
Li, S.; Zhang, J.; Li, S.; Liu, C.; Liu, S.; Liu, Z. Extraction and separation of lactate dehydrogenase inhibitors from Poria cocos (Schw.) Wolf based on a hyphenated technique and in vitro methods. J. Sep. Sci., 2017, 40(8), 1773-1783.
[http://dx.doi.org/10.1002/jssc.201700054] [PMID: 28217983]
[35]
Shan, H.; Qinglin, Z.; Fengjun, X.; Yuxin, L.; Xiaochen, C.; Yuan, H. Reversal of multidrug resistance of KBV200 cells by triterpenoids isolated from Poria cocos. Planta Med., 2012, 78(5), 428-433.
[http://dx.doi.org/10.1055/s-0031-1298146] [PMID: 22457008]
[36]
Li, Y.; Li, X.; Lu, Y.; Chaurasiya, B.; Mi, G.; Shi, D.; Chen, D.; Webster, T.J.; Tu, J.; Shen, Y. Co-delivery of Poria cocos extract and dox-orubicin as an ‘all-in-one’ nanocarrier to combat breast cancer multidrug resistance during chemotherapy. Nanomedicine, 2020, 23, 102095.
[http://dx.doi.org/10.1016/j.nano.2019.102095] [PMID: 31669856]
[37]
Liang, D.; Yong, T.; Diao, X.; Chen, S.; Chen, D.; Xiao, C.; Zuo, D.; Xie, Y.; Zhou, X.; Hu, H. Hypouricaemic and nephroprotective ef-fects of Poria cocos in hyperuricemic mice by up-regulating ATP-binding cassette super-family G member 2. Pharm. Biol., 2021, 59(1), 275-286.
[http://dx.doi.org/10.1080/13880209.2021.1885450] [PMID: 33651969]
[38]
Hao, C.; Feng, Y.; Xiao, R.; Xiao, P.G. Non-neutral nonsynonymous single nucleotide polymorphisms in human ABC transporters: The first comparison of six prediction methods. Pharmacol. Rep., 2011, 63(4), 924-934.
[http://dx.doi.org/10.1016/S1734-1140(11)70608-9] [PMID: 22001980]
[39]
Hao, D.C.; Xiao, B.; Xiang, Y.; Dong, X.W.; Xiao, P.G. Deleterious nonsynonymous single nucleotide polymorphisms in human solute carriers: The first comparison of three prediction methods. Eur. J. Drug Metab. Pharmacokinet., 2013, 38(1), 53-62.
[http://dx.doi.org/10.1007/s13318-012-0095-8] [PMID: 22555822]
[40]
Liu, J.; Hou, L.L.; Zhao, C.Y. Effect of YHHJ on the expression of the hepatocellular bile acid transporters multidrug resistance-associated protein 2 and bile salt export pump in ethinylestradiol-induced cholestasis. Exp. Ther. Med., 2018, 15(4), 3699-3704.
[http://dx.doi.org/10.3892/etm.2018.5891] [PMID: 29563980]
[41]
Huang, Y.C.; Chang, W.L.; Huang, S.F.; Lin, C.Y.; Lin, H.C.; Chang, T.C. Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. Eur. J. Pharmacol., 2010, 648(1-3), 39-49.
[http://dx.doi.org/10.1016/j.ejphar.2010.08.021] [PMID: 20816811]
[42]
Wu, Z.L.; Ren, H.; Lai, W.Y.; Lin, S.; Jiang, R.Y.; Ye, T.C.; Shen, Q.B.; Zeng, Q.C.; Xu, D.L. Sclederma of Poria cocos exerts its diuretic effect via suppression of renal aquaporin-2 expression in rats with chronic heart failure. J. Ethnopharmacol., 2014, 155(1), 563-571.
[http://dx.doi.org/10.1016/j.jep.2014.05.054] [PMID: 24933223]
[43]
Sun, B.; Huang, B.; Sica, V.P.; Baker, T.R.; Pfuhler, S. A genotoxicity assessment approach for botanical materials demonstrated with Poria cocos. Food Chem. Toxicol., 2021, 156, 112521.
[http://dx.doi.org/10.1016/j.fct.2021.112521] [PMID: 34461192]
[44]
Kim, J.H.; Kim, S.R.; Song, I.S.; Shin, H.J.; Kim, H.S.; Lee, J.H.; Ko, S.G.; Shin, Y.C. Different transport activity of human triallelic MDR1 893Ala/Ser/Thr variant and its association with herb extracts. Phytother. Res., 2011, 25(8), 1141-1147.
[http://dx.doi.org/10.1002/ptr.3405] [PMID: 21287651]
[45]
Zhu, L.; Liu, X.; Kuang, H.; Li, B.; Dou, D. Poria ameliorates the side effects of rhubarb in pair treatment. Pak. J. Pharm. Sci., 2020, 33(3), 977-986.
[PMID: 33191221]
[46]
Junren, C.; Xiaofang, X.; Mengting, L.; Qiuyun, X.; Gangmin, L.; Huiqiong, Z.; Guanru, C.; Xin, X.; Yanpeng, Y.; Fu, P.; Cheng, P. Phar-macological activities and mechanisms of action of Pogostemon cablin benth: A review. Chin. Med., 2021, 16(1), 5.
[http://dx.doi.org/10.1186/s13020-020-00413-y] [PMID: 33413544]
[47]
Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia; China Medical Science Press: Beijing, 2020.
[48]
Zhang, R.; Yan, P.; Li, Y.; Xiong, L.; Gong, X.; Peng, C. A pharmacokinetic study of Patchouli alcohol after a single oral administration of patchouli alcohol or Patchouli oil in rats. Eur. J. Drug Metab. Pharmacokinet., 2016, 41(4), 441-448.
[http://dx.doi.org/10.1007/s13318-015-0272-7] [PMID: 25753831]
[49]
Li, Y.C.; Liang, H.C.; Chen, H.M.; Tan, L.R.; Yi, Y.Y.; Qin, Z.; Zhang, W.M.; Wu, D.W.; Li, C.W.; Lin, R.F.; Su, Z.R.; Lai, X.P. Anti-Candida albicans activity and pharmacokinetics of pogostone isolated from Pogostemonis herba. Phytomedicine, 2012, 20(1), 77-83.
[http://dx.doi.org/10.1016/j.phymed.2012.08.008] [PMID: 23159370]
[50]
Yang, C.; Dai, X.; Yang, S.; Ma, L.; Chen, L.; Gao, R.; Wu, X.; Shi, X. Coarse-grained molecular dynamics simulations of the effect of edge activators on the skin permeation behavior of transfersomes. Colloids Surf. B Biointerfaces, 2019, 183, 110462.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110462] [PMID: 31479973]
[51]
Lin, R.F.; Feng, X.X.; Li, C.W.; Zhang, X.J.; Yu, X.T.; Zhou, J.Y.; Zhang, X.; Xie, Y.L.; Su, Z.R.; Zhan, J.Y. Prevention of UV radiation-induced cutaneous photoaging in mice by topical administration of patchouli oil. J. Ethnopharmacol., 2014, 154(2), 408-418.
[http://dx.doi.org/10.1016/j.jep.2014.04.020] [PMID: 24747030]
[52]
Liu, M.; Zhou, Y.; Zhu, J.; Ma, B.; Fang, Z.; Zhang, Q. Synthesis and preclinical pharmacokinetic study of DHA-10, a novel potential antifungal pogostone analogue. J. Pharm. Pharmacol., 2017, 69(9), 1084-1090.
[http://dx.doi.org/10.1111/jphp.12750] [PMID: 28543298]
[53]
Liu, Y.; Liang, J.; Wu, J.; Chen, H.; Zhang, Z.; Yang, H.; Chen, L.; Chen, H.; Su, Z.; Li, Y. Transformation of patchouli alcohol to β-patchoulene by gastric juice: β-patchoulene is more effective in preventing ethanol-induced gastric injury. Sci. Rep., 2017, 7(1), 5591.
[http://dx.doi.org/10.1038/s41598-017-05996-5] [PMID: 28717228]
[54]
(a) Hu, G.; Peng, C.; Xie, X.; Zhang, S.; Cao, X. Availability, pharmaceutics, security, pharmacokinetics, and pharmacological activities of Patchouli alcohol. Evid. Based Complement. Alternat. Med., 2017, 2017, 4850612.
[http://dx.doi.org/10.1155/2017/4850612] [PMID: 28421121]
(b) Bang, L.; Ourisson, G.; Teisseire, P. Hydroxylation of patchoulol by rabbits. Hemi-synthesis of nor-patchoulenol, the odour carrier of Patchouli oil. Tetrahedron Lett., 1975, 16(26), 2211-2214.
[http://dx.doi.org/10.1016/S0040-4039(00)72679-7]
[55]
Li, Y.; Su, Z.; Lin, S.; Li, C.; Ya, Zhao; Gao, X.; Lai, Y.; Wu, X.; Wu, H.; Cai, Z. Characterisation of the metabolism of pogostone in vitro and in vivo using liquid chromatography with mass spectrometry. Phytochem. Anal., 2014, 25(2), 97-105.
[http://dx.doi.org/10.1002/pca.2471] [PMID: 24605365]
[56]
Zhang, G.; Zhang, Y.; Ma, X.; Yang, X.; Cai, Y.; Yin, W. Pogostone inhibits the activity of CYP3A4, 2C9, and 2E1 in vitro. Pharm. Biol., 2021, 59(1), 532-536.
[http://dx.doi.org/10.1080/13880209.2021.1917630] [PMID: 33915070]
[57]
Zhang, F.; Huang, J.; Liu, W.; Wang, C.R.; Liu, Y.F.; Tu, D.Z.; Liang, X.M.; Yang, L.; Zhang, W.D.; Chen, H.Z.; Ge, G.B. Inhibition of drug-metabolizing enzymes by qingfei paidu decoction: Implication of herb-drug interactions in COVID-19 pharmacotherapy. Food Chem. Toxicol., 2021, 149, 111998.
[http://dx.doi.org/10.1016/j.fct.2021.111998] [PMID: 33476691]
[58]
Gan, Y.; Ai, G.; Wu, J.; Luo, H.; Chen, L.; Huang, Q.; Wu, X.; Xu, N.; Li, M.; Su, Z.; Liu, Y.; Huang, X. Patchouli oil ameliorates 5-fluorouracil-induced intestinal mucositis in rats via protecting intestinal barrier and regulating water transport. J. Ethnopharmacol., 2020, 250, 112519.
[http://dx.doi.org/10.1016/j.jep.2019.112519] [PMID: 31883475]
[59]
Wu, J. Gan, Y.; Luo, H.; Xu, N.; Chen, L.; Li, M.; Guan, F.; Su, Z.; Lin, Z.; Xie, J.; Liu, Y. β-Patchoulene ameliorates water transport and the mucus barrier in 5-fluorouracil-induced intestinal mucositis rats via the cAMP/PKA/CREB signaling pathway. Front. Pharmacol., 2021, 12, 689491.
[http://dx.doi.org/10.3389/fphar.2021.689491] [PMID: 34512326]
[60]
Fukushima, S.; Cohen, S.M.; Eisenbrand, G.; Gooderham, N.J.; Guengerich, F.P.; Hecht, S.S.; Rietjens, I.M.C.M.; Rosol, T.J.; Davidsen, J.M.; Harman, C.L.; Lu, V.; Taylor, S.V. FEMA GRAS assessment of natural flavor complexes: Lavender, guaiac coriander-derived and related flavoring ingredients. Food Chem. Toxicol., 2020, 145, 111584.
[http://dx.doi.org/10.1016/j.fct.2020.111584] [PMID: 32682832]
[61]
Toydemir, G.; Boyacioglu, D.; Capanoglu, E.; van der Meer, I.M.; Tomassen, M.M.; Hall, R.D.; Mes, J.J.; Beekwilder, J. Investigating the transport dynamics of anthocyanins from unprocessed fruit and processed fruit juice from sour cherry (Prunus cerasus L.) across intesti-nal epithelial cells. J. Agric. Food Chem., 2013, 61(47), 11434-11441.
[http://dx.doi.org/10.1021/jf4032519] [PMID: 24191680]
[62]
Wagner, B.; Galey, W.R. Kinetic analysis of hexose transport to determine the mechanism of amygdalin and prunasin absorption in the intestine. J. Appl. Toxicol., 2003, 23(5), 371-375.
[http://dx.doi.org/10.1002/jat.934] [PMID: 12975776]
[63]
Ahmad, Z. The uses and properties of almond oil. Complement. Ther. Clin. Pract., 2010, 16(1), 10-12.
[http://dx.doi.org/10.1016/j.ctcp.2009.06.015] [PMID: 20129403]
[64]
Yonezawa, T.; Momota, R.; Iwano, H.; Zhao, S.; Hakozaki, T.; Soh, C.; Sawaki, S.; Toyama, K.; Oohashi, T. Unripe peach (Prunus persi-ca) extract ameliorates damage from UV irradiation and improved collagen XVIII expression in 3D skin model. J. Cosmet. Dermatol., 2018. Online ahead of print
[http://dx.doi.org/10.1111/jocd.12841] [PMID: 30548159]
[65]
Kirakosyan, A.; Seymour, E.M.; Wolforth, J.; McNish, R.; Kaufman, P.B.; Bolling, S.F. Tissue bioavailability of anthocyanins from whole tart cherry in healthy rats. Food Chem., 2015, 171, 26-31.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.114] [PMID: 25308638]
[66]
Jaswal, V.; Palanivelu, J. C, R. Effects of the Gut microbiota on amygdalin and its use as an anti-cancer therapy: Substantial review on the key components involved in altering dose efficacy and toxicity. Biochem. Biophys. Rep., 2018, 14, 125-132.
[http://dx.doi.org/10.1016/j.bbrep.2018.04.008] [PMID: 29872744]
[67]
Bartolomé, B.; Monagas, M.; Garrido, I.; Gómez-Cordovés, C.; Martín-Alvarez, P.J.; Lebrón-Aguilar, R.; Urpí-Sardà, M.; Llorach, R.; Andrés-Lacueva, C. Almond (Prunus dulcis (Mill.) D.A. Webb) polyphenols: From chemical characterization to targeted analysis of phe-nolic metabolites in humans. Arch. Biochem. Biophys., 2010, 501(1), 124-133.
[http://dx.doi.org/10.1016/j.abb.2010.03.020] [PMID: 20361924]
[68]
Urpi-Sarda, M.; Garrido, I.; Monagas, M.; Gómez-Cordovés, C.; Medina-Remón, A.; Andres-Lacueva, C.; Bartolomé, B. Profile of plasma and urine metabolites after the intake of almond [Prunus dulcis (Mill.) D.A. Webb] polyphenols in humans. J. Agric. Food Chem., 2009, 57(21), 10134-10142.
[http://dx.doi.org/10.1021/jf901450z] [PMID: 19839583]
[69]
Rocchetti, G.; Bhumireddy, S.R.; Giuberti, G.; Mandal, R.; Lucini, L.; Wishart, D.S. Edible nuts deliver polyphenols and their transfor-mation products to the large intestine: An in vitro fermentation model combining targeted/untargeted metabolomics. Food Res. Int., 2019, 116, 786-794.
[http://dx.doi.org/10.1016/j.foodres.2018.09.012] [PMID: 30717008]
[70]
Alba, C.M.A.; Daya, M.; Franck, C. Tart cherries and health: Current knowledge and need for a better understanding of the fate of phyto-chemicals in the human gastrointestinal tract. Crit. Rev. Food Sci. Nutr., 2019, 59(4), 626-638.
[http://dx.doi.org/10.1080/10408398.2017.1384918] [PMID: 28956621]
[71]
Canistro, D.; Vivarelli, F.; Cirillo, S.; Costa, G.; Andreotti, C.; Paolini, M. Comparison between in toto peach (Prunus persica L. Batsch) supplementation and its polyphenolic extract on rat liver xenobiotic metabolizing enzymes. Food Chem. Toxicol., 2016, 97, 385-394.
[http://dx.doi.org/10.1016/j.fct.2016.10.006] [PMID: 27742397]
[72]
Kim, H.J.; Yu, M.H.; Lee, I.S. Inhibitory effects of methanol extract of plum (Prunus salicina L., cv. ‘Soldam’) fruits against ben-zo(alpha)pyrene-induced toxicity in mice. Food Chem. Toxicol., 2008, 46(11), 3407-3413.
[http://dx.doi.org/10.1016/j.fct.2008.08.012] [PMID: 18786596]
[73]
Deferme, S.; Mols, R.; Van Driessche, W.; Augustijns, P. Apricot extract inhibits the P-gp-mediated efflux of talinolol. J. Pharm. Sci., 2002, 91(12), 2539-2548.
[http://dx.doi.org/10.1002/jps.10262] [PMID: 12434397]
[74]
Gawel, A.M.; Godlewska, M.; Grech-Baran, M.; Stachurska, A.; Gawel, D. MIX2: A novel natural multi-component modulator of multi-drug-resistance and hallmarks of cancer cells. Nutr. Cancer, 2019, 71(2), 334-347.
[http://dx.doi.org/10.1080/01635581.2018.1560480] [PMID: 30676767]
[75]
Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.C.; Nebbia, C.S.; Nielsen, E.; Ntzani, E.; Petersen, A.; Sand, S.; Vleminckx, C.; Wallace, H.; Benford, D.; Brimer, L.; Mancini, F.R.; Metzler, M.; Viviani, B.; Altieri, A.; Arcella, D.; Steinkellner, H.; Schwerdtle, T. Evaluation of the health risks related to the presence of cyanogenic glycosides in foods other than raw apricot kernels. EFSA J., 2019, 17(4), e05662.
[PMID: 32626287]
[76]
Wang, X.X.; Liu, G.Y.; Yang, Y.F.; Wu, X.W.; Xu, W.; Yang, X.W. Intestinal absorption of triterpenoids and flavonoids from glycyrrhizae radix et rhizoma in the human Caco-2 monolayer cell model. Molecules, 2017, 22(10), 1627.
[http://dx.doi.org/10.3390/molecules22101627] [PMID: 28961192]
[77]
Chen, Y.; Wang, J.; Wang, L.; Chen, L.; Wu, Q. Absorption and interaction of the main constituents from the traditional Chinese drug pair shaoyao-gancao via a Caco-2 cell monolayer model. Molecules, 2012, 17(12), 14908-14917.
[http://dx.doi.org/10.3390/molecules171214908] [PMID: 23519262]
[78]
Yu, X.; Chi, S.S.; Jiao, Q.S.; Jiang, L.J.; Wang, W.H.; Jiang, Y.Y.; Liu, B. [Study on compatibility of active ingredients of simiao yongan decoction in rats with in situ single-pass intestinal perfusion model]. Zhongguo Zhongyao Zazhi, 2019, 44(10), 2163-2170.
[PMID: 31355576]
[79]
El-Saber Batiha, G.; Magdy Beshbishy, A.; El-Mleeh, A.; Abdel-Daim, M.M.; Prasad Devkota, H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules, 2020, 10(3), 352.
[http://dx.doi.org/10.3390/biom10030352] [PMID: 32106571]
[80]
Mao, Y.; Peng, L.; Kang, A.; Xie, T.; Xu, J.; Shen, C.; Ji, J.; Di, L.; Wu, H.; Shan, J. Influence of Jiegeng on pharmacokinetic properties of flavonoids and saponins in Gancao. Molecules, 2017, 22(10), 1587.
[http://dx.doi.org/10.3390/molecules22101587] [PMID: 28934158]
[81]
Liu, L.; Xiao, J.; Peng, Z.H.; Chen, Y. In vitro metabolism of glycyrrhetic acid by human cytochrome P450. Yao Xue Xue Bao, 2011, 46(1), 81-87.
[PMID: 21462897]
[82]
He, W.; Wu, J.J.; Ning, J.; Hou, J.; Xin, H.; He, Y.Q.; Ge, G.B.; Xu, W. Inhibition of human cytochrome P450 enzymes by licochalcone A, a naturally occurring constituent of licorice. Toxicol. In Vitro, 2015, 29(7), 1569-1576.
[http://dx.doi.org/10.1016/j.tiv.2015.06.014] [PMID: 26100226]
[83]
Li, G.; Simmler, C.; Chen, L.; Nikolic, D.; Chen, S.N.; Pauli, G.F.; van Breemen, R.B. Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. Eur. J. Pharm. Sci., 2017, 109, 182-190.
[http://dx.doi.org/10.1016/j.ejps.2017.07.034] [PMID: 28774812]
[84]
Jung, D.H.; Hwang, J.T.; Pyun, B.J.; Yu, S.Y.; Ko, B.S. Assessment of the aromatase inhibitory activity of ma-huang-tang (MHT) and its active compounds. Evid. Based Complement. Alternat. Med., 2019, 2019, 4809846.
[http://dx.doi.org/10.1155/2019/4809846] [PMID: 31929813]
[85]
Sun, S.; Chen, Q.; Ge, J.; Liu, X.; Wang, X.; Zhan, Q.; Zhang, H.; Zhang, G. Pharmacokinetic interaction of aconitine, liquiritin and 6-gingerol in a traditional Chinese herbal formula, sini decoction. Xenobiotica, 2018, 48(1), 45-52.
[http://dx.doi.org/10.1080/00498254.2017.1278807] [PMID: 28051355]
[86]
Chen, Q.; Chen, H.; Wang, W.; Liu, J.; Liu, W.; Ni, P.; Sang, G.; Wang, G.; Zhou, F.; Zhang, J. Glycyrrhetic acid, but not glycyrrhizic acid, strengthened entecavir activity by promoting its subcellular distribution in the liver via efflux inhibition. Eur. J. Pharm. Sci., 2017, 106, 313-327.
[http://dx.doi.org/10.1016/j.ejps.2017.06.015] [PMID: 28627473]
[87]
Feng, D.; Tang, T.; Fan, R.; Luo, J.; Cui, H.; Wang, Y.; Gan, P. Gancao (glycyrrhizae radix) provides the main contribution to shaoyao-gancao decoction on enhancements of CYP3A4 and MDR1 expression via pregnane X receptor pathway in vitro. BMC Complement. Altern. Med., 2018, 18(1), 345.
[http://dx.doi.org/10.1186/s12906-018-2402-7] [PMID: 30594244]
[88]
Isbrucker, R.A.; Burdock, G.A. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul. Toxicol. Pharmacol., 2006, 46(3), 167-192.
[http://dx.doi.org/10.1016/j.yrtph.2006.06.002] [PMID: 16884839]
[89]
Vispute, S.; Khopade, A. Glycyrrhiza glabra Linn–klitaka: A review. Int. J. Pharma Bio Sci., 2011, 2, 42-51.
[90]
Omar, H.R.; Komarova, I.; El-Ghonemi, M.; Fathy, A.; Rashad, R.; Abdelmalak, H.D.; Yerramadha, M.R.; Ali, Y.; Helal, E.; Camporesi, E.M. Licorice abuse: Time to send a warning message. Ther. Adv. Endocrinol. Metab., 2012, 3(4), 125-138.
[http://dx.doi.org/10.1177/2042018812454322] [PMID: 23185686]
[91]
Al-Snafi, A.E. Glycyrrhiza glabra: A phytochemical and pharmacological review. J. Pharm. (Cairo), 2018, 8, 1-17.
[92]
Gu, L.; Wang, X.; Liu, Z.; Ju, P.; Zhang, L.; Zhang, Y.; Ma, B.; Bi, K.; Chen, X. A study of semen strychni-induced renal injury and herb-herb interaction of radix glycyrrhizae extract and/or Rhizoma ligustici extract on the comparative toxicokinetics of strychnine and brucine in rats. Food Chem. Toxicol., 2014, 68, 226-233.
[http://dx.doi.org/10.1016/j.fct.2014.03.028] [PMID: 24704041]
[93]
Shi, L.; Tang, X.; Dang, X.; Wang, Q.; Wang, X.; He, P.; Wang, Q.; Liu, L.; Liu, X.; Zhang, Y. Investigating herb-herb interactions: The potential attenuated toxicity mechanism of the combined use of glycyrrhizae radix et rhizoma (Gancao) and Sophorae flavescentis radix (Kushen). J. Ethnopharmacol., 2015, 165, 243-250.
[http://dx.doi.org/10.1016/j.jep.2015.02.022] [PMID: 25701755]
[94]
Wang, F.Y.; Lv, W.S.; Han, L. Determination and pharmacokinetic study of pachymic acid by LC-MS/MS. Biol. Pharm. Bull., 2015, 38(9), 1337-1344.
[http://dx.doi.org/10.1248/bpb.b15-00121] [PMID: 26328488]
[95]
Qian, Q.; Zhou, N.; Qi, P.; Zhang, Y.; Mu, X.; Shi, X.; Wang, Q.A. UHPLC-QTOF-MS/MS method for the simultaneous determination of eight triterpene compounds from Poria cocos (schw.) Wolf extract in rat plasma: Application to a comparative pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1102-1103, 34-44.
[http://dx.doi.org/10.1016/j.jchromb.2018.10.011] [PMID: 30366210]
[96]
Chen, H.; Li, Y.; Wu, X.; Li, C.; Li, Q.; Qin, Z.; Yi, Y.; Chen, J.; Lai, X.; Su, Z. LC-MS/MS determination of pogostone in rat plasma and its application in pharmacokinetic studies. Biomed. Chromatogr., 2013, 27(9), 1092-1099.
[http://dx.doi.org/10.1002/bmc.2897] [PMID: 23505096]
[97]
Zhang, R.; Peng, C.; Li, Y.; Xiong, L.; Gong, X. A gas chromatography-mass spectrometry method for the determination of pogostone in canine plasma and its application to a pharmacokinetic study. J. Chromatogr. Sci., 2014, 52(10), 1151-1156.
[http://dx.doi.org/10.1093/chromsci/bmt201] [PMID: 24714140]
[98]
Huang, J.T.; Cheng, Y.Y.; Lin, L.C.; Tsai, T.H. Structural pharmacokinetics of polymethoxylated flavones in rat plasma using HPLC-MS/MS. J. Agric. Food Chem., 2017, 65(11), 2406-2413.
[http://dx.doi.org/10.1021/acs.jafc.6b05390] [PMID: 28251856]
[99]
Li, X.B.; Liu, C.H.; Zhang, R.; Huang, X.T.; Li, Y.Y.; Han, L.; Xu, M.L.; Mi, S.Q.; Wang, N.S. Determination and pharmacokinetics of amygdalin in rats by LC-MS-MS. J. Chromatogr. Sci., 2014, 52(6), 476-481.
[http://dx.doi.org/10.1093/chromsci/bmt063] [PMID: 23735239]
[100]
Han, Y.J.; Kang, B.; Yang, E.J.; Choi, M.K.; Song, I.S. Simultaneous determination and pharmacokinetic characterization of glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin in rat plasma following oral administration of Glycyrrhizae radix extract. Molecules, 2019, 24(9), 1816.
[http://dx.doi.org/10.3390/molecules24091816] [PMID: 31083444]
[101]
Kamei, J.; Saitoh, A.; Asano, T.; Nakamura, R.; Ichiki, H.; Iiduka, A.; Kubo, M. Pharmacokinetic and pharmacodynamic profiles of the antitussive principles of Glycyrrhizae radix (Licorice), a main component of the kampo preparation bakumondo-to (mai-men-dong-tang). Eur. J. Pharmacol., 2005, 507(1-3), 163-168.
[http://dx.doi.org/10.1016/j.ejphar.2004.11.042] [PMID: 15659306]
[102]
Song, S.; Chen, F.; Xing, X.; Ren, M.; Ma, Q.; Xie, Y.; Tang, Q.; Luo, J. Concurrent quantification and comparative pharmacokinetic anal-ysis of bioactive compounds in the Herba Ephedrae-Semen Armeniacae Amarum herb pair. J. Pharm. Biomed. Anal., 2015, 109, 67-73.
[http://dx.doi.org/10.1016/j.jpba.2015.02.004] [PMID: 25766850]
[103]
Zhang, J.Q.; Wang, R.; Zhou, T.; Zhao, Q.; Zhao, C.C.; Ma, B.L. Pharmacokinetic incompatibility of the Huanglian-gancao herb pair. BMC Complement. Med. Ther, 2020, 20(1), 61.
[http://dx.doi.org/10.1186/s12906-020-2845-5] [PMID: 32087732]
[104]
Shen, H.; Zhu, L.Y.; Yao, N.; Wu, J. [The effect of the compatibility of Radix aconiti laterlis and Radix glycyrrhizae on pharmacokinatic of aconitine, mesaconitine and hypacmitine in rat plasma]. Zhong Yao Cai, 2011, 34(6), 937-942.
[PMID: 22017011]
[105]
Wang, S.; Sun, L.; Gu, L.; Zhang, Y.; Zhao, S.; Zhao, L.S.; Bi, K.S.; Chen, X. The comparative pharmacokinetics of four bioactive ingredi-ents after administration of Ramulus cinnamomi-radix glycyrrhizae herb pair extract, Ramulus cinnamomi extract and Radix glycyrrhizae extract. Biomed. Chromatogr., 2016, 30(8), 1270-1277.
[http://dx.doi.org/10.1002/bmc.3677] [PMID: 26694528]
[106]
Cheng, Y.; Chu, Y.; Su, X.; Zhang, K.; Zhang, Y.; Wang, Z.; Xiao, W.; Zhao, L.; Chen, X. Pharmacokinetic-pharmacodynamic modeling to study the anti-dysmenorrhea effect of guizhi fuling capsule on primary dysmenorrhea rats. Phytomedicine, 2018, 48, 141-151.
[http://dx.doi.org/10.1016/j.phymed.2018.04.041] [PMID: 30195872]
[107]
Huang, P.; Tang, Y.; Li, C.; Zhou, H.; Yu, L.; Wan, H.; He, Y. Correlation study between the pharmacokinetics of seven main active ingre-dients of mahuang decoction and its pharmacodynamics in asthmatic rats. J. Pharm. Biomed. Anal., 2020, 183, 113144.
[http://dx.doi.org/10.1016/j.jpba.2020.113144] [PMID: 32070931]
[108]
Ji, B.; Zhao, Y.; Yu, P.; Yang, B.; Zhou, C.; Yu, Z. LC-ESI-MS/MS method for simultaneous determination of eleven bioactive com-pounds in rat plasma after oral administration of ling-gui-zhu-gan decoction and its application to a pharmacokinetics study. Talanta, 2018, 190, 450-459.
[http://dx.doi.org/10.1016/j.talanta.2018.08.020] [PMID: 30172532]
[109]
Ji, B.; Zhuo, L.; Yang, B.; Wang, Y.; Li, L.; Yu, M.; Zhao, Y.; Yu, Z. Development and validation of a sensitive and fast UPLC-MS/MS method for simultaneous determination of seven bioactive compounds in rat plasma after oral administration of guizhi-gancao decoction. J. Pharm. Biomed, 2017, 137, 23-32.
[http://dx.doi.org/10.1016/j.jpba.2017.01.021] [PMID: 28088663]
[110]
Xiao, F.; Li, Q.; Liang, K.; Zhao, L.; He, B.; Ji, W.; Chen, X.; Wang, Z.; Bi, K.; Jia, Y. Comparative pharmacokinetics of three triterpene acids in rat plasma after oral administration of Poria extract and its formulated herbal preparation: GuiZhi-fuling capsule. Fitoterapia, 2012, 83(1), 117-124.
[http://dx.doi.org/10.1016/j.fitote.2011.10.001] [PMID: 22008604]
[111]
Wang, Q.; Shi, L.; Tang, X.; Wang, Q.; Dang, X.; Zhang, Y. Pharmacokinetic study of multiple active constituents from kushen-gancao decoction after oral administration in rat by HPLC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 965, 19-26.
[http://dx.doi.org/10.1016/j.jchromb.2014.05.038] [PMID: 24976484]
[112]
Shi, Y.; Cao, C.; Zhu, Y.; Gao, T.; Yang, W.; Liu Mingzhu Qi, M.; Huang, R.; Qian, D.; Duan, J.A.; Duan, J.A. Comparative pharmacoki-netic study of the components of jia-Wei-Kai-Xin-San in normal and vascular dementia rats by ultra-fast liquid chromatography coupled with tandem mass spectrometry. J. Sep. Sci., 2018, 41(12), 2504-2516.
[http://dx.doi.org/10.1002/jssc.201701144] [PMID: 29577615]
[113]
Nong, F.; Zhao, Z.; Luo, X.; Liu, C.; Li, H.; Liu, Q.; Wen, B.; Zhou, L. Evaluation of the influence of mirabilite on the absorption and pharmacokinetics of the ingredients in dahuang-mudan decoction by a validated UPLC/QTOF-MS/MS method. Biomed. Chromatogr., 2019, 33(3), e4423.
[http://dx.doi.org/10.1002/bmc.4423] [PMID: 30381826]
[114]
Tang, Y.; Zheng, M.; Chen, Y.L.; Chen, J.; He, Y. Pharmacokinetic effects of cinnamic acid, amygdalin, glycyrrhizic acid and liquiritin on ephedra alkaloids in rats. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(3), 527-535.
[http://dx.doi.org/10.1007/s13318-016-0368-8] [PMID: 27514823]
[115]
Zhong, G.S. Traditional Chinese Pharmacology; China Press of TCM: Beijing, 2013.
[116]
Zhang, Z.J. Treatise on Febrile Diseases; China Press of TCM: Beijing, 2019.
[117]
Liu, J.; Cui, Y.; Bai, M.X.; Zhang, H.W.; Jin, Y.L.; Lyu, P. Application of traditional Chinese medicine in prevention and treatment of COVID-19. Chin. Tradit. Herbal Drugs, 2020, 51(4), 860-865.
[118]
Ba, Y.M.; Li, X.D.; Min, X.J.; Chen2g, Y.G.; Yang, Y.; Tao, R. Novel coronavirus pneumonia in Hubei Provincial traditional Chinese medical hospital: Prevention and treatment of Chinese medicine (Third Edition). Hubei J. TCM, 2020, 42(2), 7-8.
[119]
National Health Commission and National Administration of TCM. Diagnosis and treatment of coronavirus disease-19 (revision of 8th trial edition). 2021. Available from: http://www.gov.cn/zhengce/zhengceku/2021-04/15/content_5599795.htm
[120]
Xu, B.; Fan, C.Y.; Zou, Y.L.; Zhang, J.X.; Miao, Q. Analysis of TCM syndromes of 46 cases of novel coronavirus disease. Chin. J. Expt. Trad. Med. Formulae, 2020, 26(12), 14-17.
[121]
Vardhan, S.; Sahoo, S.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput. Biol. Med., 2020, 124, 103936..
[http://dx.doi.org/10.1016/j.compbiomed.2020.103936] [PMID: 32738628]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy