Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers

Author(s): A’edah Abu-Bakar, Boon Hooi Tan, Hasseri Halim, Salfarina Ramli, Yan Pan and Chin Eng Ong*

Volume 23, Issue 5, 2022

Published on: 08 June, 2022

Page: [355 - 373] Pages: 19

DOI: 10.2174/1389200223666220328143828

Price: $65

Abstract

Cancer is a leading cause of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Various lines of evidence from epidemiological, animal, and clinical studies point to the instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has only emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update the current state of knowledge about the molecular cancer mechanism involving CYPs with a focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis and the role of CYP-derived reactive metabolites, from both external and endogenous sources, in cancer growth and tumor formation.

Keywords: Cytochrome P450, cancer, carcinogenesis, carcinogen, eicosanoid, drug metabolism, DNA adduct.

Graphical Abstract

[1]
Rendic, S.P.; Peter Guengerich, F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: Mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab. Rev., 2018, 50(3), 256-342.
[http://dx.doi.org/10.1080/03602532.2018.1483401] [PMID: 30717606]
[2]
Nelson, D.R. Cytochrome P450 diversity in the tree of life. Biochim. Biophys. Acta. Proteins Proteomics, 2018, 1866(1), 141-154.
[http://dx.doi.org/10.1016/j.bbapap.2017.05.003] [PMID: 28502748]
[3]
Thelen, K.; Dressman, J.B. Cytochrome P450-mediated metabolism in the human gut wall. J. Pharm. Pharmacol., 2009, 61(5), 541-558.
[http://dx.doi.org/10.1211/jpp.61.05.0002] [PMID: 19405992]
[4]
Knights, K.M.; Rowland, A.; Miners, J.O. Renal drug metabolism in humans: The potential for drug-endobiotic interactions involving cy-tochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br. J. Clin. Pharmacol., 2013, 76(4), 587-602.
[http://dx.doi.org/10.1111/bcp.12086] [PMID: 23362865]
[5]
Gundert-Remy, U.; Bernauer, U.; Blömeke, B.; Döring, B.; Fabian, E.; Goebel, C.; Hessel, S.; Jäckh, C.; Lampen, A.; Oesch, F.; Petzinger, E.; Völkel, W.; Roos, P.H. Extrahepatic metabolism at the body’s internal-external interfaces. Drug Metab. Rev., 2014, 46(3), 291-324.
[http://dx.doi.org/10.3109/03602532.2014.900565] [PMID: 24666398]
[6]
Pavek, P.; Dvorak, Z. Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 super-family in human extrahepatic tissues. Curr. Drug Metab., 2008, 9(2), 129-143.
[http://dx.doi.org/10.2174/138920008783571774] [PMID: 18288955]
[7]
Rao, P.S.S.; Kumar, S. Chronic effects of ethanol and/or darunavir/ritonavir on U937 monocytic cells: Regulation of cytochrome P450 and antioxidant enzymes, oxidative stress, and cytotoxicity. Alcohol. Clin. Exp. Res., 2016, 40(1), 73-82.
[http://dx.doi.org/10.1111/acer.12938] [PMID: 26727525]
[8]
Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and induction of CYP enzymes in humans: An update. Arch. Toxicol., 2020, 94(11), 3671-3722.
[http://dx.doi.org/10.1007/s00204-020-02936-7] [PMID: 33111191]
[9]
Benowitz, N.L. Pharmacology of nicotine: Addiction, smoking-induced disease, and therapeutics. Annu. Rev. Pharmacol. Toxicol., 2009, 49(1), 57-71.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094742] [PMID: 18834313]
[10]
Henkler, F.; Stolpmann, K.; Luch, A. Exposure to polycyclic aromatic hydrocarbons: Bulky DNA adducts and cellular responses. Experientia Suppl., 2012, 101, 107-131.
[http://dx.doi.org/10.1007/978-3-7643-8340-4_5] [PMID: 22945568]
[11]
Chen, J.; Jiang, S.; Wang, J.; Renukuntla, J.; Sirimulla, S.; Chen, J. A comprehensive review of cytochrome P450 2E1 for xenobiotic me-tabolism. Drug Metab. Rev., 2019, 51(2), 178-195.
[http://dx.doi.org/10.1080/03602532.2019.1632889] [PMID: 31203697]
[12]
Jin, M.; Ande, A.; Kumar, A.; Kumar, S. Regulation of cytochrome P450 2e1 expression by ethanol: Role of oxidative stress-mediated pkc/jnk/sp1 pathway. Cell Death Dis., 2013, 4(3), e554.
[http://dx.doi.org/10.1038/cddis.2013.78] [PMID: 23519123]
[13]
Cederbaum, A.I. Molecular mechanisms of the microsomal mixed function oxidases and biological and pathological implications. Redox Biol., 2015, 4, 60-73.
[http://dx.doi.org/10.1016/j.redox.2014.11.008] [PMID: 25498968]
[14]
He, X.; Feng, S. Role of metabolic enzymes P450 (CYP) on activating procarcinogen and their polymorphisms on the risk of cancers. Curr. Drug Metab., 2015, 16(10), 850-863.
[http://dx.doi.org/10.2174/138920021610151210164501] [PMID: 26652254]
[15]
Xue, W.; Warshawsky, D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review. Toxicol. Appl. Pharmacol., 2005, 206(1), 73-93.
[http://dx.doi.org/10.1016/j.taap.2004.11.006] [PMID: 15963346]
[16]
Stevenson, E.S.; Dobriner, K.; Rhoad, C.P. The metabolism of dimethylaminoazobenzene (butter yellow) in rats. Cancer Res., 1942, 2, 160-167.
[17]
Lin, J.K.; Miller, J.A.; Miller, E.C. Structures of hepatic nucleic acid-bound dyes in rats given the carcinogen N-methyl-4-aminoazobenzene. Cancer Res., 1975, 35(3), 844-850.
[PMID: 1116139]
[18]
Miller, J.A. The metabolism of xenobiotics to reactive electrophiles in chemical carcinogenesis and mutagenesis: A collaboration with Elizabeth Cavert Miller and our associates. Drug Metab. Rev., 1998, 30(4), 645-674.
[http://dx.doi.org/10.3109/03602539808996326] [PMID: 9844805]
[19]
Kadlubar, F.F.; Unruh, L.E.; Beland, F.A.; Straub, K.M.; Evans, F.E. In vitro reaction of the carcinogen, N-hydroxy-2-naphthylamine, with DNA at the C-8 and N2 atoms of guanine and at the N6 atom of adenine. Carcinogenesis, 1980, 1(2), 139-150.
[http://dx.doi.org/10.1093/carcin/1.2.139] [PMID: 22282993]
[20]
Conney, A.H.; Miller, E.C.; Miller, J.A. The metabolism of methylated aminoazo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene. Cancer Res., 1956, 16(5), 450-459.
[PMID: 13330038]
[21]
Raza, H.; Levine, W.G. Effect of phenobarbital and beta-naphthoflavone on oxidative metabolism of N,N-dimethyl-4-aminoazobenzene by regenerating rat-liver microsomes and its response to sulphydryl compounds. Xenobiotica, 1986, 16(9), 827-837.
[http://dx.doi.org/10.3109/00498258609038964] [PMID: 3094256]
[22]
Peterson, L.A. Electrophilic intermediates produced by bioactivation of furan. Drug Metab. Rev., 2006, 38(4), 615-626.
[http://dx.doi.org/10.1080/03602530600959417] [PMID: 17145691]
[23]
Gates, L.A.; Lu, D.; Peterson, L.A. Trapping of cis-2-butene-1,4-dial to measure furan metabolism in human liver microsomes by cyto-chrome P450 enzymes. Drug Metab. Dispos., 2012, 40(3), 596-601.
[http://dx.doi.org/10.1124/dmd.111.043679] [PMID: 22187484]
[24]
Klich, M.A. Aspergillus flavus: The major producer of aflatoxin. Mol. Plant Pathol., 2007, 8(6), 713-722.
[http://dx.doi.org/10.1111/j.1364-3703.2007.00436.x] [PMID: 20507532]
[25]
Streit, E.; Naehrer, K.; Rodrigues, I.; Schatzmayr, G. Mycotoxin occurrence in feed and feed raw materials worldwide: Long-term analysis with special focus on Europe and Asia. J. Sci. Food Agric., 2013, 93(12), 2892-2899.
[http://dx.doi.org/10.1002/jsfa.6225] [PMID: 23670211]
[26]
Theumer, M.G.; Henneb, Y.; Khoury, L.; Snini, S.P.; Tadrist, S.; Canlet, C.; Puel, O.; Oswald, I.P.; Audebert, M. Genotoxicity of aflatox-ins and their precursors in human cells. Toxicol. Lett., 2018, 287, 100-107.
[http://dx.doi.org/10.1016/j.toxlet.2018.02.007] [PMID: 29421331]
[27]
Ueng, Y.F.; Shimada, T.; Yamazaki, H.; Guengerich, F.P. Oxidation of aflatoxin B1 by bacterial recombinant human cytochrome P450 enzymes. Chem. Res. Toxicol., 1995, 8(2), 218-225.
[http://dx.doi.org/10.1021/tx00044a006] [PMID: 7766804]
[28]
Zhang, Z.; Lu, H.; Huan, F.; Meghan, C.; Yang, X.; Wang, Y.; Wang, X.; Wang, X.; Wang, S.L. Cytochrome P450 2A13 mediates the neo-plastic transformation of human bronchial epithelial cells at a low concentration of aflatoxin B1. Int. J. Cancer, 2014, 134(7), 1539-1548.
[http://dx.doi.org/10.1002/ijc.28489] [PMID: 24114584]
[29]
Zhu, L.R.; Thomas, P.E.; Lu, G.; Reuhl, K.R.; Yang, G.Y.; Wang, L.D.; Wang, S.L.; Yang, C.S.; He, X.Y.; Hong, J.Y. CYP2A13 in human respiratory tissues and lung cancers: An immunohistochemical study with a new peptide-specific antibody. Drug Metab. Dispos., 2006, 34(10), 1672-1676.
[http://dx.doi.org/10.1124/dmd.106.011049] [PMID: 16815959]
[30]
Dohnal, V.; Wu, Q. Kuča, K. Metabolism of aflatoxins: Key enzymes and interindividual as well as interspecies differences. Arch. Toxicol., 2014, 88(9), 1635-1644.
[http://dx.doi.org/10.1007/s00204-014-1312-9] [PMID: 25027283]
[31]
Wu, Q.; Jezkova, A.; Yuan, Z.; Pavlikova, L.; Dohnal, V. Kuča, K. Biological degradation of aflatoxins. Drug Metab. Rev., 2009, 41(1), 1-7.
[http://dx.doi.org/10.1080/03602530802563850] [PMID: 19514968]
[32]
Hecht, S.S. N-Nitrosamines. In: Environment and Occupational Medicine, 4th ed; Rom, W.N.; Markowitz, S., Eds.; Wolters Kluwer/Lippincott Williams & Wilkins: Philadelphia. 2007, pp. 1226-1239.
[33]
Mirvish, S.S. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett., 1995, 93(1), 17-48.
[http://dx.doi.org/10.1016/0304-3835(95)03786-V] [PMID: 7600541]
[34]
Chowdhury, G.; Calcutt, M.W.; Guengerich, F.P. Oxidation of N-nitrosoalkylamines by human cytochrome P450 2A6: Sequential oxida-tion to aldehydes and carboxylic acids and analysis of reaction steps. J. Biol. Chem., 2010, 285(11), 8031-8044.
[http://dx.doi.org/10.1074/jbc.M109.088039] [PMID: 20061389]
[35]
Chowdhury, G.; Calcutt, M.W.; Nagy, L.D.; Guengerich, F.P. Oxidation of methyl and ethyl nitrosamines by cytochrome P450 2E1 and 2B1. Biochemistry, 2012, 51(50), 9995-10007.
[http://dx.doi.org/10.1021/bi301092c] [PMID: 23186213]
[36]
Carlson, E.S.; Upadhyaya, P.; Hecht, S.S. Evaluation of nitrosamide formation in the cytochrome P450-mediated metabolism of tobacco-specific nitrosamines. Chem. Res. Toxicol., 2016, 29(12), 2194-2205.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00384] [PMID: 27989137]
[37]
Hecht, S.S. Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst., 1999, 91(14), 1194-1210.
[http://dx.doi.org/10.1093/jnci/91.14.1194] [PMID: 10413421]
[38]
Rendic, S.P.; Guengerich, F.P. Human family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physi-ological chemicals: An update. Arch. Toxicol., 2021, 95(2), 395-472.
[http://dx.doi.org/10.1007/s00204-020-02971-4] [PMID: 33459808]
[39]
Luch, A. Nature and nurture - lessons from chemical carcinogenesis. Nat. Rev. Cancer, 2005, 5(2), 113-125.
[http://dx.doi.org/10.1038/nrc1546] [PMID: 15660110]
[40]
Nebert, D.W.; Shi, Z.; Gálvez-Peralta, M.; Uno, S.; Dragin, N. Oral benzo[a]pyrene: Understanding pharmacokinetics, detoxication, and consequences--Cyp1 knockout mouse lines as a paradigm. Mol. Pharmacol., 2013, 84(3), 304-313.
[http://dx.doi.org/10.1124/mol.113.086637] [PMID: 23761301]
[41]
Melendez-Colon, V.J.; Luch, A.; Seidel, A.; Baird, W.M. Formation of stable DNA adducts and apurinic sites upon metabolic activation of bay and fjord region polycyclic aromatic hydrocarbons in human cell cultures. Chem. Res. Toxicol., 2000, 13(1), 10-17.
[http://dx.doi.org/10.1021/tx9802724] [PMID: 10649961]
[42]
Chakravarti, D.; Venugopal, D.; Mailander, P.C.; Meza, J.L.; Higginbotham, S.; Cavalieri, E.L.; Rogan, E.G. The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin. Mutat. Res., 2008, 649(1-2), 161-178.
[http://dx.doi.org/10.1016/j.mrgentox.2007.08.007] [PMID: 17931959]
[43]
Prough, R.A.; Saeki, Y.; Capdevila, J. The metabolism of benzo[a]pyrene phenols by rat liver microsomal fractions. Arch. Biochem. Biophys., 1981, 212(1), 136-146.
[http://dx.doi.org/10.1016/0003-9861(81)90352-0] [PMID: 7305398]
[44]
Moorthy, B.; Chu, C.; Carlin, D.J. Polycyclic aromatic hydrocarbons: From metabolism to lung cancer. Toxicol. Sci., 2015, 145(1), 5-15.
[http://dx.doi.org/10.1093/toxsci/kfv040] [PMID: 25911656]
[45]
Kleiner, H.E.; Vulimiri, S.V.; Hatten, W.B.; Reed, M.J.; Nebert, D.W.; Jefcoate, C.R.; DiGiovanni, J. Role of cytochrome p4501 family members in the metabolic activation of polycyclic aromatic hydrocarbons in mouse epidermis. Chem. Res. Toxicol., 2004, 17(12), 1667-1674.
[http://dx.doi.org/10.1021/tx049919c] [PMID: 15606143]
[46]
Mills, S.A., III; Thal, D.I.; Barney, J. A summary of the 209 PCB congener nomenclature. Chemosphere, 2007, 68(9), 1603-1612.
[http://dx.doi.org/10.1016/j.chemosphere.2007.03.052] [PMID: 17499337]
[47]
Hu, D.; Hornbuckle, K.C. Inadvertent polychlorinated biphenyls in commercial paint pigments. Environ. Sci. Technol., 2010, 44(8), 2822-2827.
[http://dx.doi.org/10.1021/es902413k] [PMID: 19957996]
[48]
Chen, Y.C.; Yu, M.L.; Rogan, W.J.; Gladen, B.C.; Hsu, C.C. A 6-year follow-up of behavior and activity disorders in the Taiwan Yu-cheng children. Am. J. Public Health, 1994, 84(3), 415-421.
[http://dx.doi.org/10.2105/AJPH.84.3.415] [PMID: 8129058]
[49]
Mitchell, M.M.; Woods, R.; Chi, L.H.; Schmidt, R.J.; Pessah, I.N.; Kostyniak, P.J.; LaSalle, J.M. Levels of select PCB and PBDE congeners in human postmortem brain reveal possible environmental involvement in 15q11-q13 duplication autism spectrum disorder. Environ. Mol. Mutagen., 2012, 53(8), 589-598.
[http://dx.doi.org/10.1002/em.21722] [PMID: 22930557]
[50]
Grimm, F.A.; Hu, D.; Kania-Korwel, I.; Lehmler, H.J.; Ludewig, G.; Hornbuckle, K.C.; Duffel, M.W.; Bergman, Å.; Robertson, L.W. Me-tabolism and metabolites of polychlorinated biphenyls. Crit. Rev. Toxicol., 2015, 45(3), 245-272.
[http://dx.doi.org/10.3109/10408444.2014.999365] [PMID: 25629923]
[51]
Otake, T.; Yoshinaga, J.; Enomoto, T.; Matsuda, M.; Wakimoto, T.; Ikegami, M.; Suzuki, E.; Naruse, H.; Yamanaka, T.; Shibuya, N.; Ya-sumizu, T.; Kato, N. Thyroid hormone status of newborns in relation to in utero exposure to PCBs and hydroxylated PCB metabolites. Environ. Res., 2007, 105(2), 240-246.
[http://dx.doi.org/10.1016/j.envres.2007.03.010] [PMID: 17490634]
[52]
Haijima, A.; Lesmana, R.; Shimokawa, N.; Amano, I.; Takatsuru, Y.; Koibuchi, N. Differential neurotoxic effects of in utero and lactation-al exposure to hydroxylated polychlorinated biphenyl (OH-PCB 106) on spontaneous locomotor activity and motor coordination in young adult male mice. J. Toxicol. Sci., 2017, 42(4), 407-416.
[http://dx.doi.org/10.2131/jts.42.407] [PMID: 28717099]
[53]
Kania-Korwel, I.; Lehmler, H.J. Chiral polychlorinated biphenyls: Absorption, metabolism and excretion--a review. Environ. Sci. Pollut. Res. Int., 2016, 23(3), 2042-2057.
[http://dx.doi.org/10.1007/s11356-015-4150-2] [PMID: 25651810]
[54]
Kaminsky, L.S.; Kennedy, M.W.; Adams, S.M.; Guengerich, F.P. Metabolism of dichlorobiphenyls by highly purified isozymes of rat liver cytochrome P-450. Biochemistry, 1981, 20(26), 7379-7384.
[http://dx.doi.org/10.1021/bi00529a009] [PMID: 6798990]
[55]
Wu, X.; Pramanik, A.; Duffel, M.W.; Hrycay, E.G.; Bandiera, S.M.; Lehmler, H.J.; Kania-Korwel, I. 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) is enantioselectively oxidized to hydroxylated metabolites by rat liver microsomes. Chem. Res. Toxicol., 2011, 24(12), 2249-2257.
[http://dx.doi.org/10.1021/tx200360m] [PMID: 22026639]
[56]
Lu, Z.; Kania-Korwel, I.; Lehmler, H-J.; Wong, C.S. Stereoselective formation of mono- and dihydroxylated polychlorinated biphenyls by rat cytochrome P450 2B1. Environ. Sci. Technol., 2013, 47(21), 12184-12192.
[http://dx.doi.org/10.1021/es402838f] [PMID: 24060104]
[57]
Shimada, T.; Kakimoto, K.; Takenaka, S.; Koga, N.; Uehara, S.; Murayama, N.; Yamazaki, H.; Kim, D.; Guengerich, F.P.; Komori, M. Roles of human CYP2A6 and monkey CYP2A24 and 2A26 cytochrome P450 enzymes in the oxidation of 2,5,2′,5′-tetrachlorobiphenyl. Drug Metab. Dispos., 2016, 44(12), 1899-1909.
[http://dx.doi.org/10.1124/dmd.116.072991] [PMID: 27625140]
[58]
Nagayoshi, H.; Kakimoto, K.; Konishi, Y.; Kajimura, K.; Nakano, T. Determination of the human cytochrome P450 monooxygenase cata-lyzing the enantioselective oxidation of 2,2′,3,5′,6-pentachlorobiphenyl (PCB 95) and 2,2′,3,4,4′,5′,6-heptachlorobiphenyl (PCB 183). Environ. Sci. Pollut. Res. Int., 2018, 25(17), 16420-16426.
[http://dx.doi.org/10.1007/s11356-017-0434-z] [PMID: 29043584]
[59]
Ariyoshi, N.; Ito, S.; Okudaira, A.; Mise, M.; Matsusue, K.; Yamada, H.; Oguri, K. Studies on PCB toxicity involving 2C subfamily cyto-chrome P450. Fukuoka Igaku Zasshi, 1995, 86(5), 153-162.
[PMID: 7628802]
[60]
el Ghissassi, F.; Barbin, A.; Bartsch, H. Metabolic activation of vinyl chloride by rat liver microsomes: Low-dose kinetics and involve-ment of cytochrome P450 2E1. Biochem. Pharmacol., 1998, 55(9), 1445-1452.
[http://dx.doi.org/10.1016/S0006-2952(97)00645-X] [PMID: 10076537]
[61]
Falk, H.; Creech, J.L., Jr; Heath, C.W., Jr; Johnson, M.N.; Key, M.M. Hepatic disease among workers at a vinyl chloride polymerization plant. JAMA, 1974, 230(1), 59-63.
[http://dx.doi.org/10.1001/jama.1974.03240010027023] [PMID: 4547220]
[62]
Bolt, H.M. Metabolic activation of vinyl chloride, formation of nucleic acid adducts and relevance to carcinogenesis. IARC Sci. Publ., 1986, 70(70), 261-268.
[PMID: 3793177]
[63]
Wong, R.H.; Wang, J.D.; Hsieh, L.L.; Cheng, T.J. XRCC1, CYP2E1 and ALDH2 genetic polymorphisms and sister chromatid exchange frequency alterations amongst vinyl chloride monomer-exposed polyvinyl chloride workers. Arch. Toxicol., 2003, 77(8), 433-440.
[http://dx.doi.org/10.1007/s00204-003-0467-6] [PMID: 12739102]
[64]
Yang, C.S.; Yoo, J.S.; Ishizaki, H.; Hong, J.Y. Cytochrome P450IIE1: Roles in nitrosamine metabolism and mechanisms of regulation. Drug Metab. Rev., 1990, 22(2-3), 147-159.
[http://dx.doi.org/10.3109/03602539009041082] [PMID: 2272285]
[65]
Evangelista, E.A.; Cho, C.W.; Aliwarga, T.; Totah, R.A. Expression and function of eicosanoid-producing cytochrome P450 enzymes in solid tumors. Front. Pharmacol., 2020, 11, 828.
[http://dx.doi.org/10.3389/fphar.2020.00828] [PMID: 32581794]
[66]
Luo, Y.; Liu, J.Y. Pleiotropic functions of cytochrome P450 monooxygenase-derived eicosanoids in cancer. Front. Pharmacol., 2020, 11, 580897.
[http://dx.doi.org/10.3389/fphar.2020.580897] [PMID: 33192522]
[67]
Sokolowska, M.; Rovati, G.E.; Diamant, Z.; Untersmayr, E.; Schwarze, J.; Lukasik, Z.; Sava, F.; Angelina, A.; Palomares, O.; Akdis, C.A.; O’Mahony, L.; Sanak, M.; Dahlen, S.E.; Woszczek, G. Current perspective on eicosanoids in asthma and allergic diseases: EAACI task force consensus report, part I. Allergy, 2021, 76(1), 114-130.
[http://dx.doi.org/10.1111/all.14295] [PMID: 32279330]
[68]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[69]
Sarlak, S.; Lalou, C.; Amoedo, N.D.; Rossignol, R. Metabolic reprogramming by tobacco-specific nitrosamines (TSNAs) in cancer. Semin. Cell Dev. Biol., 2020, 98, 154-166.
[http://dx.doi.org/10.1016/j.semcdb.2019.09.001] [PMID: 31699542]
[70]
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco smoke and involuntary smoking. IARC Monogr. Eval. Carcinog. Risks Hum., 2004, 83, 1-1438.
[PMID: 15285078]
[71]
Iba, M.M.; Fung, J.; Chung, L.; Zhao, J.; Winnik, B.; Buckley, B.T.; Chen, L.C.; Zelikoff, J.T.; Kou, Y.R. Differential inducibility of rat pulmonary CYP1A1 by cigarette smoke and wood smoke. Mutat. Res., 2006, 606(1-2), 1-11.
[http://dx.doi.org/10.1016/j.mrgentox.2006.02.007] [PMID: 16678472]
[72]
McLemore, T.L.; Adelberg, S.; Liu, M.C.; McMahon, N.A.; Yu, S.J.; Hubbard, W.C.; Czerwinski, M.; Wood, T.G.; Storeng, R.; Lubet, R.A.; Eggleston, J.C.; Boyd, M.R.; Hines, R.N. Expression of CYP1A1 gene in patients with lung cancer: Evidence for cigarette smoke-induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas. J. Natl. Cancer Inst., 1990, 82(16), 1333-1339.
[http://dx.doi.org/10.1093/jnci/82.16.1333] [PMID: 2380990]
[73]
Kim, J.H.; Sherman, M.E.; Curriero, F.C.; Guengerich, F.P.; Strickland, P.T.; Sutter, T.R. Expression of cytochromes P450 1A1 and 1B1 in human lung from smokers, non-smokers, and ex-smokers. Toxicol. Appl. Pharmacol., 2004, 199(3), 210-219.
[http://dx.doi.org/10.1016/j.taap.2003.11.015] [PMID: 15364538]
[74]
Anttila, S.; Hietanen, E.; Vainio, H.; Camus, A.M.; Gelboin, H.V.; Park, S.S.; Heikkilä, L.; Karjalainen, A.; Bartsch, H. Smoking and pe-ripheral type of cancer are related to high levels of pulmonary cytochrome P450IA in lung cancer patients. Int. J. Cancer, 1991, 47(5), 681-685.
[http://dx.doi.org/10.1002/ijc.2910470509] [PMID: 1848536]
[75]
Ryberg, D.; Hewer, A.; Phillips, D.H.; Haugen, A. Different susceptibility to smoking-induced DNA damage among male and female lung cancer patients. Cancer Res., 1994, 54(22), 5801-5803.
[PMID: 7954403]
[76]
Mollerup, S.; Ryberg, D.; Hewer, A.; Phillips, D.H.; Haugen, A. Sex differences in lung CYP1A1 expression and DNA adduct levels among lung cancer patients. Cancer Res., 1999, 59(14), 3317-3320.
[PMID: 10416585]
[77]
Mollerup, S.; Berge, G.; Baera, R.; Skaug, V.; Hewer, A.; Phillips, D.H.; Stangeland, L.; Haugen, A. Sex differences in risk of lung cancer: Expression of genes in the PAH bioactivation pathway in relation to smoking and bulky DNA adducts. Int. J. Cancer, 2006, 119(4), 741-744.
[http://dx.doi.org/10.1002/ijc.21891] [PMID: 16557573]
[78]
Uppstad, H.; Øvrebø, S.; Haugen, A.; Mollerup, S. Importance of CYP1A1 and CYP1B1 in bioactivation of benzo[a]pyrene in human lung cell lines. Toxicol. Lett., 2010, 192(2), 221-228.
[http://dx.doi.org/10.1016/j.toxlet.2009.10.025] [PMID: 19879933]
[79]
Pfeifer, G.P.; Denissenko, M.F.; Olivier, M.; Tretyakova, N.; Hecht, S.S.; Hainaut, P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene, 2002, 21(48), 7435-7451.
[http://dx.doi.org/10.1038/sj.onc.1205803] [PMID: 12379884]
[80]
Daly, A.K. Polymorphic variants of cytochrome P450: Relevance to cancer and other diseases. Adv. Pharmacol., 2015, 74, 85-111.
[http://dx.doi.org/10.1016/bs.apha.2015.03.001] [PMID: 26233904]
[81]
Villard, P.H.; Seree, E.M.; Re, J.L.; De Meo, M.; Barra, Y.; Attolini, L.; Dumenil, G.; Catalin, J.; Durand, A.; Lacarelle, B. Effects of tobac-co smoke on the gene expression of the Cyp1a, Cyp2b, Cyp2e, and Cyp3a subfamilies in mouse liver and lung: Relation to single strand breaks of DNA. Toxicol. Appl. Pharmacol., 1998, 148(2), 195-204.
[http://dx.doi.org/10.1006/taap.1997.8332] [PMID: 9473526]
[82]
Wheeler, C.W.; Wrighton, S.A.; Guenthner, T.M. Detection of human lung cytochromes P450 that are immunochemically related to cyto-chrome P450IIE1 and cytochrome P450IIIA. Biochem. Pharmacol., 1992, 44(1), 183-187.
[http://dx.doi.org/10.1016/0006-2952(92)90055-N] [PMID: 1632834]
[83]
Wang, S.; Hanna, D.; Sugamori, K.S.; Grant, D.M. Primary aromatic amines and cancer: Novel mechanistic insights using 4-aminobiphenyl as a model carcinogen. Pharmacol. Ther., 2019, 200, 179-189.
[http://dx.doi.org/10.1016/j.pharmthera.2019.05.004] [PMID: 31075357]
[84]
Chen, Z.; Zhang, Y.; Vouros, P. Recent technical and biological development in the analysis of biomarker N-deoxyguanosine-C8-4-aminobiphenyl. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1087-1088, 49-60.
[http://dx.doi.org/10.1016/j.jchromb.2018.04.041] [PMID: 29709872]
[85]
Guo, J.; Villalta, P.W.; Weight, C.J.; Bonala, R.; Johnson, F.; Rosenquist, T.A.; Turesky, R.J. Targeted and untargeted detection of DNA adducts of aromatic amine carcinogens in human bladder by ultra-performance liquid chromatography-high-resolution mass spectrometry. Chem. Res. Toxicol., 2018, 31(12), 1382-1397.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00268] [PMID: 30387604]
[86]
Sarkar, M.; Stabbert, R.; Kinser, R.D.; Oey, J.; Rustemeier, K.; von Holt, K.; Schepers, G.; Walk, R.A.; Roethig, H.J. CYP1A2 and NAT2 phenotyping and 3-aminobiphenyl and 4-aminobiphenyl hemoglobin adduct levels in smokers and non-smokers. Toxicol. Appl. Pharmacol., 2006, 213(3), 198-206.
[http://dx.doi.org/10.1016/j.taap.2005.11.003] [PMID: 16405939]
[87]
Ye, X.H.; Song, L.; Peng, L.; Bu, Z.; Yan, S.X.; Feng, J.; Zhu, X.L.; Liao, X.B.; Yu, X.L.; Yan, D. Association between the CYP2E1 poly-morphisms and lung cancer risk: A meta-analysis. Mol. Genet. Genomics, 2015, 290(2), 545-558.
[http://dx.doi.org/10.1007/s00438-014-0941-2] [PMID: 25336053]
[88]
Ding, X.; Kaminsky, L.S. Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxici-ty in the respiratory and gastrointestinal tracts. Annu. Rev. Pharmacol. Toxicol., 2003, 43(1), 149-173.
[http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.140251] [PMID: 12171978]
[89]
Peterson, L.A. Context matters: Contribution of specific DNA adducts to the genotoxic properties of the tobacco-specific nitrosamine NNK. Chem. Res. Toxicol., 2017, 30(1), 420-433.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00386] [PMID: 28092943]
[90]
Hecht, S.S.; Murphy, S.E.; Stepanov, I.; Nelson, H.H.; Yuan, J.M. Tobacco smoke biomarkers and cancer risk among male smokers in the Shanghai cohort study. Cancer Lett., 2013, 334(1), 34-38.
[http://dx.doi.org/10.1016/j.canlet.2012.07.016] [PMID: 22824243]
[91]
Stepanov, I.; Sebero, E.; Wang, R.; Gao, Y.T.; Hecht, S.S.; Yuan, J.M. Tobacco-specific N-nitrosamine exposures and cancer risk in the Shanghai cohort study: Remarkable coherence with rat tumor sites. Int. J. Cancer, 2014, 134(10), 2278-2283.
[http://dx.doi.org/10.1002/ijc.28575] [PMID: 24243522]
[92]
Yuan, J.M.; Butler, L.M.; Stepanov, I.; Hecht, S.S. Urinary tobacco smoke-constituent biomarkers for assessing risk of lung cancer. Cancer Res., 2014, 74(2), 401-411.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3178] [PMID: 24408916]
[93]
Foiles, P.G.; Akerkar, S.A.; Carmella, S.G.; Kagan, M.; Stoner, G.D.; Resau, J.H.; Hecht, S.S. Mass spectrometric analysis of tobacco-specific nitrosamine-DNA adducts in smokers and nonsmokers. Chem. Res. Toxicol., 1991, 4(3), 364-368.
[http://dx.doi.org/10.1021/tx00021a017] [PMID: 1912321]
[94]
Zhang, X.; D’Agostino, J.; Wu, H.; Zhang, Q.Y.; von Weymarn, L.; Murphy, S.E.; Ding, X. CYP2A13: Variable expression and role in human lung microsomal metabolic activation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. J. Pharmacol. Exp. Ther., 2007, 323(2), 570-578.
[http://dx.doi.org/10.1124/jpet.107.127068] [PMID: 17671098]
[95]
Megaraj, V.; Zhou, X.; Xie, F.; Liu, Z.; Yang, W.; Ding, X. Role of CYP2A13 in the bioactivation and lung tumorigenicity of the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone: In vivo studies using a CYP2A13-humanized mouse model. Carcinogenesis, 2014, 35(1), 131-137.
[http://dx.doi.org/10.1093/carcin/bgt269] [PMID: 23917075]
[96]
Zhang, X.; Su, T.; Zhang, Q.Y.; Gu, J.; Caggana, M.; Li, H.; Ding, X. Genetic polymorphisms of the human CYP2A13 gene: Identification of single-nucleotide polymorphisms and functional characterization of an Arg257Cys variant. J. Pharmacol. Exp. Ther., 2002, 302(2), 416-423.
[http://dx.doi.org/10.1124/jpet.302.2.416] [PMID: 12130698]
[97]
D’Agostino, J.; Zhang, X.; Wu, H.; Ling, G.; Wang, S.; Zhang, Q.Y.; Liu, F.; Ding, X. Characterization of CYP2A13*2, a variant cyto-chrome P450 allele previously found to be associated with decreased incidences of lung adenocarcinoma in smokers. Drug Metab. Dispos., 2008, 36(11), 2316-2323.
[http://dx.doi.org/10.1124/dmd.108.022822] [PMID: 18669584]
[98]
Wang, H.; Tan, W.; Hao, B.; Miao, X.; Zhou, G.; He, F.; Lin, D. Substantial reduction in risk of lung adenocarcinoma associated with ge-netic polymorphism in CYP2A13, the most active cytochrome P450 for the metabolic activation of tobacco-specific carcinogen NNK. Cancer Res., 2003, 63(22), 8057-8061.
[PMID: 14633739]
[99]
Wu, S.; Moomaw, C.R.; Tomer, K.B.; Falck, J.R.; Zeldin, D.C. Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J. Biol. Chem., 1996, 271(7), 3460-3468.
[http://dx.doi.org/10.1074/jbc.271.7.3460] [PMID: 8631948]
[100]
Jiang, J.G.; Chen, C.L.; Card, J.W.; Yang, S.; Chen, J.X.; Fu, X.N.; Ning, Y.G.; Xiao, X.; Zeldin, D.C.; Wang, D.W. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res., 2005, 65(11), 4707-4715.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4173] [PMID: 15930289]
[101]
Chen, F.; Chen, C.; Yang, S.; Gong, W.; Wang, Y.; Cianflone, K.; Tang, J.; Wang, D.W. Let-7b inhibits human cancer phenotype by target-ing cytochrome P450 epoxygenase 2J2. PLoS One, 2012, 7(6), e39197.
[http://dx.doi.org/10.1371/journal.pone.0039197] [PMID: 22761738]
[102]
Shimada, T.; Yamazaki, H.; Mimura, M.; Wakamiya, N.; Ueng, Y.F.; Guengerich, F.P.; Inui, Y. Characterization of microsomal cyto-chrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab. Dispos., 1996, 24(5), 515-522.
[PMID: 8723730]
[103]
Michaelis, U.R.; Fisslthaler, B.; Medhora, M.; Harder, D.; Fleming, I.; Busse, R. Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). FASEB J., 2003, 17(6), 770-772.
[http://dx.doi.org/10.1096/fj.02-0640fje] [PMID: 12586744]
[104]
Sausville, L.N.; Gangadhariah, M.H.; Chiusa, M.; Mei, S.; Wei, S.; Zent, R.; Luther, J.M.; Shuey, M.M.; Capdevila, J.H.; Falck, J.R.; Guengerich, F.P.; Williams, S.M.; Pozzi, A. The cytochrome P450 slow metabolizers CYP2C9*2 and CYP2C9*3 directly regulate tumor-igenesis via reduced epoxyeicosatrienoic acid production. Cancer Res., 2018, 78(17), 4865-4877.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3977] [PMID: 30012669]
[105]
Kroetz, D.L.; Xu, F. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu. Rev. Pharmacol. Toxicol., 2005, 45(1), 413-438.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100045] [PMID: 15822183]
[106]
Alexanian, A.; Miller, B.; Roman, R.J.; Sorokin, A. 20-HETE-producing enzymes are up-regulated in human cancers. Cancer Genomics Proteomics, 2012, 9(4), 163-169.
[PMID: 22798501]
[107]
Yu, W.; Chen, L.; Yang, Y.Q.; Falck, J.R.; Guo, A.M.; Li, Y.; Yang, J. Cytochrome P450 ω-hydroxylase promotes angiogenesis and metas-tasis by upregulation of VEGF and MMP-9 in non-small cell lung cancer. Cancer Chemother. Pharmacol., 2011, 68(3), 619-629.
[http://dx.doi.org/10.1007/s00280-010-1521-8] [PMID: 21120482]
[108]
Chen, X.W.; Yu, T.J.; Zhang, J.; Li, Y.; Chen, H.L.; Yang, G.F.; Yu, W.; Liu, Y.Z.; Liu, X.X.; Duan, C.F.; Tang, H.L.; Qiu, M.; Wang, C.L.; Zheng, H.; Yue, J.; Guo, A.M.; Yang, J. CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis. Oncogene, 2017, 36(35), 5045-5057.
[http://dx.doi.org/10.1038/onc.2017.118] [PMID: 28481877]
[109]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[110]
Huang, Z.; Fasco, M.J.; Figge, H.L.; Keyomarsi, K.; Kaminsky, L.S. Expression of cytochromes P450 in human breast tissue and tumors. Drug Metab. Dispos., 1996, 24(8), 899-905.
[PMID: 8869826]
[111]
Suzuki, M.; Ishida, H.; Shiotsu, Y.; Nakata, T.; Akinaga, S.; Takashima, S.; Utsumi, T.; Saeki, T.; Harada, N. Expression level of enzymes related to in situ estrogen synthesis and clinicopathological parameters in breast cancer patients. J. Steroid Biochem. Mol. Biol., 2009, 113(3-5), 195-201.
[http://dx.doi.org/10.1016/j.jsbmb.2008.12.008] [PMID: 19159687]
[112]
Murray, G.I.; Patimalla, S.; Stewart, K.N.; Miller, I.D.; Heys, S.D. Profiling the expression of cytochrome P450 in breast cancer. Histopathology, 2010, 57(2), 202-211.
[http://dx.doi.org/10.1111/j.1365-2559.2010.03606.x] [PMID: 20716162]
[113]
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216), 1061-1068.
[http://dx.doi.org/10.1038/nature07385] [PMID: 18772890]
[114]
Carter, S.L.; Cibulskis, K.; Helman, E.; McKenna, A.; Shen, H.; Zack, T.; Laird, P.W.; Onofrio, R.C.; Winckler, W.; Weir, B.A.; Berou-khim, R.; Pellman, D.; Levine, D.A.; Lander, E.S.; Meyerson, M.; Getz, G. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol., 2012, 30(5), 413-421.
[http://dx.doi.org/10.1038/nbt.2203] [PMID: 22544022]
[115]
Holmberg, L.; Anderson, H. HABITS (hormonal replacement therapy after breast cancer--is it safe?), a randomised comparison: Trial stopped. Lancet, 2004, 363(9407), 453-455.
[http://dx.doi.org/10.1016/S0140-6736(04)15493-7] [PMID: 14962527]
[116]
Fussell, K.C.; Udasin, R.G.; Smith, P.J.; Gallo, M.A.; Laskin, J.D. Catechol metabolites of endogenous estrogens induce redox cycling and generate reactive oxygen species in breast epithelial cells. Carcinogenesis, 2011, 32(8), 1285-1293.
[http://dx.doi.org/10.1093/carcin/bgr109] [PMID: 21665890]
[117]
Cheung, C.; Ma, X.; Krausz, K.W.; Kimura, S.; Feigenbaum, L.; Dalton, T.P.; Nebert, D.W.; Idle, J.R.; Gonzalez, F.J. Differential metabo-lism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in mice humanized for CYP1A1 and CYP1A2. Chem. Res. Toxicol., 2005, 18(9), 1471-1478.
[http://dx.doi.org/10.1021/tx050136g] [PMID: 16167840]
[118]
Economopoulos, K.P.; Sergentanis, T.N. Does race modify the association between CYP1B1 Val432Leu polymorphism and breast cancer risk? A critical appraisal of a recent meta-analysis. Breast Cancer Res. Treat., 2010, 124(1), 293-294.
[http://dx.doi.org/10.1007/s10549-010-1097-3] [PMID: 20686834]
[119]
Leung, T.; Rajendran, R.; Singh, S.; Garva, R.; Krstic-Demonacos, M.; Demonacos, C. Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells. Breast Cancer Res., 2013, 15(6), R107.
[http://dx.doi.org/10.1186/bcr3574] [PMID: 24207099]
[120]
Vaclavikova, R.; Hubackova, M.; Stribrna-Sarmanova, J.; Kodet, R.; Mrhalova, M.; Novotny, J.; Gut, I.; Soucek, P. RNA expression of cytochrome P450 in breast cancer patients. Anticancer Res., 2007, 27(6C), 4443-4450.
[PMID: 18214058]
[121]
Gonzalez, F.J. Role of cytochromes P450 in chemical toxicity and oxidative stress: Studies with CYP2E1. Mutat. Res., 2005, 569(1-2), 101-110.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.04.021] [PMID: 15603755]
[122]
Madanayake, T.W.; Lindquist, I.E.; Devitt, N.P.; Mudge, J.; Rowland, A.M. A transcriptomic approach to elucidate the physiological sig-nificance of human cytochrome P450 2S1 in bronchial epithelial cells. BMC Genomics, 2013, 14(1), 833.
[http://dx.doi.org/10.1186/1471-2164-14-833] [PMID: 24279958]
[123]
Rivera, S.P.; Wang, F.; Saarikoski, S.T.; Taylor, R.T.; Chapman, B.; Zhang, R.; Hankinson, O. A novel promoter element containing multi-ple overlapping xenobiotic and hypoxia response elements mediates induction of cytochrome P4502S1 by both dioxin and hypoxia. J. Biol. Chem., 2007, 282(15), 10881-10893.
[http://dx.doi.org/10.1074/jbc.M609617200] [PMID: 17277313]
[124]
Oyama, T.; Morita, M.; Isse, T.; Kagawa, N.; Nakata, S.; So, T.; Mizukami, M.; Ichiki, Y.; Ono, K.; Sugaya, M.; Uramoto, H.; Yoshimatsu, T.; Hanagiri, T.; Sugio, K.; Kawamoto, T.; Yasumoto, K. Immunohistochemical evaluation of cytochrome P450 (CYP) and p53 in breast cancer. Front. Biosci., 2005, 10(1-3), 1156-1161.
[http://dx.doi.org/10.2741/1608] [PMID: 15769614]
[125]
Floriano-Sanchez, E.; Rodriguez, N.C.; Bandala, C.; Coballase-Urrutia, E.; Lopez-Cruz, J. CYP3A4 expression in breast cancer and its association with risk factors in Mexican women. Asian Pac. J. Cancer Prev., 2014, 15(8), 3805-3809.
[http://dx.doi.org/10.7314/APJCP.2014.15.8.3805] [PMID: 24870798]
[126]
Miyoshi, Y.; Ando, A.; Takamura, Y.; Taguchi, T.; Tamaki, Y.; Noguchi, S. Prediction of response to docetaxel by CYP3A4 mRNA ex-pression in breast cancer tissues. Int. J. Cancer, 2002, 97(1), 129-132.
[http://dx.doi.org/10.1002/ijc.1568] [PMID: 11774254]
[127]
Borin, T.F.; Zuccari, D.A.; Jardim-Perassi, B.V.; Ferreira, L.C.; Iskander, A.S.; Varma, N.R.; Shankar, A.; Guo, A.M.; Scicli, G.; Arbab, A.S. HET0016, a selective inhibitor of 20-HETE synthesis, decreases pro-angiogenic factors and inhibits growth of triple negative breast cancer in mice. PLoS One, 2014, 9(12), e116247.
[http://dx.doi.org/10.1371/journal.pone.0116247] [PMID: 25549350]
[128]
Borin, T.F.; Shankar, A.; Angara, K.; Rashid, M.H.; Jain, M.; Iskander, A.; Ara, R.; Lebedyeva, I.; Korkaya, H.; Achyut, B.R.; Arbab, A.S. HET0016 decreases lung metastasis from breast cancer in immune-competent mouse model. PLoS One, 2017, 12(6), e0178830.
[http://dx.doi.org/10.1371/journal.pone.0178830] [PMID: 28609459]
[129]
McDonald, M.G.; Ray, S.; Amorosi, C.J.; Sitko, K.A.; Kowalski, J.P.; Paco, L.; Nath, A.; Gallis, B.; Totah, R.A.; Dunham, M.J.; Fowler, D.M.; Rettie, A.E. Expression and functional characterization of breast cancer-associated cytochrome P450 4Z1 in Saccharomyces cere-visiae. Drug Metab. Dispos., 2017, 45(12), 1364-1371.
[http://dx.doi.org/10.1124/dmd.117.078188] [PMID: 29018033]
[130]
Yu, W.; Chai, H.; Li, Y.; Zhao, H.; Xie, X.; Zheng, H.; Wang, C.; Wang, X.; Yang, G.; Cai, X.; Falck, J.R.; Yang, J. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer. Toxicol. Appl. Pharmacol., 2012, 264(1), 73-83.
[http://dx.doi.org/10.1016/j.taap.2012.07.019] [PMID: 22841774]
[131]
Wei, X.; Zhang, D.; Dou, X.; Niu, N.; Huang, W.; Bai, J.; Zhang, G. Elevated 14,15- epoxyeicosatrienoic acid by increasing of cytochrome P450 2C8, 2C9 and 2J2 and decreasing of soluble epoxide hydrolase associated with aggressiveness of human breast cancer. BMC Cancer, 2014, 14(1), 841.
[http://dx.doi.org/10.1186/1471-2407-14-841] [PMID: 25406731]
[132]
Pozzi, A.; Popescu, V.; Yang, S.; Mei, S.; Shi, M.; Puolitaival, S.M.; Caprioli, R.M.; Capdevila, J.H. The anti-tumorigenic properties of peroxisomal proliferator-activated receptor alpha are arachidonic acid epoxygenase-mediated. J. Biol. Chem., 2010, 285(17), 12840-12850.
[http://dx.doi.org/10.1074/jbc.M109.081554] [PMID: 20178979]
[133]
Cheranov, S.Y.; Karpurapu, M.; Wang, D.; Zhang, B.; Venema, R.C.; Rao, G.N. An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood, 2008, 111(12), 5581-5591.
[http://dx.doi.org/10.1182/blood-2007-11-126680] [PMID: 18408167]
[134]
Mitra, R.; Guo, Z.; Milani, M.; Mesaros, C.; Rodriguez, M.; Nguyen, J.; Luo, X.; Clarke, D.; Lamba, J.; Schuetz, E.; Donner, D.B.; Puli, N.; Falck, J.R.; Capdevila, J.; Gupta, K.; Blair, I.A.; Potter, D.A. CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). J. Biol. Chem., 2011, 286(20), 17543-17559.
[http://dx.doi.org/10.1074/jbc.M110.198515] [PMID: 21402692]
[135]
Leskelä, S.; Honrado, E.; Montero-Conde, C.; Landa, I.; Cascón, A.; Letón, R.; Talavera, P.; Cózar, J.M.; Concha, A.; Robledo, M.; Rodríguez-Antona, C. Cytochrome P450 3A5 is highly expressed in normal prostate cells but absent in prostate cancer. Endocr. Relat. Cancer, 2007, 14(3), 645-654.
[http://dx.doi.org/10.1677/ERC-07-0078] [PMID: 17914095]
[136]
Tokizane, T.; Shiina, H.; Igawa, M.; Enokida, H.; Urakami, S.; Kawakami, T.; Ogishima, T.; Okino, S.T.; Li, L.C.; Tanaka, Y.; Nonomura, N.; Okuyama, A.; Dahiya, R. Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin. Cancer Res., 2005, 11(16), 5793-5801.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2545] [PMID: 16115918]
[137]
Chun, Y.J.; Kim, D. Cancer activation and polymorphisms of human cytochrome P450 1B1. Toxicol. Res., 2016, 32(2), 89-93.
[http://dx.doi.org/10.5487/TR.2016.32.2.089] [PMID: 27123158]
[138]
Ding, G.; Xu, W.; Liu, H.; Zhang, M.; Huang, Q.; Liao, Z. CYP1A1 MspI polymorphism is associated with prostate cancer susceptibility: Evidence from a meta-analysis. Mol. Biol. Rep., 2013, 40(5), 3483-3491.
[http://dx.doi.org/10.1007/s11033-012-2423-0] [PMID: 23475304]
[139]
Vijayalakshmi, K.; Vettriselvi, V.; Krishnan, M.; Shroff, S.; Jayanth, V.R.; Paul, S.F. Cytochrome p4501A1 gene variants as susceptibility marker for prostate cancer. Cancer Biomark., 2005, 1(4-5), 251-258.
[http://dx.doi.org/10.3233/CBM-2005-14-508] [PMID: 17192049]
[140]
Chen, T.C.; Sakaki, T.; Yamamoto, K.; Kittaka, A. The roles of cytochrome P450 enzymes in prostate cancer development and treatment. Anticancer Res., 2012, 32(1), 291-298.
[PMID: 22213318]
[141]
Gomez, L.; Kovac, J.R.; Lamb, D.J. CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids, 2015, 95, 80-87.
[http://dx.doi.org/10.1016/j.steroids.2014.12.021] [PMID: 25560485]
[142]
Stigliano, A.; Gandini, O.; Cerquetti, L.; Gazzaniga, P.; Misiti, S.; Monti, S.; Gradilone, A.; Falasca, P.; Poggi, M.; Brunetti, E.; Aglianò, A.M.; Toscano, V. Increased metastatic lymph node 64 and CYP17 expression are associated with high stage prostate cancer. J. Endocrinol., 2007, 194(1), 55-61.
[http://dx.doi.org/10.1677/JOE-07-0131] [PMID: 17592021]
[143]
Nithipatikom, K.; Brody, D.M.; Tang, A.T.; Manthati, V.L.; Falck, J.R.; Williams, C.L.; Campbell, W.B. Inhibition of carcinoma cell motili-ty by epoxyeicosatrienoic acid (EET) antagonists. Cancer Sci., 2010, 101(12), 2629-2636.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01713.x] [PMID: 20804500]
[144]
Choudhary, D.; Jansson, I.; Stoilov, I.; Sarfarazi, M.; Schenkman, J.B. Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab. Dispos., 2004, 32(8), 840-847.
[http://dx.doi.org/10.1124/dmd.32.8.840] [PMID: 15258110]
[145]
Rodríguez-Blanco, G.; Burgers, P.C.; Dekker, L.J.; Ijzermans, J.J.; Wildhagen, M.F.; Schenk-Braat, E.A.; Bangma, C.H.; Jenster, G.; Luider, T.M. Serum levels of arachidonic acid metabolites change during prostate cancer progression. Prostate, 2014, 74(6), 618-627.
[http://dx.doi.org/10.1002/pros.22779] [PMID: 24435810]
[146]
Ding, X.Z.; Tong, W.G.; Adrian, T.E. 12-lipoxygenase metabolite 12(S)-HETE stimulates human pancreatic cancer cell proliferation via protein tyrosine phosphorylation and ERK activation. Int. J. Cancer, 2001, 94(5), 630-636.
[http://dx.doi.org/10.1002/ijc.1527] [PMID: 11745456]
[147]
Chang, I.; Mitsui, Y.; Kim, S.K.; Sun, J.S.; Jeon, H.S.; Kang, J.Y.; Kang, N.J.; Fukuhara, S.; Gill, A.; Shahryari, V.; Tabatabai, Z.L.; Greene, K.L.; Dahiya, R.; Shin, D.M.; Tanaka, Y. Cytochrome P450 1B1 inhibition suppresses tumorigenicity of prostate cancer via caspase-1 ac-tivation. Oncotarget, 2017, 8(24), 39087-39100.
[http://dx.doi.org/10.18632/oncotarget.16598] [PMID: 28388569]
[148]
Garcia, V.; Gilani, A.; Shkolnik, B.; Pandey, V.; Zhang, F.F.; Dakarapu, R.; Gandham, S.K.; Reddy, N.R.; Graves, J.P.; Gruzdev, A.; Zeld-in, D.C.; Capdevila, J.H.; Falck, J.R.; Schwartzman, M.L. 20-HETE signals through G-protein-coupled receptor GPR75 (G(q)) to affect vascular function and trigger hypertension. Circ. Res., 2017, 120(11), 1776-1788.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.310525] [PMID: 28325781]
[149]
Cárdenas, S.; Colombero, C.; Panelo, L.; Dakarapu, R.; Falck, J.R.; Costas, M.A.; Nowicki, S. GPR75 receptor mediates 20-HETE-signaling and metastatic features of androgen-insensitive prostate cancer cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2020, 1865(2), 158573.
[http://dx.doi.org/10.1016/j.bbalip.2019.158573] [PMID: 31760076]
[150]
Vanella, L.; Di Giacomo, C.; Acquaviva, R.; Barbagallo, I.; Li Volti, G.; Cardile, V.; Abraham, N.G.; Sorrenti, V. Effects of ellagic acid on angiogenic factors in prostate cancer cells. Cancers (Basel), 2013, 5(2), 726-738.
[http://dx.doi.org/10.3390/cancers5020726] [PMID: 24216999]
[151]
Enayetallah, A.E.; French, R.A.; Grant, D.F. Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. J. Mol. Histol., 2006, 37(3-4), 133-141.
[http://dx.doi.org/10.1007/s10735-006-9050-9] [PMID: 16957870]
[152]
Fer, M.; Dréano, Y.; Lucas, D.; Corcos, L.; Salaün, J.P.; Berthou, F.; Amet, Y. Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes P450. Arch. Biochem. Biophys., 2008, 471(2), 116-125.
[http://dx.doi.org/10.1016/j.abb.2008.01.002] [PMID: 18206980]
[153]
Murray, G.I.; McFadyen, M.C.; Mitchell, R.T.; Cheung, Y.L.; Kerr, A.C.; Melvin, W.T. Cytochrome P450 CYP3A in human renal cell can-cer. Br. J. Cancer, 1999, 79(11-12), 1836-1842.
[http://dx.doi.org/10.1038/sj.bjc.6690292] [PMID: 10206301]
[154]
McFadyen, M.C.; McLeod, H.L.; Jackson, F.C.; Melvin, W.T.; Doehmer, J.; Murray, G.I. Cytochrome P450 CYP1B1 protein expression: A novel mechanism of anticancer drug resistance. Biochem. Pharmacol., 2001, 62(2), 207-212.
[http://dx.doi.org/10.1016/S0006-2952(01)00643-8] [PMID: 11389879]
[155]
Mitsui, Y.; Chang, I.; Fukuhara, S.; Hiraki, M.; Arichi, N.; Yasumoto, H.; Hirata, H.; Yamamura, S.; Shahryari, V.; Deng, G.; Wong, D.K.; Majid, S.; Shiina, H.; Dahiya, R.; Tanaka, Y. CYP1B1 promotes tumorigenesis via altered expression of CDC20 and DAPK1 genes in renal cell carcinoma. BMC Cancer, 2015, 15(1), 942.
[http://dx.doi.org/10.1186/s12885-015-1951-0] [PMID: 26626260]
[156]
Izawa, D.; Pines, J. How APC/C-Cdc20 changes its substrate specificity in mitosis. Nat. Cell Biol., 2011, 13(3), 223-233.
[http://dx.doi.org/10.1038/ncb2165] [PMID: 21336306]
[157]
Chuang, Y.T.; Fang, L.W.; Lin-Feng, M.H.; Chen, R.H.; Lai, M.Z. The tumor suppressor death-associated protein kinase targets to TCR-stimulated NF-kappa B activation. J. Immunol., 2008, 180(5), 3238-3249.
[http://dx.doi.org/10.4049/jimmunol.180.5.3238] [PMID: 18292548]
[158]
Shah, H.; Patel, M.; Shrivastava, N. Gene expression study of phase I and II metabolizing enzymes in RPTEC/TERT1 cell line: Application in in vitro nephrotoxicity prediction. Xenobiotica, 2017, 47(10), 837-843.
[http://dx.doi.org/10.1080/00498254.2016.1236299] [PMID: 27616666]
[159]
Sellmayer, A.; Uedelhoven, W.M.; Weber, P.C.; Bonventre, J.V. Endogenous non-cyclooxygenase metabolites of arachidonic acid modu-late growth and mRNA levels of immediate-early response genes in rat mesangial cells. J. Biol. Chem., 1991, 266(6), 3800-3807.
[http://dx.doi.org/10.1016/S0021-9258(19)67865-8] [PMID: 1899867]
[160]
Yang, S.; Lin, L.; Chen, J.X.; Lee, C.R.; Seubert, J.M.; Wang, Y.; Wang, H.; Chao, Z.R.; Tao, D.D.; Gong, J.P.; Lu, Z.Y.; Wang, D.W.; Zeld-in, D.C. Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling pathways. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(1), H142-H151.
[http://dx.doi.org/10.1152/ajpheart.00783.2006] [PMID: 17322420]
[161]
Chen, J.K.; Capdevila, J.; Harris, R.C. Cytochrome p450 epoxygenase metabolism of arachidonic acid inhibits apoptosis. Mol. Cell. Biol., 2001, 21(18), 6322-6331.
[http://dx.doi.org/10.1128/MCB.21.18.6322-6331.2001] [PMID: 11509673]
[162]
Alexanian, A.; Rufanova, V.A.; Miller, B.; Flasch, A.; Roman, R.J.; Sorokin, A. Down-regulation of 20-HETE synthesis and signaling inhibits renal adenocarcinoma cell proliferation and tumor growth. Anticancer Res., 2009, 29(10), 3819-3824.
[PMID: 19846914]
[163]
Zhou, J.; Wen, Q.; Li, S.F.; Zhang, Y.F.; Gao, N.; Tian, X.; Fang, Y.; Gao, J.; Cui, M.Z.; He, X.P.; Jia, L.J.; Jin, H.; Qiao, H.L. Significant change of cytochrome P450s activities in patients with hepatocellular carcinoma. Oncotarget, 2016, 7(31), 50612-50623.
[http://dx.doi.org/10.18632/oncotarget.9437] [PMID: 27203676]
[164]
Agúndez, J.A.; Ledesma, M.C.; Benítez, J.; Ladero, J.M.; Rodríguez-Lescure, A.; Díaz-Rubio, E.; Díaz-Rubio, M. CYP2D6 genes and risk of liver cancer. Lancet, 1995, 345(8953), 830-831.
[http://dx.doi.org/10.1016/S0140-6736(95)92965-7] [PMID: 7898230]
[165]
Rebbeck, T.R.; Spitz, M.; Wu, X. Assessing the function of genetic variants in candidate gene association studies. Nat. Rev. Genet., 2004, 5(8), 589-597.
[http://dx.doi.org/10.1038/nrg1403] [PMID: 15266341]
[166]
Daly, A.K. Significance of the minor cytochrome P450 3A isoforms. Clin. Pharmacokinet., 2006, 45(1), 13-31.
[http://dx.doi.org/10.2165/00003088-200645010-00002] [PMID: 16430309]
[167]
Gong, Z.G.; Zhao, W.; Zhang, J.; Wu, X.; Hu, J.; Yin, G.C.; Xu, Y.J. Metabolomics and eicosanoid analysis identified serum biomarkers for distinguishing hepatocellular carcinoma from hepatitis B virus-related cirrhosis. Oncotarget, 2017, 8(38), 63890-63900.
[http://dx.doi.org/10.18632/oncotarget.19173] [PMID: 28969038]
[168]
Zhang, D.; Lou, J.; Zhang, X.; Zhang, L.; Wang, F.; Xu, D.; Niu, N.; Wang, Y.; Wu, Y.; Cui, W. Hyperhomocysteinemia results from and promotes hepatocellular carcinoma via CYP450 metabolism by CYP2J2 DNA methylation. Oncotarget, 2017, 8(9), 15377-15392.
[http://dx.doi.org/10.18632/oncotarget.14165] [PMID: 28030819]
[169]
Sun, C.F.; Haven, T.R.; Wu, T.L.; Tsao, K.C.; Wu, J.T. Serum total homocysteine increases with the rapid proliferation rate of tumor cells and decline upon cell death: A potential new tumor marker. Clin. Chim. Acta, 2002, 321(1-2), 55-62.
[http://dx.doi.org/10.1016/S0009-8981(02)00092-X] [PMID: 12031593]
[170]
Fujita, K.; Kamataki, T. Predicting the mutagenicity of tobacco-related N-nitrosamines in humans using 11 strains of Salmonella typhi-murium YG7108, each coexpressing a form of human cytochrome P450 along with NADPH-cytochrome P450 reductase. Environ. Mol. Mutagen., 2001, 38(4), 339-346.
[http://dx.doi.org/10.1002/em.10036] [PMID: 11774366]
[171]
Lin, C.Y.; Pan, T.S.; Ting, C.C.; Liang, S.S.; Huang, S.H.; Liu, H.Y.; Ko, E.C.C.; Wu, C.W.; Tang, J.Y.; Chen, P.H. Cytochrome p450 me-tabolism of betel quid-derived compounds: Implications for the development of prevention strategies for oral and pharyngeal cancers. ScientificWorldJournal, 2013, 2013, 618032.
[http://dx.doi.org/10.1155/2013/618032] [PMID: 23983642]
[172]
Miyazaki, M.; Sugawara, E.; Yoshimura, T.; Yamazaki, H.; Kamataki, T. Mutagenic activation of betel quid-specific Nnitrosamines catalyzed by human cytochrome P450 coexpressed with NADPH-cytochrome P450 reductase in Salmonella typhimurium YG7108. Mutat. Res., 2005, 581(1– 2), 165-171.
[http://dx.doi.org/10.1016/j.mrgentox.2004.12.002] [PMID: 15725615]
[173]
Chiang, H.C.; Wang, C.Y.; Lee, H.L.; Tsou, T.C. Metabolic effects of CYP2A6 and CYP2A13 on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced gene mutation--a mammalian cell-based mutagenesis approach. Toxicol. Appl. Pharmacol., 2011, 253(2), 145-152.
[http://dx.doi.org/10.1016/j.taap.2011.03.022] [PMID: 21473878]
[174]
Code, E.L.; Crespi, C.L.; Penman, B.W.; Gonzalez, F.J.; Chang, T.K.; Waxman, D.J. Human cytochrome P4502B6: Interindividual hepatic expression, substrate specificity, and role in procarcinogen activation. Drug Metab. Dispos., 1997, 25(8), 985-993.
[PMID: 9280407]
[175]
Crespi, C.L.; Penman, B.W.; Steimel, D.T.; Smith, T.; Yang, C.S.; Sutter, T.R. Development of a human lymphoblastoid cell line constitu-tively expressing human CYP1B1 cDNA: Substrate specificity with model substrates and promutagens. Mutagenesis, 1997, 12(2), 83-89.
[http://dx.doi.org/10.1093/mutage/12.2.83] [PMID: 9106248]
[176]
Dicke, K.E.; Skrlin, S.M.; Murphy, S.E. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone metabolism by cytochrome P450 2B6. Drug Metab. Dispos., 2005, 33(12), 1760-1764.
[http://dx.doi.org/10.1124/dmd.105.006718] [PMID: 16174803]
[177]
Kamataki, T.; Fujita, K.; Nakayama, K.; Yamazaki, Y.; Miyamoto, M.; Ariyoshi, N. Role of human cytochrome P450 (CYP) in the meta-bolic activation of nitrosamine derivatives: Application of genetically engineered Salmonella expressing human CYP. Drug Metab. Rev., 2002, 34(3), 667-676.
[http://dx.doi.org/10.1081/DMR-120005668] [PMID: 12214673]
[178]
Krishnan, S.; Hvastkovs, E.G.; Bajrami, B.; Schenkman, J.B.; Rusling, J.F. Human cyt P450 mediated metabolic toxicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) evaluated using electrochemiluminescent arrays. Mol. Biosyst., 2009, 5(2), 163-169.
[http://dx.doi.org/10.1039/B815910F] [PMID: 19156262]
[179]
Patten, C.J.; Smith, T.J.; Murphy, S.E.; Wang, M.H.; Lee, J.; Tynes, R.E.; Koch, P.; Yang, C.S. Kinetic analysis of the activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by heterologously expressed human P450 enzymes and the effect of P450-specific chemi-cal inhibitors on this activation in human liver microsomes. Arch. Biochem. Biophys., 1996, 333(1), 127-138.
[http://dx.doi.org/10.1006/abbi.1996.0373] [PMID: 8806763]
[180]
Penman, B.W.; Reece, J.; Smith, T.; Yang, C.S.; Gelboin, H.V.; Gonzalez, F.J.; Crespi, C.L. Characterization of a human cell line expressing high levels of cDNA-derived CYP2D6. Pharmacogenetics, 1993, 3(1), 28-39.
[http://dx.doi.org/10.1097/00008571-199302000-00003] [PMID: 8485585]
[181]
Smith, T.J.; Guo, Z.; Gonzalez, F.J.; Guengerich, F.P.; Stoner, G.D.; Yang, C.S. Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in human lung and liver microsomes and cytochromes P-450 expressed in hepatoma cells. Cancer Res., 1992, 52(7), 1757-1763.
[PMID: 1312898]
[182]
Fujita, K.; Kamataki, T. Role of human cytochrome P450 (CYP) in the metabolic activation of N-alkylnitrosamines: Application of genet-ically engineered Salmonella typhimurium YG7108 expressing each form of CYP together with human NADPH-cytochrome P450 reduc-tase. Mutat. Res., 2001, 483(1-2), 35-41.
[http://dx.doi.org/10.1016/S0027-5107(01)00223-8] [PMID: 11600130]
[183]
He, X.Y.; Shen, J.; Ding, X.; Lu, A.Y.H.; Hong, J.Y. Identification of critical amino acid residues of human CYP2A13 for the metabolic activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco-specific carcinogen. Drug Metab. Dispos., 2004, 32(12), 1516-1521.
[http://dx.doi.org/10.1124/dmd.104.001370] [PMID: 15333516]
[184]
Kushida, H.; Fujita, K.; Suzuki, A.; Yamada, M.; Endo, T.; Nohmi, T.; Kamataki, T. Metabolic activation of N-alkylnitrosamines in genet-ically engineered Salmonella typhimurium expressing CYP2E1 or CYP2A6 together with human NADPH-cytochrome P450 reductase. Carcinogenesis, 2000, 21(6), 1227-1232.
[PMID: 10837014]
[185]
Sellers, E.M.; Ramamoorthy, Y.; Zeman, M.V.; Djordjevic, M.V.; Tyndale, R.F. The effect of methoxsalen on nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism in vivo. Nicotine Tob. Res., 2003, 5(6), 891-899.
[http://dx.doi.org/10.1080/14622200310001615231] [PMID: 14668073]
[186]
Smith, G.B.; Bend, J.R.; Bedard, L.L.; Reid, K.R.; Petsikas, D.; Massey, T.E. Biotransformation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in peripheral human lung microsomes. Drug Metab. Dispos., 2003, 31(9), 1134-1141.
[http://dx.doi.org/10.1124/dmd.31.9.1134] [PMID: 12920169]
[187]
Staretz, M.E.; Murphy, S.E.; Patten, C.J.; Nunes, M.G.; Koehl, W.; Amin, S.; Koenig, L.A.; Guengerich, F.P.; Hecht, S.S. Comparative me-tabolism of the tobacco-related carcinogens benzo[a]pyrene, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, 4-(methylnitros-amino)-1-(3-pyridyl)-1-butanol, and N′- nitrosonornicotine in human hepatic microsomes. Drug Metab. Dispos., 1997, 25(2), 154-162.
[PMID: 9029045]
[188]
Su, T.; Bao, Z.; Zhang, Q.Y.; Smith, T.J.; Hong, J.Y.; Ding, X. Human cytochrome P450 CYP2A13: Predominant expression in the respira-tory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res., 2000, 60(18), 5074-5079.
[PMID: 11016631]
[189]
Wong, H.L.; Zhang, X.; Zhang, Q.Y.; Gu, J.; Ding, X.; Hecht, S.S.; Murphy, S.E. Metabolic activation of the tobacco carcinogen 4-(methylnitrosamino)-(3-pyridyl)-1-butanone by cytochrome P450 2A13 in human fetal nasal microsomes. Chem. Res. Toxicol., 2005, 18(6), 913-918.
[http://dx.doi.org/10.1021/tx0500777] [PMID: 15962925]
[190]
Bao, Z.; He, X.Y.; Ding, X.; Prabhu, S.; Hong, J.Y. Metabolism of nicotine and cotinine by human cytochrome P450 2A13. Drug Metab. Dispos., 2005, 33(2), 258-261.
[http://dx.doi.org/10.1124/dmd.104.002105] [PMID: 15528319]
[191]
Jalas, J.R.; Ding, X.; Murphy, S.E. Comparative metabolism of the tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol by rat cytochrome P450 2A3 and human cytochrome P450 2A13. Drug Metab. Dispos., 2003, 31(10), 1199-1202.
[http://dx.doi.org/10.1124/dmd.31.10.1199] [PMID: 12975327]
[192]
Wu, J.; Dong, H.; Cai, Z.; Yu, Y. Stable expression of human cytochrome CYP2B6 and CYP1A1 in Chinese hamster CHL cells: Their use in micronucleus assays. Chin. Med. Sci. J., 1997, 12(3), 148-155.
[PMID: 11360624]
[193]
Patten, C.J.; Smith, T.J.; Friesen, M.J.; Tynes, R.E.; Yang, C.S.; Murphy, S.E. Evidence for cytochrome P450 2A6 and 3A4 as major cata-lysts for N′-nitrosonornicotine alpha-hydroxylation by human liver microsomes. Carcinogenesis, 1997, 18(8), 1623-1630.
[http://dx.doi.org/10.1093/carcin/18.8.1623] [PMID: 9276639]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy