Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Phenolic Compounds of Fig (Ficus carica L.) Leaves: Optimization of Extraction by Response Surface Methodology and UPLC-MS Phytochemical Characterization

Author(s): Sonia Yahiaoui, Djamel Edine Kati, Makhlouf Chaalal, Amar Otmani, Nadir Bettache and Mostapha Bachir-bey*

Volume 19, Issue 1, 2023

Published on: 19 August, 2022

Article ID: e150422203672 Pages: 13

DOI: 10.2174/1573407218666220415135916

Price: $65

Abstract

Background: This study is based on ethnobotanical observation and traditional medicinal utilization of fig (Ficus carica L.) by southwest Asian and Mediterranean populations.

Objective: Considering phenolics among the highly bioactive compounds for their numerous therapeutic applications, this investigation's first goal is to optimize their recovery by using Response Surface Methodology (RSM).

Methods: Prior to RSM, the single-factor method was applied to reveal the main factors influencing the extraction (solvent type, solvent concentration, sample˗to˗solvent ratio, temperature, and time of extraction). After using the optimal conditions of extraction, the second objective was the identification of fig leave phytochemicals by UPLC˗MS.

Results: The results of the preliminary optimization step through sequential methodology revealed that solvent concentration, extraction duration, and temperature were the main influencing factors. All these tested extraction parameters significantly influenced total phenolic contents (TPC) and DPPH-free radical scavenging activity (FRSA). RSM analysis using Box˗Behnken design showed that the optimal extraction conditions of total phenolic contents of fig leaves were 23.07% acetone, 51.82 °C, and 118.02 min with values of 29.44 mg GAE/g and 59.48% for TPC and FRSA, respectively. Eight phenolic compounds were detected, including chlorogenic, caffeic, and coumaric acids, rutin, isoquercetin, luteolin, quercetin, and kaempferol, well known for their bioactivities. Two non˗phenolic compounds were also found: The psoralen and an oxylipin, the 9˗oxo˗octadecadienoic acid detected for the first time in fig leaves.

Conclusion: The developed mathematical models have expressed a high level of significance through sequential and RSM optimization processes for phenolic antioxidants of Ficus carica leaves. The UPLC-MS analysis of the optimal extract revealed numerous phenolic compounds known for their bioactivities.

Keywords: Fig leaves, optimization, RSM, phenolic compounds, antioxidant activity, UPLC˗MS

Graphical Abstract

[1]
Konyalιoğlu, S.; Sağlam, H.; Kιvçak, B. α-Tocopherol, flavonoid, and phenol contents and antioxidant activity of Ficus carica leaves. Pharm. Biol., 2005, 43(8), 683-686.
[http://dx.doi.org/10.1080/13880200500383538]
[2]
Boukhalfa, F.; Kadri, N.; Franck, T.; Mouithys-Mickalad, A.; Serteyn, D.; Madani, K. Antioxidant capacity and anti-inflammatory potential of two extracts of Ficus carica leaves dried in the shade and in the oven. Mediterr. Med. J. Nutrition Metab., 2019, 12(4), 365-376.
[http://dx.doi.org/10.3233/MNM-190309]
[3]
Ayoub, L.; Hassan, F.; Hamid, S.; Abdelhamid, Z.; Souad, A. Phytochemical screening, antioxidant activity and inhibitory potential of Ficus carica and Olea europaea leaves. Bioinformation, 2019, 15(3), 226-232.
[http://dx.doi.org/10.6026/97320630015226] [PMID: 31354199]
[4]
Mahmoudi, S.; Khali, M.; Benkhaled, A.; Benamirouche, K.; Baiti, I. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. Asian Pac. J. Trop. Biomed., 2016, 6(3), 239-245.
[http://dx.doi.org/10.1016/j.apjtb.2015.12.010]
[5]
Mawa, S.; Husain, K.; Jantan, I. Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evid. Based Complement. Alternat. Med., 2013, 2013, 974256.
[http://dx.doi.org/10.1155/2013/974256] [PMID: 24159359]
[6]
Lansky, E.P.; Paavilainen, H.M.; Pawlus, A.D.; Newman, R.A. Ficus spp. (fig): Ethnobotany and potential as anticancer and anti-inflammatory agents. J. Ethnopharmacol., 2008, 119(2), 195-213.
[http://dx.doi.org/10.1016/j.jep.2008.06.025] [PMID: 18639620]
[7]
Gilani, A.H.; Mehmood, M.H.; Janbaz, K.H.; Khan, A.U.; Saeed, S.A. Ethnopharmacological studies on antispasmodic and antiplatelet activities of Ficus carica. J. Ethnopharmacol., 2008, 119(1), 1-5.
[http://dx.doi.org/10.1016/j.jep.2008.05.040] [PMID: 18586078]
[8]
Barolo, M.I.; Ruiz Mostacero, N. López, S.N. Ficus carica L. (Moraceae): An ancient source of food and health. Food Chem., 2014, 164, 119-127.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.112] [PMID: 24996314]
[9]
Purnamasari, R.; Winarni, D.; Permanasari, A.A.; Agustina, E.; Hayaza, S.; Darmanto, W. Anticancer activity of methanol extract of Ficus carica leaves and fruits against proliferation, apoptosis, and necrosis in Huh7it cells. Cancer Inform., 2019, 18, 1176935119842576.
[http://dx.doi.org/10.1177/1176935119842576] [PMID: 31037025]
[10]
Raafat, K.; Wurglics, M. Phytochemical analysis of Ficus carica L. active compounds possessing anticonvulsant activity. J. Tradit. Complement. Med., 2018, 9(4), 263-270.
[http://dx.doi.org/10.1016/j.jtcme.2018.01.007] [PMID: 31453121]
[11]
Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules, 2013, 18(2), 2328-2375.
[http://dx.doi.org/10.3390/molecules18022328] [PMID: 23429347]
[12]
Delmail, D.; Abasq, M-L.; Courtel, P.; Rouaud, I.; Labrousse, P. DNA damage protection, antioxidant and free-radical scavenging activities of Myriophyllum alterniflorum DC (Haloragaceae) vegetative parts. Acta Bot. Gallica, 2013, 160(2), 165-172.
[http://dx.doi.org/10.1080/12538078.2013.799046]
[13]
Liyana-Pathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem., 2005, 93(1), 47-56.
[http://dx.doi.org/10.1016/j.foodchem.2004.08.050]
[14]
Zhang, Z-S.; Li, D.; Wang, L-J.; Ozkan, N.; Chen, X.D.; Mao, Z-H.; Yang, H-Z. Optimization of ethanol-water extraction of lignans from flaxseed. Separ. Purif. Tech., 2007, 57(1), 17-24.
[http://dx.doi.org/10.1016/j.seppur.2007.03.006]
[15]
Saci, F.; Benchikh, Y.; Louaileche, H. Bachir bey, M. Optimization of ultrasound-assisted extraction of phenolic compounds and antioxidant activity from carob pulp (Ceratonia siliqua L.) by using response surface methodology. An. Univ. Dunarea de Jos Galati Fasc. VI Food Technol., 2018, 42, 26-39.
[16]
Benchikh, Y.; Zaoui, A.; Derbal, R. Bachir bey, M.; Louaileche, H. Optimisation of extraction conditions of phenolic compounds and antioxidant activity of c L. using response surface methodology. J. Food Meas. Charact., 2019, 13, 883-891.
[http://dx.doi.org/10.1007/s11694-018-0002-3]
[17]
Saci, F.; Louaileche, H. Bachir bey, M.; Meziant, L. Optimization of phenolic compound recovery and antioxidant activity from carob pulp using response surface methodology. Int. Food Res. J., 2017, 24(3), 1094.
[18]
Naithani, V.; Nair, S.; Kakkar, P. Decline in antioxidant capacity of Indian herbal teas during storage and its relation to phenolic content. Food Res. Int., 2006, 39(2), 176-181.
[http://dx.doi.org/10.1016/j.foodres.2005.07.004]
[19]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1995, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[20]
Hismath, I.; Wan, A.W.M.; Ho, C.W. Optimization of extraction conditions for phenolic compounds from neem (Azadirachta indica) leaves. Int. Food Res. J., 2011, 18(3), 931-939.
[21]
Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crops Prod., 2018, 124, 382-388.
[http://dx.doi.org/10.1016/j.indcrop.2018.07.070]
[22]
Su, L.; Yin, J-J.; Charles, D.; Zhou, K.; Moore, J.; Yu, L. Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem., 2007, 100(3), 990-997.
[http://dx.doi.org/10.1016/j.foodchem.2005.10.058]
[23]
Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal., 2006, 41(5), 1523-1542.
[http://dx.doi.org/10.1016/j.jpba.2006.04.002] [PMID: 16753277]
[24]
Benchikh, Y.; Louaileche, H. Effects of extraction conditions on the recovery of phenolic compounds and in vitro antioxidant activity of carob (Ceratonia siliqua L.) pulp. Acta Bot. Gallica, 2014, 161(2), 175-181.
[http://dx.doi.org/10.1080/12538078.2014.909325]
[25]
Bey, M.B.; Louaileche, H.; Zemouri, S. Optimization of phenolic compound recovery and antioxidant activity of light and dark dried fig (Ficus carica L.) varieties. Food Sci. Biotechnol., 2013, 22(6), 1613-1619.
[http://dx.doi.org/10.1007/s10068-013-0258-7]
[26]
Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng., 2007, 81(1), 200-208.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.10.021]
[27]
Ameer, K.; Shahbaz, H.M.; Kwon, J-H. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr. Rev. Food Sci. Food Saf., 2017, 16(2), 295-315.
[http://dx.doi.org/10.1111/1541-4337.12253] [PMID: 33371540]
[28]
Chaalal, M.; Touati, N.; Louaileche, H. Extraction of phenolic compounds and in vitro antioxidant capacity of prickly pear seeds. Acta Bot. Gallica, 2012, 159(4), 467-475.
[http://dx.doi.org/10.1080/12538078.2012.758495]
[29]
Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J. Núñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem., 2005, 53(6), 2111-2117.
[http://dx.doi.org/10.1021/jf0488110] [PMID: 15769143]
[30]
Sifaoui, I.; Chammem, N.; Abderrabba, M.; Mejri, M. Optimization of phenolic compounds extraction from olive leaves using experimental design methodology. J. Mater. Environ. Sci., 2016, 7(4), 1119-1127.
[31]
Martin-Garcia, B.; Pimentel-Moral, S. Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Box-Behnken experimental design for a green extraction method of phenolic compounds from olive leaves. Ind. Crops Prod., 2020, 154, 112741.
[http://dx.doi.org/10.1016/j.indcrop.2020.112741]
[32]
Brahim, M.; Gambier, F.; Brosse, N. Optimization of polyphenols extraction from grape residues in water medium. Ind. Crops Prod., 2014, 52, 18-22.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.030]
[33]
Silva, E.; Rogez, H.; Larondelle, Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separ. Purif. Tech., 2007, 55(3), 381-387.
[http://dx.doi.org/10.1016/j.seppur.2007.01.008]
[34]
Jumbri, K.; Al-Haniff Rozy, M.F.; Ashari, S.E.; Mohamad, R.; Basri, M.; Fard Masoumi, H.R. Optimisation and characterisation of lipase-catalysed synthesis of a kojic monooleate ester in a solvent-free system by response surface Methodology. PLoS One, 2015, 10(12), e0144664.
[http://dx.doi.org/10.1371/journal.pone.0144664] [PMID: 26657030]
[35]
Juntachote, T.; Berghofer, E.; Bauer, F.; Siebenhandl, S. The application of response surface methodology to the production of phenolic extracts of lemon grass, galangal, holy basil and rosemary. Int. J. Food Sci. Technol., 2006, 41(2), 121-133.
[http://dx.doi.org/10.1111/j.1365-2621.2005.00987.x]
[36]
Ağalar, H.G.; Akalın Çiftçi, G.; Göger, F.; Kırımer, N. Activity guided fractionation of Arum italicum miller tubers and the LC/MS-MS profiles. Rec. Nat. Prod., 2017, 12(1), 64-75.
[http://dx.doi.org/10.25135/rnp.06.17.05.089]
[37]
Takahashi, H.; Kamakari, K.; Goto, T.; Hara, H.; Mohri, S.; Suzuki, H.; Shibata, D.; Nakata, R.; Inoue, H.; Takahashi, N.; Kawada, T. 9-Oxo-10(E),12(Z),15(Z)-Octadecatrienoic acid activates peroxisome proliferator-activated receptor α in hepatocytes. Lipids, 2015, 50(11), 1083-1091.
[http://dx.doi.org/10.1007/s11745-015-4071-3] [PMID: 26387026]
[38]
Chunyan, C.; Bo, S.; Ping, L.; Jingmei, L.; Ito, Y. Isolation and purification of psoralen and bergapten from Ficus carica L. leaves by high-speed countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol., 2009, 32(1), 136-143.
[http://dx.doi.org/10.1080/10826070802548747] [PMID: 20351802]
[39]
Oliveira, A.P. Valentão, P.; Pereira, J.A.; Silva, B.M.; Tavares, F.; Andrade, P.B. Ficus carica L.: Metabolic and biological screening. Food Chem. Toxicol., 2009, 47(11), 2841-2846.
[http://dx.doi.org/10.1016/j.fct.2009.09.004] [PMID: 19747518]
[40]
dos Santos, M.D.; Almeida, M.C.; Lopes, N.P.; de Souza, G.E.P. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull., 2006, 29(11), 2236-2240.
[http://dx.doi.org/10.1248/bpb.29.2236] [PMID: 17077520]
[41]
Birková. A. Caffeic acid: A brief overview of its presence, metabolism, and bioactivity. Bioact. Com. Health Dis., 2020, 3(4), 74-81.
[http://dx.doi.org/10.31989/bchd.v3i4.692]
[42]
Vangaveti, V.N.; Jansen, H.; Kennedy, R.L.; Malabu, U.H. Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer. Eur. J. Pharmacol., 2016, 785, 70-76.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.096] [PMID: 25987423]
[43]
Nishiguchi, S.; Murata, K.; Ube, N.; Ueno, K.; Tebayashi, S.I.; Teraishi, M.; Okumoto, Y.; Mori, N.; Ishihara, A. Accumulation of 9- and 13-KODEs in response to jasmonic acid treatment and pathogenic infection in rice. J. Pestic. Sci., 2018, 43(3), 191-197.
[http://dx.doi.org/10.1584/jpestics.D18-022] [PMID: 30363135]
[44]
Takahashi, H.; Kim, Y-I.; Hirai, S.; Goto, T.; Ohyane, C.; Tsugane, T.; Konishi, C.; Fujii, T.; Inai, S.; Iijima, Y.; Aoki, K.; Shibata, D.; Takahashi, N.; Kawada, T. Comparative and stability analyses of 9- and 13-Oxo-octadecadienoic acids in various species of tomato. Biosci. Biotechnol. Biochem., 2011, 75(8), 1621-1624.
[http://dx.doi.org/10.1271/bbb.110254] [PMID: 21821922]
[45]
Bachmetov, L.; Gal-Tanamy, M.; Shapira, A.; Vorobeychik, M.; Giterman-Galam, T.; Sathiyamoorthy, P.; Golan-Goldhirsh, A.; Benhar, I.; Tur-Kaspa, R.; Zemel, R. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J. Viral Hepat., 2012, 19(2), e81-e88.
[http://dx.doi.org/10.1111/j.1365-2893.2011.01507.x] [PMID: 22239530]
[46]
Maciel, R.M.; Costa, M.M.; Martins, D.B.; França, R.T.; Schmatz, R.; Graça, D.L.; Duarte, M.M.M.F.; Danesi, C.C.; Mazzanti, C.M.; Schetinger, M.R.C.; Paim, F.C.; Palma, H.E.; Abdala, F.H.; Stefanello, N.; Zimpel, C.K.; Felin, D.V.; Lopes, S.T.A. Antioxidant and anti-inflammatory effects of quercetin in functional and morphological alterations in streptozotocin-induced diabetic rats. Vet. Sci. Res. J., 2013, 95(2), 389-397.
[http://dx.doi.org/10.1016/j.rvsc.2013.04.028] [PMID: 23706762]
[47]
Lin, C-F.; Leu, Y-L.; Al-Suwayeh, S.A.; Ku, M-C.; Hwang, T-L.; Fang, J-Y. Anti-inflammatory activity and percutaneous absorption of quercetin and its polymethoxylated compound and glycosides: The relationships to chemical structures. Eur. J. Pharm. Sci., 2012, 47(5), 857-864.
[http://dx.doi.org/10.1016/j.ejps.2012.04.024] [PMID: 22609526]
[48]
Ahmed Asim, S.; Ahmed, S.; Us-Sehar, N. Psoralen-ultraviolet A treatment with Psoralen-ultraviolet B therapy in the treatment of psoriasis. Pak. J. Med. Sci., 2013, 29(3), 758-761.
[http://dx.doi.org/10.12669/pjms.293.2622] [PMID: 24353623]
[49]
Shenoi, S.D.; Prabhu, S. Indian association of dermatologists, venereologists and leprologists. Photochemotherapy (PUVA) in psoriasis and vitiligo. Indian J. Dermatol. Venereol. Leprol., 2014, 80(6), 497-504.
[http://dx.doi.org/10.4103/0378-6323.144143] [PMID: 25382505]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy