Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Mini-Review Article

Enteric-Coated Polymers Past and Present - A Review

Author(s): Yi Ying Loh*, Arno Appavoo Enose and Vandana Garg

Volume 12, Issue 2, 2022

Published on: 31 May, 2022

Page: [85 - 95] Pages: 11

DOI: 10.2174/2210303112666220413081911

open access plus

Abstract

Tablet coating has evolved over the years, and today, there are various types of coating for the delayed release of a drug. Drugs can be enteric-coated to provide delayed release, protect the active pharmaceutical ingredients, minimize undesirable effects, and modify the pharmacokinetic properties of a drug, which will have clinical impacts. Certain types of drugs need to be entericcoated for various reasons, such as gastric irritants or acid-liable drugs. This article will review ethylcellulose and polymethacrylate, their role in an enteric coating, and their process coating parameters. Ethylcellulose can provide a short delayed release; it can be modified by adding pHdependent polymers such as sodium alginate and hydroxypropyl methylcellulose phthalate for a long delayed release. On the other hand, polymethacrylate can also be employed to enteric coat drugs without additional polymers. Polymethacrylate, such as Eudragit®, comes in different grades with varying proportions of polymer ratio, allowing for targeted delayed drug release. These will impact which polymer to be employed. Upon choosing the coating material, modeling can also predict in vitro and in vivo correlation as enteric-coated products can have unpredictable in vivo pharmacokinetic profiles. Today, the trend is moving away from the traditional coating, and towards new polymers, and with digitalization, there is a focus to start using data from laboratory experiments to be integrated with computational modeling, artificial intelligence, and machine learning to accurately predict key process parameters and film properties for high-quality products.

Keywords: Enteric coating, ethylcellulose, Eudragit®, formulation, modeling, polymethacrylates, technology.

« Previous
Graphical Abstract

[1]
Seo, K-S.; Bajracharya, R.; Lee, S.H.; Han, H-K. Pharmaceutical application of tablet film coating. Pharmaceutics, 2020, 12(9), 12.
[http://dx.doi.org/10.3390/pharmaceutics12090853] [PMID: 32911720]
[2]
Al-Hashimi, N.; Begg, N.; Alany, R.G.; Hassanin, H.; Elshaer, A. Oral modified release multiple-unit particulate systems: Compressed pellets, microparticles and nanoparticles. Pharmaceutics, 2018, 10(4), 176.
[http://dx.doi.org/10.3390/pharmaceutics10040176] [PMID: 30287798]
[3]
Tovey, G.D. Pharmaceutical formulation: The science and technology of dosage forms; Royal Society of Chemistry, 2018.
[http://dx.doi.org/10.1039/9781782620402]
[4]
Walsh, J.; Ranmal, S.R.; Ernest, T.B.; Liu, F. Patient acceptability, safety and access: A balancing act for selecting age-appropriate oral dosage forms for paediatric and geriatric populations. Int. J. Pharm., 2018, 536(2), 547-562.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.017] [PMID: 28705619]
[5]
Prabhu, S.S. Terahertz spectroscopy: Advances and applications. In: Molecular and Laser Spectroscopy; Gupta, V.P., Ed.; Elsevier, 2018; pp. 65-85.
[http://dx.doi.org/10.1016/B978-0-12-849883-5.00004-8]
[6]
Toschkoff, G.; Just, S.; Knop, K.; Kleinebudde, P.; Funke, A.; Djuric, D.; Scharrer, G.; Khinast, J.G. Modeling of an active tablet coating process. J. Pharm. Sci., 2015, 104(12), 4082-4092.
[http://dx.doi.org/10.1002/jps.24621] [PMID: 26344941]
[7]
Shaikh, R.; O’Brien, D.P.; Croker, D.M.; Walker, G.M. The development of a pharmaceutical oral solid dosage forms. In: Computer Aided Chemical Engineering; Singh, R.; Yuan, Z., Eds.; Elsevier, 2018; pp. 27-65.
[http://dx.doi.org/10.1016/B978-0-444-63963-9.00002-6]
[8]
Tbompsont, H.O.; Lee, C.O. History, literature, and theory of enteric coatings. J. Am. Pharm. Assoc., 1945, 34(5), 135-138.
[http://dx.doi.org/10.1002/jps.3030340503]
[9]
Dumez, A.G. A contricton to the history of the development of the enteric capsule. J. Am. Pharm. Assoc., 1921, 10(5), 372-376.
[http://dx.doi.org/10.1002/jps.3080100514]
[10]
Whiteman, M. Film coating of tablets. In: Pharmaceutical Formulation: The Science and Technology of Dosage Forms; The Royal Society of Chemistry, 2018; pp. 149-172.
[http://dx.doi.org/10.1039/9781782620402-00149]
[11]
Shaikh, N.A.; Abidi, S.E.; Block, L.H. Evaluation of ethylcellulose as a matrix for prolonged release formulations. I. water soluble drugs: Acetaminophen and theophylline. Drug Dev. Ind. Pharm., 1987, 13(8), 1345-1369.
[http://dx.doi.org/10.3109/03639048709068380]
[12]
Ali Asghar, L.F.; Azeemuddin, M.; Jain, V.; Chandran, S. Design and in vitro evaluation of formulations with pH and transit time con-trolled sigmoidal release profile for colon-specific delivery. Drug Deliv., 2009, 16(6), 295-303.
[http://dx.doi.org/10.1080/10717540902989936] [PMID: 19606943]
[13]
Sharabi, A.A.E-B.; Ahmed, A.A.; Ibrahim, M.A. Influence of Some Formulation Variables on the Optimization of pH-dependent; Colon-targeted, Sustained-release Mesalamine Microspheres. AAPS PharmSciTech, 2012, 13(1), 75-84.
[14]
Wasilewska, K.; Winnicka, K. Ethylcellulose-A pharmaceutical excipient with multidirectional application in drug dosage forms develop-ment. Materials (Basel), 2019, 12(20), 3386.
[http://dx.doi.org/10.3390/ma12203386] [PMID: 31627271]
[15]
Long, M.; Chen, Y. Dissolution testing of solid products. In: Developing Solid Oral Dosage Forms; Qiu, Y.; Chen, Y.; Zhang, G.G.Z.; Liu, L.; Porter, W.R., Eds.; Academic Press: San Diego, 2009; pp. 319-340.
[http://dx.doi.org/10.1016/B978-0-444-53242-8.00014-X]
[16]
Zaid, A.N. A comprehensive review on pharmaceutical film coating: Past, present, and future. Drug Des. Devel. Ther., 2020, 14, 4613-4623.
[17]
Melegari, C. Study of Different Technologies for Film Coating of Drug Layered Pellets Using Ethylcellulose as Functional Polymer; Alma Mater Studiorum University of Bologna, 2016.
[18]
Sonia, T.A.; Sharma, C.P. 3 - Oral insulin delivery - challenges and strategies. In: Oral Delivery of Insulin; Sonia, T.A.; Sharma, C.P., Eds.; Woodhead Publishing, 2014; pp. 113-168.
[http://dx.doi.org/10.1533/9781908818683.113]
[19]
Yasmin Begum, M.; Alqahtani, A.; Ghazwani, M.; Alhamood, N.A.; Hani, U.; Jajala, A. Development of duloxetine hydrochloride tablets for delayed and complete release using eudragit L 100. Int. J. Polym. Sci., 2021, 2021, 8890503.
[http://dx.doi.org/10.1155/2021/8890503]
[20]
Hardy, J.G.; Healey, J.N.C.; Lee, S.W.; Reynolds, J.R. Gastrointestinal transit of an enteric-coated delayed-release 5-aminosalicylic acid tablet. Aliment. Pharmacol. Ther., 1987, 1(3), 209-216.
[http://dx.doi.org/10.1111/j.1365-2036.1987.tb00620.x] [PMID: 2979223]
[21]
Carol Holquist, R.P.; Walter Fava, R.P. A look at delayed- vs. extended-release 2007. Available from: https://www.fda.gov/media/77241/download#:~:text=The%20United %20States %20 Pharmacopeia %20[cited 2021 Jun 22]
[22]
Evans-Hurson, R.; McSweeney, S.; Vos, B.; Krüse, J.; Keating, J.; Fitzpatrick, D. pH dependence of the dissolution rate of entericcoated drug spheres determined by broadband acoustic resonance dissolution spectroscopy (BARDS). Dissolut. Technol., 2016, 23, 24-31.
[http://dx.doi.org/10.14227/DT230116P24]
[23]
Palmieri, G.F.; Bonacucina, G.; Di Martino, P.; Martelli, S. Gastro-resistant microspheres containing ketoprofen. J. Microencapsul., 2002, 19(1), 111-119.
[http://dx.doi.org/10.1080/02652040110065477] [PMID: 11811753]
[24]
Kulkarni, R.V.; Sa, B. Enteric delivery of ketoprofen through functionally modified poly(acrylamide-grafted-xanthan)-based pH-sensitive hydrogel beads: Preparation, in vitro and in vivo evaluation. J. Drug Target., 2008, 16(2), 167-177.
[http://dx.doi.org/10.1080/10611860701792399] [PMID: 18274937]
[25]
Hussan, S. A review on recent advances of enteric coating. IOSR Journal of Pharmacy (IOSRPHR), 2012, 2, 05-11.
[http://dx.doi.org/10.9790/3013-2610511]
[26]
Maderuelo, C.; Lanao, J.M.; Zarzuelo, A. Enteric coating of oral solid dosage forms as a tool to improve drug bioavailability. Eur. J. Pharm. Sci., 2019, 138, 105019.
[http://dx.doi.org/10.1016/j.ejps.2019.105019] [PMID: 31374253]
[27]
Allen, L.V.; Ansel, H.C. Ansel’s pharmaceutical dosage forms and drug delivery systems, 10th ed; , 2014.
[28]
Knupp, B.D.; Ismat, U.; Walter, D.; Gary, W. Pharmacokinetics and gamma scintigraphy evaluation of two enteric coated formulations of didanosine in healthy volunteers. Br. J. Clin. Pharmacol., 2002, 54(3), 255-261.
[29]
Gupta, A.A.; Vikas, A. Drug absorption., 2021.
[30]
Porter, S.; Sackett, G.; Liu, L. Development, optimization, and scale-up of process parameters: Pan coating In: Developing Solid Oral Dosage Forms; 2nd ed;; Qiu, Y; Chen, Y; Zhang, G.G.Z; Yu, L; Mantri, R.V, Eds.; Academic Press: Boston,, 2017; pp. 953-996.
[http://dx.doi.org/10.1016/B978-0-12-802447-8.00034-0]
[31]
Bushra, R.; Shoaib, M.; Aslam, N.; Mahmood, Z. Enteric coating of ibuprofen tablets (200 mg) using aqueous dispersion system. Revista Brasileira de Ciencias Farmaceutics, 2010, 46(1), 99-107.
[32]
An, Z.; Fadda, A. Development and stability evaluation of enteric coated diclofenac sodium tablets using aquapolish E. J. Pharm. Investig., 2011, 41, 211-215.
[http://dx.doi.org/10.4333/KPS.2011.41.4.211]
[33]
Russell, R.I. Non-steroidal anti-inflammatory drugs and gastrointestinal damage-problems and solutions. Postgrad. Med. J., 2001, 77(904), 82-88.
[http://dx.doi.org/10.1136/pmj.77.904.82] [PMID: 11161072]
[34]
Drini, M. Peptic ulcer disease and non-steroidal anti-inflammatory drugs. Aust. Prescr., 2017, 40(3), 91-93.
[http://dx.doi.org/10.18773/austprescr.2017.037] [PMID: 28798512]
[35]
Strand, D.; Kim, D.; Peura, D. 25 years of proton pump inhibitors: A comprehensive review. Gut Liver, 2016, 11(1), 27-37.
[PMID: 27840364]
[36]
Norman, A.; Hawkey, C.J. What you need to know when you prescribe a proton pump inhibitor. Frontline Gastroenterol., 2011, 2(4), 199-205.
[http://dx.doi.org/10.1136/flgastro-2011-100006] [PMID: 28839610]
[37]
Cyphert, E.L.; Wallat, J.D.; Pokorski, J.K.; von Recum, H.A. Erythromycin modification that improves its acidic stability while optimizing it for local drug delivery. Antibiotics (Basel), 2017, 6(2), 11.
[http://dx.doi.org/10.3390/antibiotics6020011] [PMID: 28441360]
[38]
Moghadamnia, Y.; Kazemi, S.; Rezaee, B.; Rafati-Rahimzadeh, M.; Ebrahimpour, S.; Aghapour, F. New formulation of ibuprofen on ab-sorption-rate: A comparative bioavailability study in healthy volunteers. Caspian J. Intern. Med., 2019, 10(2), 150-155.
[PMID: 31363393]
[39]
SERVICES HP. What is PROCYSBI? Available from: https://www.procysbi.com/[cited 2021 Jun 24].
[40]
SERVICES HP. What is cystinosis? Available from: https://www.procysbi.com/About-Nephropathic-Cystinosis[cited 2021 Jun 24].
[41]
Kaskel, Aude S Nephropathic cystinosis: An international consensus document. Nephrol. Dial. Transplant., 2014, 29(4), iv87-iv94.
[42]
Brodin-Sartorius, A.; Tête, M-J.; Niaudet, P.; Antignac, C.; Guest, G.; Ottolenghi, C.; Charbit, M.; Moyse, D.; Legendre, C.; Lesavre, P.; Cochat, P.; Servais, A. Cysteamine therapy delays the progression of nephropathic cystinosis in late adolescents and adults. Kidney Int., 2012, 81(2), 179-189.
[http://dx.doi.org/10.1038/ki.2011.277] [PMID: 21900880]
[43]
Jo, B.; Patrice Rioux, C.B.L.; Larry, A.G.; Paul, G.; Minnie, S.; Patrick, N. Quality of life is improved and kidney function preserved in patients with nephropathic cystinosis treated for 2 years with delayed-release cysteamine bitartrate. J. Pediatr., 2014, 165(3), 528-33.e1.
[44]
Turner, J.R. Area under the curve (AUC). In: Encyclopedia of Behavioral Medicine; Gellman, M.D.; Turner, J.R., Eds.; Springer New York: New York, NY, 2013; pp. 125-126.
[45]
Gangoiti, J.A.; Fidler, M.; Cabrera, B.L.; Schneider, J.A.; Barshop, B.A.; Dohil, R. Pharmacokinetics of enteric-coated cysteamine bitartrate in healthy adults: A pilot study. Br. J. Clin. Pharmacol., 2010, 70(3), 376-382.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03721.x] [PMID: 20716238]
[46]
Johnson, N.P.; Terry, A.H.; Chris, W.; Sara Louis, I.; Ben, C. The effect of food and liquid pH on the integrity of enteric-coated beads from cysteamine bitartrate delayed-release capsules. Drug Des. Devel. Ther., 2018, 12, 2795-2804.
[47]
Newton, J.L. Improving the gastrointestinal tolerability of aspirin in older people. Clin. Interv. Aging, 2006, 1(1), 33-39.
[http://dx.doi.org/10.2147/ciia.2006.1.1.33]
[48]
Peter, S.; Chopra, S.; Jacob, J.J. A fish a day, keeps the cardiologist away - A review of the effect of omega-3 fatty acids in the cardiovas-cular system. Indian J. Endocrinol. Metab., 2013, 17(3), 422-429.
[http://dx.doi.org/10.4103/2230-8210.111630] [PMID: 23869297]
[49]
Averill, E.E.N.; Michael, J.S.; Megan, L.C.; Vanessa, A.P.; Josef, B.; Lindsay, K. Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults J Int. Soc. Sports Nutr, 2010, 8(7), 31.
[50]
Ventura, S.M.A.; Carl, J.L.; Richard, V.M.; Rishi, G.A.; James, H.O.K.; Hector, O. Fish oil in primary and secondary cardiovascular pre-vention., 2008.
[51]
Prasad, A; Langley, N; Lan, Y Taste masking of ibuprofen granules using a novel reverse enteric film coating., 2011.
[52]
Zhang, T.; Wang, C.R.; Shen, S.; Jin, Y.; Ge, Y.R. Preparation and evaluation of enteric-coated and taste masking clarithromycin gran-ules Yao Xue Xue Bao, 2011, 46(12), 1520-1525.
[PMID: 22375429]
[53]
Leung, C-Y.; Trementozzi, A.; Lin, Y.; Xu, J.; Irdam, E.; MacPhee, J. Enteric coating of micron-size drug particles through a würster fluid-bed process. Powder Technol., 2017, 16(317), 247-252.
[http://dx.doi.org/10.1016/j.powtec.2017.04.046]
[54]
Rheonics. Monitoring enteric coating for pharmaceutical products and livestock feed Available from: https://rheonics.com/solutions-item/monitoring-enteric-coating-for-pharmaceutical-products-and-livestock-feed/[cited 2021 Jun 22].
[55]
Dulin, W. Oral Targeted Drug Delivery Systems: Enteric Coating. Oral controlled release formulation design and drug delivery; , 2010, pp. 205-223.
[56]
Basu, A; De, A; Dey, S; Roy, B Techniques of tablet coating: Concepts and advancements: A comprehensive review J. Pharm. Pharmac. Sci, 2013, 2
[57]
Rowe, R.C.; Sheskey, P.J. American pharmacists. In: Handbook of Pharmaceutical Excipients; APhA/Pharmaceutical Press; London: Chicago, 2009.
[58]
Tarvainen, M.; Sutinen, R.; Peltonen, S.; Mikkonen, H.; Maunus, J.; Vähä-Heikkilä, K.; Lehto, V.P.; Paronen, P. Enhanced film-forming properties for ethyl cellulose and starch acetate using n-alkenyl succinic anhydrides as novel plasticizers. Eur. J. Pharm. Sci., 2003, 19(5), 363-371.
[http://dx.doi.org/10.1016/S0928-0987(03)00137-4] [PMID: 12907287]
[59]
Rajabi-Siahboomi, R.Y.M.; Shahrzad, M.; Sandip, B.T.; Ali, R. Application of ethylcellulose coating to hydrophilic matrices: A strategy to modulate drug release profile and reduce drug release variability. AAPS PharmSciTech, 2014, 15(5), 1049-1059.
[60]
Kaur, G.; Grewal, J.; Jyoti, K.; Jain, U.K.; Chandra, R.; Madan, J. Oral controlled and sustained drug delivery systems: Concepts, advanc-es, preclinical, and clinical status. In: William Andrew Publishing; Targeting, D.; Systems, S.S.D.D., Eds.; Grumezescu, AM, 2018; pp. 567-626.
[61]
Porter, S.C. Controlled-release film coatings based on ethylcellulose. Drug Dev. Ind. Pharm., 1989, 15(10), 1495-1521.
[http://dx.doi.org/10.3109/03639048909052501]
[62]
Tu, J.; Shen, Y.; Mahalingam, R.; Jasti, B. Polymers in oral modified release systems; John Wiley & Sons Inc., 2010, pp. 71-87.
[63]
Ashland. Aquarius™ film coating systems Chemistry Film coating systems, Available from: https://www.ashland.com/industries/pharmaceutical/oral-solid-dose/aquarius-film-coating-systems
[64]
LIMITED ACIP. AshaKote. Available from: https://www.ashacel.com/ashakote_product.asp
[65]
Biosciences, N. Aquacoat®. The aqueous solution to barrier membrane coating. Available from:https://www.pharma.dupont.com/pharmaceutical-brands/aquacoatr.html[cited 2021 Jun 22]
[66]
Heinze, T.; Liebert, T. 10.05 - Celluloses and polyoses/hemicellu-loses. In: Polymer Science: A Comprehensive Reference; Matyjaszewski, K.; Möller, M., Eds.; Elsevier: Amsterdam, 2012; pp. 83-152.
[http://dx.doi.org/10.1016/B978-0-444-53349-4.00255-7]
[67]
Crowley, M.M.; Schroeder, B.; Fredersdorf, A.; Obara, S.; Talarico, M.; Kucera, S.; McGinity, J.W. Physicochemical properties and mech-anism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int. J. Pharm., 2004, 269(2), 509-522.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.037] [PMID: 14706261]
[68]
Chuang, J-J.; Huang, Y-Y.; Lo, S-H.; Hsu, T-F.; Huang, W-Y.; Huang, S-L. Effects of pH on the shape of alginate particles and its release behavior. Int. J. Polym. Sci., 2017, 2017, 3902704.
[http://dx.doi.org/10.1155/2017/3902704]
[69]
Czarnocka, J.K.; Alhnan, M.A. Gastro-resistant characteristics of GRAS-grade enteric coatings for pharmaceutical and nutraceutical prod-ucts. Int. J. Pharm., 2015, 486(1-2), 167-174.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.039] [PMID: 25796126]
[70]
Pizzorno, J.E.; Murray, M.T.; Joiner-Bey, H. Chronic candidiasis. In: The Clinician’s Handbook of Natural Medicine; 3rd ed; Pizzorno, J.E.; Murray, M.T.; Joiner-Bey, H., Eds.; Churchill Livingstone: Edinburgh, 2016; pp. 206-212.
[http://dx.doi.org/10.1016/B978-0-7020-5514-0.00027-0]
[71]
Kim, M-S.; Kim, J-S.; Kang, S-H.; Yoo, Y-H.; Lee, S.; Park, J-S.; Woo, J.S.; Hwang, S.J. Influence of water soluble additives and HPMCP on drug release from Surelease-coated pellets containing tamsulosin hydrochloride. Arch. Pharm. Res., 2007, 30(8), 1008-1013.
[http://dx.doi.org/10.1007/BF02993970] [PMID: 17879755]
[72]
Tobiska, S.; Kleinebudde, P. Coating uniformity: Influence of atomizing air pressure. Pharm. Dev. Technol., 2003, 8(1), 39-46.
[http://dx.doi.org/10.1081/PDT-120017522] [PMID: 12665196]
[74]
Colorcon.Nutrateric®. The influence of a pH dependent pore former on acid protection from tablets coated with an aqueous ethylcellulose barrier membrane. Available from: https://www.colorcon.com/products-formulation/download/333/574/34?method=view[cited 2021 Jun 22].
[76]
Brady, J.; Dürig, T.; Lee, P.I.; Li, J.X. Polymer properties and characterization. In: Developing Solid Oral Dosage Forms, 2nd ed; Qiu, Y; Chen, Y; Zhang, G.G.Z; Yu, L.; Mantri, R.V, Eds.; Academic Press:: Boston, 2017; pp. 181-223.
[http://dx.doi.org/10.1016/B978-0-12-802447-8.00007-8]
[77]
Bhilegaonkar, S.; Parvatkar, A. Eudragit: A versatile and robust platform. Int. J. Pharm. Sci. Res., 2020, 2626-2635.
[78]
Yoshida, T.; Lai, T.C.; Kwon, G.S.; Sako, K. pH- and ion-sensitive polymers for drug delivery. Expert Opin. Drug Deliv., 2013, 10(11), 1497-1513.
[http://dx.doi.org/10.1517/17425247.2013.821978] [PMID: 23930949]
[79]
Gupta, P.; Kumar, M.; Sachan, N. An overview on polymethacrylate polymers in gastroretentive dosage forms. Open Pharm. Sci. J., 2015, 2, 31-42.
[http://dx.doi.org/10.2174/1874844901502010031]
[80]
Evonik.Eudragit®. 30 D-55 technical information 2014. Available from: https://www.stobec.com/DATA/PRODUIT/1598~v~data_8595.pdf[cited 2021 Jun 22]
[81]
Fu, M.; Blechar, J.A.; Sauer, A.; Al-Gousous, J.; Langguth, P. In vitro evaluation of enteric-coated HPMC capsules-effect of formulation factors on product performance. Pharmaceutics, 2020, 12(8), E696.
[http://dx.doi.org/10.3390/pharmaceutics12080696] [PMID: 32717908]
[82]
BASF.Kollicoat®. MAE 30 DP technical information. , 2015. Available from: http://transchemcorp.com/wp-content/uploads/2017/09/ Technical-Information_Kollicoat-MAE-30-DP.pdf
[83]
BASF.Kollicoat®. MAE enteric coating Available from: http://www.rumapel.com.ar/pharma_excipientes/ficha_tecnica/Kollicoat%20MAE %2030 %20DP.pdf[cited 2021 Jun 22].
[84]
BASF.Kollicoat®. MAE 100-55/ Kollicoat® MAE 100 P. 2016. Available from: http://transchemcorp.com/wp-content/uploads/2017/09/Technical-Information_Kollicoat-MAE-100-P.pdf[cited 2021 Jun 22]
[86]
[87]
Müller-Albers, D.J.; Guha, A.; Assmus, M. Use of an advanced new enteric combination polymer with multiple unit pellet systems and other multiparticulates. 2018. Available from https://www.americanpharmaceuticalreview.com/Featured-Articles/357688-Use-of-an-Advanced-New-Enteric-Combination-Polymer-with-Multiple-Unit-Pellet-Systems-and-other-Multiparticulates/
[88]
Baer, H.; Oza, K. New approaches to oral drug delivery from immediate release through precise colonic targeting., 2021. Available from: https://www.pathlms.com/aaps/events/2332/video_presenta-tions/192788[cited 2021 Dec 25]
[89]
Bose, S.; Bogner, R.H. Solventless pharmaceutical coating processes: A review. Pharm. Dev. Technol., 2007, 12(2), 115-131.
[http://dx.doi.org/10.1080/10837450701212479] [PMID: 17510883]
[90]
Qiao, M.; Zhang, L.; Ma, Y.; Zhu, J.; Chow, K. A novel electrostatic dry powder coating process for pharmaceutical dosage forms: Imme-diate release coatings for tablets. Eur. J. Pharm. Biopharm., 2010, 76(2), 304-310.
[http://dx.doi.org/10.1016/j.ejpb.2010.06.009] [PMID: 20600889]
[91]
Tsintavi, E.; Rekkas, D.M.; Bettini, R. Partial tablet coating by 3D printing. Int. J. Pharm., 2020, 581, 119298.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119298] [PMID: 32259639]
[92]
Prasad, L.K.; McGinity, J.W.; Williams, R.O. III Electrostatic powder coating: Principles and pharmaceutical applications. Int. J. Pharm., 2016, 505(1-2), 289-302.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.016] [PMID: 27085644]
[93]
Kambayashi, A.; Blume, H.; Dressman, J. Understanding the in vivo performance of enteric coated tablets using an in vitro-in silico-in vivo approach: Case example diclofenac Eur. J. Pharm. Biopharm., 2013, 85((3 Pt B)(3, Part B)), 1337-1347.
[http://dx.doi.org/10.1016/j.ejpb.2013.09.009] [PMID: 24056057]
[94]
Amaral Silva, D.; Davies, N.M.; Doschak, M.R.; Al-Gousous, J.; Bou-Chacra, N.; Löbenberg, R. Mechanistic understanding of underper-forming enteric coated products: Opportunities to add clinical relevance to the dissolution test. J. Control. Release, 2020, 325, 323-334.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.031] [PMID: 32649973]
[95]
Emami, J. In vitroin vivo correlation: From theory to application. J. Pharm. Pharm. Sci., 2006, 9, 169-189.
[96]
Cheng, C.; Wu, P-C.; Lee, H-Y.; Hsu, K-Y. Development and validation of an in vitro-in vivo correlation (IVIVC) model for propranolol hydrochloride extended-release matrix formulations. Yao Wu Shi Pin Fen Xi, 2014, 22(2), 257-263.
[97]
Davit, J.M.C. In vitro - in vivo correlations: Tricks and traps 2012.
[98]
Bialer, M.; Sussan, S.; Abu Salach, O.; Danenberg, H.D.; Ben-David, J.; Gibor, Y.; Laor, A. Criteria to assess in vivo performance of sus-tained release products: Application to diltiazem formulations. J. Pharm. Sci., 1995, 84(10), 1160-1163.
[http://dx.doi.org/10.1002/jps.2600841005] [PMID: 8801328]
[99]
Park, M.S.; Choi, D.H. Application of mechanism-based modeling to predict drug quality during the pharmaceutical unit operations of granulation and compression: A review. J. Pharm. Investig., 2020, 50(5), 445-467.
[http://dx.doi.org/10.1007/s40005-020-00489-6]
[100]
Jittavanich, K.; Clemons, C.B.; Kreider, K.; Aljarrah, M.; Evans, E.; Young, G. Modeling, simulation and fabrication of coated structures using the dip coating technique. Chem. Eng. Sci., 2010, 65, 6169-6180.
[http://dx.doi.org/10.1016/j.ces.2010.09.001]
[101]
Boehling, P.; Toschkoff, G.; Knop, K.; Kleinebudde, P.; Just, S.; Funke, A.; Rehbaum, H.; Khinast, J.G. Analysis of large-scale tablet coat-ing: Modeling, simulation and experiments. Eur. J. Pharm. Sci., 2016, 90, 14-24.
[http://dx.doi.org/10.1016/j.ejps.2015.12.022] [PMID: 26709079]
[102]
Mehta, C.; Narayan, R.; Nayak, U. Computational modeling for formulation design. Drug Discov. Today, 2018, 24.
[PMID: 30502513]
[103]
Chen, J.; Gervasio, G.J.; Ng, P.N.; Rydzak, J.; Kord, A.S. Using process analytical technologies for real time monitoring and quality assur-ance in chemical development. Am. Pharm. Rev., 2010, 13, 32-38.
[104]
Rößler, M.; Huth, P.U.; Liauw, M.A. Process analytical technology (PAT) as a versatile tool for real-time monitoring and kinetic evaluation of photocatalytic reactions. React. Chem. Eng., 2020, 5(10), 1992-2002.
[http://dx.doi.org/10.1039/D0RE00256A]
[105]
Pomerantsev, A.L.; Rodionova, O.Y. Process analytical technology: A critical view of the chemometricians. J. Chemometr., 2012, 26(6), 299-310.
[http://dx.doi.org/10.1002/cem.2445]
[106]
Peng, T.; Huang, Y.; Mei, L.; Wu, L.; Chen, L.; Pan, X. Study progression in application of process analytical technologies on film coating. Asian J. Pharm. Sci., 2015, 10(3), 176-185.
[http://dx.doi.org/10.1016/j.ajps.2014.10.002]
[107]
Avalle, P.; Pollitt, M.J.; Bradley, K.; Cooper, B.; Pearce, G.; Djemai, A.; Fitzpatrick, S. Development of Process Analytical Technology (PAT) methods for controlled release pellet coating. Eur. J. Pharm. Biopharm., 2014, 87(2), 244-251.
[http://dx.doi.org/10.1016/j.ejpb.2014.01.008] [PMID: 24503256]
[108]
Moes, J.J.; Ruijken, M.M.; Gout, E.; Frijlink, H.W.; Ugwoke, M.I. Application of process analytical technology in tablet process develop-ment using NIR spectroscopy: Blend uniformity, content uniformity and coating thickness measurements. Int. J. Pharm., 2008, 357(1-2), 108-118.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.062] [PMID: 18394831]

© 2024 Bentham Science Publishers | Privacy Policy