Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Development and Evaluation of Exenatide Loaded PLGA Nanoparticles for Intranasal Delivery in the Treatment of Obesity

Author(s): Tosha Pandya*, Priyanka Bhatt and Ambikandan Misra

Volume 12, Issue 2, 2022

Published on: 15 June, 2022

Page: [149 - 162] Pages: 14

DOI: 10.2174/2210303112666220318155445

Price: $65

Abstract

Background: Obesity, considered a complex condition, is the fastest-growing public health concern worldwide. Its treatment is limited due to the side effects of pharmacological options available, outweighing their benefits.

Aim: The present study aims to formulate a novel biodegradable formulation of exenatide for direct brain delivery through the nasal route.

Methods: To formulate exenatide loaded poly (lactide-co-glycolide) (PLGA) nanoparticles, a double emulsion (w/o/w) solvent evaporation method was employed. A full factorial (33) design of the experiment was used to optimize the formulation.

Results: The entrapment efficiency and particle size of the optimized formulation were found to be 68% and 110 nm, respectively. The in-vitro drug release study indicated the sustained release of 48% drug in 5 days. The safety of drug-loaded PLGA nanoparticles for intranasal delivery was indicated by the sheep nasal toxicity study. The efficacy of the developed nanoparticles was demonstrated by an in-vivo pharmacodynamics study on Albino Wistar rats, showing a 6.2% weight reduction after 30 days of treatment.

Conclusion: Thus, exenatide is a novel peptide having significant weight loss benefits and no severe side effects. Long-term studies in at least two or more animal models followed by extensive clinical evaluation can safely result in a product for clinical use.

Keywords: Obesity, exenatide, PLGA nanoparticles, double emulsification solvent evaporation, sheep nasal toxicity study, in vivo pharmacodynamic study.

Graphical Abstract

[1]
Giordano, S.A.; Garvey, P.B.; Baumann, D.P.; Liu, J.; Butler, C.E. The impact of body mass index on abdominal wall reconstruction outcomes: A comparative study. Plast. Reconstr. Surg., 2017, 139(5), 1234-1244.
[http://dx.doi.org/10.1097/PRS.0000000000003264] [PMID: 28445378]
[2]
Bleich, S.N.; Vercammen, K.A.; Zatz, L.Y.; Frelier, J.M.; Ebbeling, C.B.; Peeters, A. In-terventions to prevent global childhood overweight and obesity: A systematic review. Lancet Diabetes Endocrinol., 2018, 6(4), 332-346.
[http://dx.doi.org/10.1016/S2213-8587(17)30358-3] [PMID: 29066096]
[3]
Ng, M. Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; Abraham, J.P.; Abu-Rmeileh, N.M.; Achoki, T.; AlBuhairan, F.S.; Alemu, Z.A.; Alfonso, R.; Ali, M.K.; Ali, R.; Guzman, N.A.; Ammar, W.; Anwari, P.; Banerjee, A.; Barquera, S.; Basu, S.; Bennett, D.A.; Bhutta, Z.; Blore, J.; Cabral, N.; Nonato, I.C.; Chang, J.C.; Chowdhury, R.; Courville, K.J.; Criqui, M.H.; Cundiff, D.K.; Dabhadkar, K.C.; Dandona, L.; Davis, A.; Dayama, A.; Dharmaratne, S.D.; Ding, E.L.; Durrani, A.M.; Esteghamati, A.; Farzadfar, F.; Fay, D.F.; Feigin, V.L.; Flaxman, A.; Forouzanfar, M.H.; Goto, A.; Green, M.A.; Gupta, R.; Hafezi-Nejad, N.; Hankey, G.J.; Harewood, H.C.; Havmoeller, R.; Hay, S.; Hernandez, L.; Husseini, A.; Idrisov, B.T.; Ikeda, N.; Islami, F.; Jahangir, E.; Jassal, S.K.; Jee, S.H.; Jeffreys, M.; Jonas, J.B.; Kabagambe, E.K.; Khalifa, S.E.; Kengne, A.P.; Khader, Y.S.; Khang, Y.H.; Kim, D.; Kimokoti, R.W.; Kinge, J.M.; Kokubo, Y.; Kosen, S.; Kwan, G.; Lai, T.; Leinsalu, M.; Li, Y.; Liang, X.; Liu, S.; Logroscino, G.; Lotufo, P.A.; Lu, Y.; Ma, J.; Mainoo, N.K.; Mensah, G.A.; Merriman, T.R.; Mokdad, A.H.; Mos-chandreas, J.; Naghavi, M.; Naheed, A.; Nand, D.; Narayan, K.M.; Nelson, E.L.; Neuhouser, M.L.; Nisar, M.I.; Ohkubo, T.; Oti, S.O.; Pedroza, A.; Prabhakaran, D.; Roy, N.; Sampson, U.; Seo, H.; Sepanlou, S.G.; Shibuya, K.; Shiri, R.; Shiue, I.; Singh, G.M.; Singh, J.A.; Skirbekk, V.; Stapelberg, N.J.; Sturua, L.; Sykes, B.L.; Tobias, M.; Tran, B.X.; Trasande, L.; Toyoshima, H.; van de Vijver, S.; Vasankari, T.J.; Veerman, J.L.; Velasquez-Melendez, G.; Vlassov, V.V.; Vollset, S.E.; Vos, T.; Wang, C.; Wang, X.; Weiderpass, E.; Werdecker, A.; Wright, J.L.; Yang, Y.C.; Yatsuya, H.; Yoon, J.; Yoon, S.J.; Zhao, Y.; Zhou, M.; Zhu, S.; Lopez, A.D.; Murray, C.J.; Gakidou, E. Global, regional, and na-tional prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the global burden of disease study 2013. Lancet, 2014, 384(9945), 766-781.
[http://dx.doi.org/10.1016/S0140-6736(14)60460-8] [PMID: 24880830]
[4]
Hill, J.O.; Wyatt, H.R.; Peters, J.C. Energy balance and obesity. Circulation, 2012, 126(1), 126-132.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.087213] [PMID: 22753534]
[5]
Kinlen, D.; Cody, D.; O’Shea, D. Complications of obesity. QJM, 2018, 111(7), 437-443.
[http://dx.doi.org/10.1093/qjmed/hcx152] [PMID: 29025162]
[6]
Jehan, S.; Myers, A.K.; Zizi, F.; Pandi-Perumal, S.R.; Jean-Louis, G.; McFarlane, S.I. Obe-sity, obstructive sleep apnea and type 2 diabetes mellitus: Epidemiology and pathophysiologic in-sights. Sleep Med. Disord., 2018, 2(3), 52-58.
[PMID: 30167574]
[7]
Arnold, M.; Pandeya, N.; Byrnes, G.; Renehan, P.A.G.; Stevens, G.A.; Ezzati, P.M.; Fer-lay, J.; Miranda, J.J.; Romieu, I.; Dikshit, R.; Forman, D.; Soerjomataram, I. Global burden of cancer attributable to high body-mass index in 2012: A population-based study. Lancet Oncol., 2015, 16(1), 36-46.
[http://dx.doi.org/10.1016/S1470-2045(14)71123-4] [PMID: 25467404]
[8]
Dixon, J.B. Obesity and diabetes: The impact of bariatric surgery on type-2 diabetes. World J. Surg., 2009, 33(10), 2014-2021.
[http://dx.doi.org/10.1007/s00268-009-0062-y] [PMID: 19421812]
[9]
Kane, J.A.; Mehmood, T.; Munir, I.; Kamran, H.; Kariyanna, P.T.; Zhyvotovska, A.; Yusupov, D.; Suleman, U.J.; Gustafson, D.R.; McFarlane, S.I. Cardiovascular risk reduction associat-ed with pharmacological weight loss: A meta-analysis. Int. J. Clin. Res. Trials, 2019, 4(1), 5.
[http://dx.doi.org/10.15344/2456-8007/2019/131] [PMID: 31058246]
[10]
Karczewski, J.; Śledzińska, E.; Baturo, A.; Jończyk, I.; Maleszko, A.; Samborski, P.; Begier-Krasińska, B.; Dobrowolska, A. Obesity and inflammation Eur. Cytokine Netw., 2018, 29(3), 83-94.
[http://dx.doi.org/10.1684/ecn.2018.0415] [PMID: 30547890]
[11]
Safari, Z.; Gérard, P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell. Mol. Life Sci., 2019, 76(8), 1541-1558.
[http://dx.doi.org/10.1007/s00018-019-03011-w] [PMID: 30683985]
[12]
Comerma-Steffensen, S.; Grann, M.; Andersen, C.U.; Rungby, J.; Simonsen, U. Cardio-vascular effects of current and future anti-obesity drugs. Curr. Vasc. Pharmacol., 2014, 12(3), 493-504.
[http://dx.doi.org/10.2174/1570161112666140423223529] [PMID: 24846238]
[13]
Yanovski, S.Z.; Yanovski, J.A. Long-term drug treatment for obesity: A systematic and clinical review. JAMA, 2014, 311(1), 74-86.
[http://dx.doi.org/10.1001/jama.2013.281361] [PMID: 24231879]
[14]
Kalra, S.; Baruah, M.P.; Sahay, R.K.; Unnikrishnan, A.G.; Uppal, S.; Adetunji, O. Gluca-gon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future. Indian J. Endocrinol. Metab., 2016, 20(2), 254-267.
[http://dx.doi.org/10.4103/2230-8210.176351] [PMID: 27042424]
[15]
Hayes, M.R.; Kanoski, S.E.; Alhadeff, A.L.; Grill, H.J. Comparative effects of the long-acting GLP-1 receptor ligands, liraglutide and exendin-4, on food intake and body weight suppression in rats. Obesity (Silver Spring), 2011, 19(7), 1342-1349.
[http://dx.doi.org/10.1038/oby.2011.50] [PMID: 21415845]
[16]
Drucker, D.J. Mechanisms of action and therapeutic application of glucagon-like Peptide-1. Cell Metab., 2018, 27(4), 740-756.
[http://dx.doi.org/10.1016/j.cmet.2018.03.001] [PMID: 29617641]
[17]
Brown, T.D.; Whitehead, K.A.; Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater., 2020, 5(2), 127-148.
[http://dx.doi.org/10.1038/s41578-019-0156-6]
[18]
Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal deliv-ery route of drug administration for brain targeting. Brain Res. Bull., 2018, 143, 155-170.
[http://dx.doi.org/10.1016/j.brainresbull.2018.10.009] [PMID: 30449731]
[19]
Pawar, D.; Goyal, A.K.; Mangal, S.; Mishra, N.; Vaidya, B.; Tiwari, S.; Jain, A.K.; Vyas, S.P. Evaluation of mucoadhesive PLGA microparticles for nasal immunization. AAPS J., 2010, 12(2), 130-137.
[http://dx.doi.org/10.1208/s12248-009-9169-1] [PMID: 20077052]
[20]
du Plessis, L.H.; Kotzé, A.F.; Junginger, H.E. Nasal and rectal delivery of insulin with chitosan and N-trimethyl chitosan chloride. Drug Deliv., 2010, 17(6), 399-407.
[http://dx.doi.org/10.3109/10717541003762888] [PMID: 20429846]
[21]
Blasi, P. Poly (lactic acid)/poly (lactic-co-glycolic acid)-based microparticles: An over-view. J. Pharm. Investig., 2019, 49(4), 337-346.
[http://dx.doi.org/10.1007/s40005-019-00453-z]
[22]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[23]
He, W.; Hosseinkhani, H.; Mohammadinejad, R.; Roveimiab, Z.; Hueng, D-Y.; Ou, K-L.; Domb, A.J. Polymeric nanoparticles for therapy and imaging: Bioimaging technology. Polym. Adv. Technol., 2014, 25(11), 1216-1225.
[http://dx.doi.org/10.1002/pat.3381]
[24]
Abedini, F.; Ebrahimi, M.; Roozbehani, A.H.; Domb, A.J.; Hosseinkhani, H. Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polym. Adv. Technol., 2018, 29(10), 2564-2573.
[http://dx.doi.org/10.1002/pat.4375]
[25]
Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Volceanov, A.; Teleanu, R.I. Blood-brain delivery methods using nanotechnology. Pharmaceutics, 2018, 10(4), 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269] [PMID: 30544966]
[26]
Ghadiri, M.; Vasheghani-Farahani, E.; Atyabi, F.; Kobarfard, F.; Mohamadyar-Toupkanlou, F.; Hosseinkhani, H. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J. Biomed. Mater. Res. A, 2017, 105(10), 2851-2864.
[http://dx.doi.org/10.1002/jbm.a.36145] [PMID: 28639394]
[27]
Bin, L.; Guang, D.Q.; Lin, S.; Shu, W.M.; Chun, L.; Ge, W.Y.; Hui, Y.X.; Ming, S.Y.; Yan, C.; Wei, K. Chem. Res., 2010, 26, 33-37.
[28]
Patel, J.; Amrutiya, J.; Bhatt, P.; Javia, A.; Jain, M.; Misra, A. Targeted delivery of mono-clonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tu-mour cells. J. Microencapsul., 2018, 35(2), 204-217.
[http://dx.doi.org/10.1080/02652048.2018.1453560] [PMID: 29542378]
[29]
Tao, X.; Zhang, Q.; Ling, K.; Chen, Y.; Yang, W.; Gao, F.; Shi, G. Effect of pullulan na-noparticle surface charges on HSA complexation and drug release behavior of HSA-bound nanoparti-cles. PLoS One, 2012, 7(11), e49304.
[http://dx.doi.org/10.1371/journal.pone.0049304] [PMID: 23166632]
[30]
Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T.M. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control. Release, 2008, 125(3), 193-209.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.013] [PMID: 18083265]
[31]
Cohen-Sela, E.; Chorny, M.; Koroukhov, N.; Danenberg, H.D.; Golomb, G. A new dou-ble emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparti-cles. J. Control. Release, 2009, 133(2), 90-95.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.073] [PMID: 18848962]
[32]
Bilati, U.; Allémann, E.; Doelker, E. Poly(D,L-lactide-co-glycolide) protein-loaded nano-particles prepared by the double emulsion method-processing and formulation issues for enhanced en-trapment efficiency. J. Microencapsul., 2005, 22(2), 205-214.
[http://dx.doi.org/10.1080/02652040400026442] [PMID: 16019905]
[33]
Giteau, A.; Venier-Julienne, M.C.; Aubert-Pouëssel, A.; Benoit, J.P. How to achieve sus-tained and complete protein release from PLGA-based microparticles? Int. J. Pharm., 2008, 350(1-2), 14-26.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.012] [PMID: 18162341]
[34]
Narvekar, P.; Bhatt, P.; Fnu, G.; Sutariya, V. Axitinib loaded PLGA nanoparticles for age-related macular degeneration: Formulation development and in vitro characterization. Assay Drug Dev. Technol., 2019, 17(4), 167-177.
[http://dx.doi.org/10.1089/adt.2019.920] [PMID: 31184962]
[35]
Seju, U.; Kumar, A.; Sawant, K.K. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater., 2011, 7(12), 4169-4176.
[http://dx.doi.org/10.1016/j.actbio.2011.07.025] [PMID: 21839863]
[36]
Sharma, G.; Mishra, A.K.; Mishra, P.; Misra, A. Intranasal cabergoline: Pharmacokinetic and pharmacodynamic studies. AAPS PharmSciTech, 2009, 10(4), 1321-1330.
[http://dx.doi.org/10.1208/s12249-009-9329-8] [PMID: 19894122]
[37]
Vickers, S.P.; Jackson, H.C.; Cheetham, S.C. The utility of animal models to evaluate novel anti-obesity agents. Br. J. Pharmacol., 2011, 164(4), 1248-1262.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01245.x] [PMID: 21265828]
[38]
Javia, A.; Thakkar, H. Intranasal delivery of tapentadol hydrochloride-loaded chitosan nanoparticles: Formulation, characterisation and its in vivo evaluation. J. Microencapsul., 2017, 34(7), 644-658.
[http://dx.doi.org/10.1080/02652048.2017.1375038] [PMID: 28862072]
[39]
Nimesh, S. Poly (D, L-lactide-co-glycolide)-based nanoparticles. Gene Ther., 2013, 309-329.
[40]
Bao, X.; Gao, M.; Xu, H.; Liu, K.X.; Zhang, C.H.; Jiang, N.; Chu, Q.C.; Guan, X.; Tian, Y. A novel oleanolic acid-loaded PLGA-TPGS nanoparticle for liver cancer treatment. Drug Dev. Ind. Pharm., 2015, 41(7), 1193-1203.
[http://dx.doi.org/10.3109/03639045.2014.938081] [PMID: 25026246]
[41]
Cerqueira, B.B.S.; Lasham, A.; Shelling, A.N.; Al-Kassas, R. Development of biode-gradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater. Sci. Eng. C, 2017, 76, 593-600.
[http://dx.doi.org/10.1016/j.msec.2017.03.121] [PMID: 28482569]
[42]
Naidu, V.G.M.; Madhusudhana, K.; Sashidhar, R.B.; Ramakrishna, S.; Khar, R.K.; Ah-med, F.J.; Diwan, P.V. Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac car-riers. Carbohydr. Polym., 2009, 76(3), 464-471.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.010]
[43]
Bhowmick, S.; Koul, V. Assessment of PVA/silver nanocomposite hydrogel patch as an-timicrobial dressing scaffold: Synthesis, characterization and biological evaluation. Mater. Sci. Eng. C, 2016, 59, 109-119.
[http://dx.doi.org/10.1016/j.msec.2015.10.003] [PMID: 26652355]
[44]
Makadia, H.K.; Siegel, S.J. Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B, Polym. Phys., 2011, 3, 1377-1397.
[45]
Hines, D.J.; Kaplan, D.L. Poly(lactic-co-glycolic) acid-controlled-release systems: Exper-imental and modeling insights. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(3), 257-276.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013006475] [PMID: 23614648]
[46]
Bruschi, M.L. Mathematical models of drug release; Strat. Mod. Drug Release Pharm. Syst, 2015, pp. 63-86.
[47]
Bhatt, P.; Narvekar, P.; Lalani, R.; Chougule, M.B.; Pathak, Y.; Sutariya, V. An in vitro assessment of thermo-reversible gel formulation containing sunitinib nanoparticles for neovascular age-related macular degeneration. AAPS PharmSciTech, 2019, 20(7), 281.
[http://dx.doi.org/10.1208/s12249-019-1474-0] [PMID: 31399890]
[48]
Abdelbary, G.A.; Tadros, M.I. Brain targeting of olanzapine via intranasal delivery of core-shell difunctional block copolymer mixed nanomicellar carriers: in vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies. Int. J. Pharm., 2013, 452(1-2), 300-310.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.084] [PMID: 23684658]
[49]
Nour, S.A.; Abdelmalak, N.S.; Naguib, M.J.; Rashed, H.M.; Ibrahim, A.B. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: in vitro op-timization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics stud-ies. Drug Deliv., 2016, 23(9), 3681-3695.
[http://dx.doi.org/10.1080/10717544.2016.1223216] [PMID: 27648847]
[50]
Pothuraju, R.; Sharma, R.K.; Rather, S.A.; Singh, S. Comparative evaluation of anti-obesity effect of Aloe vera and Gymnema sylvestre supplementation in high-fat diet fed C57BL/6J mice. J. Intercult. Ethnopharmacol., 2016, 5(4), 403-407.
[http://dx.doi.org/10.5455/jice.20160623122710] [PMID: 27757271]
[51]
Panigrahi, D.; Sahu, P.K.; Swain, S.; Verma, R.K. Quality by design prospects of phar-maceuticals application of double emulsion method for PLGA loaded nanoparticles. SN Appl. Sci., 2021, 3(3), 638.
[http://dx.doi.org/10.1007/s42452-021-04609-1]
[52]
Shah, P.; Dubey, P.; Vyas, B.; Kaul, A.; Mishra, A.K.; Chopra, D.; Patel, P. Lamotrigine loaded PLGA nanoparticles intended for direct nose to brain delivery in epilepsy: Pharmacokinetic, pharmacodynamic and scintigraphy study. Artif. Cells Nanomed. Biotechnol., 2021, 49(1), 511-522.
[http://dx.doi.org/10.1080/21691401.2021.1939709] [PMID: 34151674]
[53]
Liu, B.; Dong, Q.; Wang, M.; Shi, L.; Wu, Y.; Yu, X.; Shi, Y.; Shan, Y.; Jiang, C.; Zhang, X.; Gu, T.; Chen, Y.; Kong, W. Preparation, characterization, and pharmacodynamics of ex-enatide-loaded poly(DL-lactic-co-glycolic acid) microspheres. Chem. Pharm. Bull. (Tokyo), 2010, 58(11), 1474-1479.
[http://dx.doi.org/10.1248/cpb.58.1474] [PMID: 21048339]
[54]
Dong, N.; Zhu, C.; Jiang, J.; Huang, D.; Li, X.; Quan, G.; Liu, Y.; Tan, W.; Pan, X.; Wu, C. Development of composite PLGA microspheres containing exenatide-encapsulated lecithin nano-particles for sustained drug release. Asian J. Pharm. Sci., 2020, 15(3), 347-355.
[http://dx.doi.org/10.1016/j.ajps.2019.01.002] [PMID: 32636952]
[55]
Choukaife, H.; Doolaanea, A.A.; Alfatama, M. Alginate nanoformulation: Influence of process and selected variables. Pharmaceuticals (Basel), 2020, 13(11), 335.
[http://dx.doi.org/10.3390/ph13110335] [PMID: 33114120]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy