Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

COVID-19 Stress on Mental and Hair Health: A Marker for Diseases in the Post-Pandemic Era

Author(s): Daniela Xavier Accorsi, Ingrid Aparecida Mendes dos Santos, Juliana Xavier Accorsi, Ursulandréa Sanches Abelan, Celso Martin Júnior, Silvia Bohac, Valéria Bumiller-Bini, Angelica Beate Winter Boldt and Chung Man Chin*

Volume 3, Issue 3, 2022

Published on: 23 May, 2022

Article ID: e080422203322 Pages: 11

DOI: 10.2174/2666796703666220408120226

open access plus

Abstract

The seriousness of the COVID-19 pandemic with accumulating stress factors, including lack of pharmacotherapy, quarantine, social distancing, delay of vaccination, and economic uncertainties, may foster fear and psychiatric disorders that can precipitate or aggravate hair/scalp disease. Hair loss can lead to decreased self-esteem, potentiating the negative effects on social life and generating a vicious cycle of stress during the pandemic. The relationship between environment and behavior can also trigger epigenetic changes in diseases, which may influence the health of the next generations. In this review, we describe the interaction between the physiological mechanisms of stress on hair follicles and hair disorders and openly discuss during pandemic/post-pandemic (not genetically determined but epigenetically triggered) hair loss as a point of concern as a health marker for further development of chronic diseases, such as diabetes, obesity, psychiatric disorders, and others.

Keywords: COVID-19, mental health, stress, hair loss, epigenetics, post-pandemic.

Graphical Abstract

[1]
World Health Organization. Coronavirus disease (COVID-19) dashboard. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 Accessed on Jun 11, 2021.
[2]
Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020; 7(7): 611-27.
[http://dx.doi.org/10.1016/S2215-0366(20)30203-0] [PMID: 32437679]
[3]
Cullen W, Gulati G, Kelly BD. Mental health in the COVID-19 pandemic. QJM 2020; 113(5): 311-2.
[http://dx.doi.org/10.1093/qjmed/hcaa110] [PMID: 32227218]
[4]
Lai J, Ma S, Wang Y, et al. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw Open 2020; 3(3): e203976.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.3976] [PMID: 32202646]
[5]
Vindegaard N, Benros ME. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain Behav Immun 2020; 89: 531-42.
[http://dx.doi.org/10.1016/j.bbi.2020.05.048] [PMID: 32485289]
[6]
Jafferany M, Patel A. Trichopsychodermatology: The psychiatric and psychosocial aspects of hair disorders. Dermatol Ther 2020; 33(1): e13168.
[http://dx.doi.org/10.1111/dth.13168] [PMID: 31714654]
[7]
Alkhamees AA, Alrashed SA, Alzunaydi AA, Almohimeed AS, Aljohani MS. The psychological impact of COVID-19 pandemic on the general population of Saudi Arabia. Compr Psychiatry 2020; 102: 152192..
[http://dx.doi.org/10.1016/j.comppsych.2020.152192] [PMID: 32688022]
[8]
McIntyre RS, Lee Y. Preventing suicide in the context of the COVID-19 pandemic. World Psychiatry 2020; 19(2): 250-1.
[http://dx.doi.org/10.1002/wps.20767] [PMID: 32394579]
[9]
McIntyre RS, Lee Y. Projected increases in suicide in Canada as a consequence of COVID-19. Psychiatry Res 2020; 290: 113104.
[http://dx.doi.org/10.1016/j.psychres.2020.113104] [PMID: 32460184]
[10]
Dsouza DD, Quadros S, Hyderabadwala ZJ, Mamun MA. Aggregated COVID-19 suicide incidences in India: Fear of COVID-19 infection is the prominent causative factor. Psychiatry Res 2020; 290: 113145.
[http://dx.doi.org/10.1016/j.psychres.2020.113145] [PMID: 32544650]
[11]
Deng J, Zhou F, Hou W, et al. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: A meta-analysis. Ann N Y Acad Sci 2021; 1486(1): 90-111.
[http://dx.doi.org/10.1111/nyas.14506] [PMID: 33009668]
[12]
Harber VJ, Sutton JR. Endorphins and exercise. Sports Med 1984; 1(2): 154-71.
[http://dx.doi.org/10.2165/00007256-198401020-00004] [PMID: 6091217]
[13]
Dinas PC, Koutedakis Y, Flouris AD. Effects of exercise and physical activity on depression. Ir J Med Sci 2011; 180(2): 319-25.
[http://dx.doi.org/10.1007/s11845-010-0633-9] [PMID: 21076975]
[14]
Davis GC. Endorphins and pain. Psychiatr Clin North Am 1983; 6(3): 473-87.
[http://dx.doi.org/10.1016/S0193-953X(18)30819-0] [PMID: 6316302]
[15]
Hunt N, McHale S. Reported experiences of persons with alopecia areata. J Loss Trauma 2004; 10(1): 33-50.
[http://dx.doi.org/10.1080/15325020490890633]
[16]
Johnson T, Bankhead T. Hair It is: Examining the experiences of black women with natural hair. Open J Soc Sci 2014; 02(1): 86-100.
[http://dx.doi.org/10.4236/jss.2014.21010]
[17]
Hadshiew IM, Foitzik K, Arck PC, Paus R. Burden of hair loss: Stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. J Invest Dermatol 2004; 123(3): 455-7.
[http://dx.doi.org/10.1111/j.0022-202X.2004.23237.x] [PMID: 15304082]
[18]
Cash TF, Price VH, Savin RC. Psychological effects of androgenetic alopecia on women: Comparisons with balding men and with female control subjects. J Am Acad Dermatol 1993; 29(4): 568-75.
[http://dx.doi.org/10.1016/0190-9622(93)70223-G] [PMID: 8408792]
[19]
Shaikh S, Shaikh S, Shaikh S, Shaikh AA, Saleem SG. Prevalence of hair loss and stress as the cause; A cross-sectional study. Int J Adv Res (Indore) 2016; 4(7): 327-33.
[http://dx.doi.org/10.21474/IJAR01/924]
[20]
Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol 2009; 19(3): R132-42.
[http://dx.doi.org/10.1016/j.cub.2008.12.005] [PMID: 19211055]
[21]
Kobayashi T, Voisin B, Kim DY, et al. Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal bacteria equilibrium. Cell 2019; 176(5): 982-997.e16.
[http://dx.doi.org/10.1016/j.cell.2018.12.031] [PMID: 30712873]
[22]
Buffoli B, Rinaldi F, Labanca M, et al. The human hair: From anatomy to physiology. Int J Dermatol 2014; 53(3): 331-41.
[http://dx.doi.org/10.1111/ijd.12362] [PMID: 24372228]
[23]
Mistriotis P, Andreadis ST. Hair follicle: A novel source of multipotent stem cells for tissue engineering and regenerative medicine. Tissue Eng Part B Rev 2013; 19(4): 265-78.
[http://dx.doi.org/10.1089/ten.teb.2012.0422] [PMID: 23157470]
[24]
Alonso L, Fuchs E. The hair cycle. J Cell Sci 2006; 119(Pt 3): 391-3.
[http://dx.doi.org/10.1242/jcs.02793] [PMID: 16443746]
[25]
Ebling FJ. The biology of hair. Dermatol Clin 1987; 5(3): 467-81.
[http://dx.doi.org/10.1016/S0733-8635(18)30728-9] [PMID: 3301105]
[26]
Bernard BA. The human hair follicle, a bistable organ? Exp Dermatol 2012; 21(6): 401-3.
[http://dx.doi.org/10.1111/j.1600-0625.2012.01457.x] [PMID: 22458655]
[27]
Koch SL, Tridico SR, Bernard BA, Shriver MD, Jablonski NG. The biology of human hair: A multidisciplinary review. Am J Hum Biol 2020; 32(2): e23316.
[http://dx.doi.org/10.1002/ajhb.23316] [PMID: 31479564]
[28]
Chen Y, Lyga J. Brain-skin connection: Stress, inflammation and skin aging. Inflamm Allergy Drug Targets 2014; 13(3): 177-90.
[http://dx.doi.org/10.2174/1871528113666140522104422] [PMID: 24853682]
[29]
Slominski A. A nervous breakdown in the skin: Stress and the epidermal barrier. J Clin Invest 2007; 117(11): 3166-9.
[http://dx.doi.org/10.1172/JCI33508] [PMID: 17975659]
[30]
Slominski A, Wortsman J, Tuckey RC, Paus R. Differential expression of HPA axis homolog in the skin. Mol Cell Endocrinol 2007; 265-266: 143-9.
[http://dx.doi.org/10.1016/j.mce.2006.12.012] [PMID: 17197073]
[31]
McEwen BS, Bowles NP, Gray JD, et al. Mechanisms of stress in the brain. Nat Neurosci 2015; 18(10): 1353-63.
[http://dx.doi.org/10.1038/nn.4086] [PMID: 26404710]
[32]
Liu N, Wang LH, Guo LL, et al. Chronic restraint stress inhibits hair growth via substance P mediated by reactive oxygen species in mice. PLoS One 2013; 8(4): e61574.
[http://dx.doi.org/10.1371/journal.pone.0061574] [PMID: 23637859]
[33]
Fischer TW, Bergmann A, Kruse N, et al. New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic-pituitary-adrenal (HPA) axis (CRH-R1/2, IP3 -R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75NTR and TrkA) in ex vivo human male androgenetic scalp hair follicles. Br J Dermatol 2021; 184(1): 96-110.
[http://dx.doi.org/10.1111/bjd.19115] [PMID: 32271938]
[34]
Elliott E, Ezra-Nevo G, Regev L, Neufeld-Cohen A, Chen A. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat Neurosci 2010; 13(11): 1351-3.
[http://dx.doi.org/10.1038/nn.2642] [PMID: 20890295]
[35]
Sterrenburg L, Gaszner B, Boerrigter J, et al. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS One 2011; 6(11): e28128.
[http://dx.doi.org/10.1371/journal.pone.0028128] [PMID: 22132228]
[36]
Ziegler CG, Krug AW, Zouboulis CC, Bornstein SR. Corticotropin releasing hormone and its function in the skin. Horm Metab Res 2007; 39(2): 106-9.
[http://dx.doi.org/10.1055/s-2007-961809] [PMID: 17326006]
[37]
Anderson E, Shivakumar G. Effects of exercise and physical activity on anxiety. Front Psychiatry 2013; 4: 27.
[http://dx.doi.org/10.3389/fpsyt.2013.00027] [PMID: 23630504]
[38]
Vashist SK, Schneider M. Depression: An insight and need for personalized psychological stress monitoring and management. J Basic Appl Sci 2014; 10: 177-82.
[http://dx.doi.org/10.6000/1927-5129.2014.10.25]
[39]
Hannibal KE, Bishop MD. Chronic stress, cortisol dysfunction, and pain: A psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys Ther 2014; 94(12): 1816-25.
[http://dx.doi.org/10.2522/ptj.20130597] [PMID: 25035267]
[40]
Thom E. Stress and the hair growth cycle: Cortisol-induced hair growth disruption. J Drugs Dermatol 2016; 15(8): 1001-4.
[PMID: 27538002]
[41]
McGinty EE, Presskreischer R, Han H, Barry CL. Psychological distress and loneliness reported by US adults in 2018 and April 2020. JAMA 2020; 324(1): 93-4.
[http://dx.doi.org/10.1001/jama.2020.9740] [PMID: 32492088]
[42]
Ito N, Ito T, Kromminga A, et al. Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J 2005; 19(10): 1332-4.
[http://dx.doi.org/10.1096/fj.04-1968fje] [PMID: 15946990]
[43]
Foitzik K, Krause K, Conrad F, Nakamura M, Funk W, Paus R. Human scalp hair follicles are both a target and a source of prolactin, which serves as an autocrine and/or paracrine promoter of apoptosis-driven hair follicle regression. Am J Pathol 2006; 168(3): 748-56.
[http://dx.doi.org/10.2353/ajpath.2006.050468] [PMID: 16507890]
[44]
Lutz G. Hair loss and hyperprolactinemia in women. Dermatoendocrinol 2012; 4(1): 65-71.
[http://dx.doi.org/10.4161/derm.19472] [PMID: 22870355]
[45]
Vidali S, Knuever J, Lerchner J, et al. Hypothalamic-pituitary-thyroid axis hormones stimulate mitochondrial function and biogenesis in human hair follicles. J Invest Dermatol 2014; 134(1): 33-42.
[http://dx.doi.org/10.1038/jid.2013.286] [PMID: 23949722]
[46]
Paus R, Langan EA, Vidali S, Ramot Y, Andersen B. Neuroendocrinology of the hair follicle: Principles and clinical perspectives. Trends Mol Med 2014; 20(10): 559-70.
[http://dx.doi.org/10.1016/j.molmed.2014.06.002] [PMID: 25066729]
[47]
Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev 2001; 81(1): 449-94.
[http://dx.doi.org/10.1152/physrev.2001.81.1.449] [PMID: 11152763]
[48]
Herman JP, McKlveen JM, Ghosal S, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol 2016; 6(2): 603-21.
[http://dx.doi.org/10.1002/cphy.c150015] [PMID: 27065163]
[49]
Ziegler DR, Cass WA, Herman JP. Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress. J Neuroendocrinol 1999; 11(5): 361-9.
[http://dx.doi.org/10.1046/j.1365-2826.1999.00337.x] [PMID: 10320563]
[50]
Jezova D, Ochedalski T, Glickman M, Kiss A, Aguilera G. Central corticotropin-releasing hormone receptors modulate hypothalamic-pituitary-adrenocortical and sympathoadrenal activity during stress. Neuroscience 1999; 94(3): 797-802.
[http://dx.doi.org/10.1016/S0306-4522(99)00333-4] [PMID: 10579570]
[51]
Zhang B, Ma S, Rachmin I, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 2020; 577(7792): 676-81.
[http://dx.doi.org/10.1038/s41586-020-1935-3] [PMID: 31969699]
[52]
Malkud S. Telogen effluvium: A review. J Clin Diagn Res 2015; 9(9): WE01-3.
[PMID: 26500992]
[53]
Rebora A. Telogen effluvium: A comprehensive review. Clin Cosmet Investig Dermatol 2019; 12: 583-90.
[http://dx.doi.org/10.2147/CCID.S200471] [PMID: 31686886]
[54]
Rizzetto G, Diotallevi F, Campanati A, et al. Telogen effluvium related to post severe SARS-CoV-2 infection: Clinical aspects and our management experience. Dermatol Ther 2021; 34(1): e14547.
[http://dx.doi.org/10.1111/dth.14547] [PMID: 33190397]
[55]
Aksoy H, Yıldırım UM, Ergen P, Gürel MS. COVID-19 induced telogen effluvium. Dermatol Ther 2021; 34(6): e15175.
[http://dx.doi.org/10.1111/dth.15175] [PMID: 34708909]
[56]
Kutlu Ö, Metin A. Relative changes in the pattern of diseases presenting in dermatology outpatient clinic in the era of the COVID-19 pandemic. Dermatol Ther 2020; 33(6): e14096.
[http://dx.doi.org/10.1111/dth.14096] [PMID: 32869938]
[57]
Cline A, Kazemi A, Moy J, Safai B, Marmon S. A surge in the incidence of telogen effluvium in minority predominant communities heavily impacted by COVID-19. J Am Acad Dermatol 2021; 84(3): 773-5.
[http://dx.doi.org/10.1016/j.jaad.2020.11.032] [PMID: 33310111]
[58]
Ayala-Fontánez N, Soler DC, McCormick TS. Current knowledge on psoriasis and autoimmune diseases. Psoriasis (Auckl) 2016; 6: 7-32.
[PMID: 29387591]
[59]
Tampa M, Sarbu MI, Mitran MI, Mitran CI, Matei C, Georgescu SR. The pathophysiological mechanisms and the quest for biomarkers in psoriasis, a stress-related skin disease. Dis Markers 2018; 2018: 5823684.
[http://dx.doi.org/10.1155/2018/5823684] [PMID: 29619128]
[60]
Arnone M, Takahashi MDF, Carvalho AVE, et al. Diagnostic and therapeutic guidelines for plaque psoriasis - Brazilian Society of Dermatology. An Bras Dermatol 2019; 94(2)(Suppl. 1): 76-107.
[http://dx.doi.org/10.1590/abd1806-4841.2019940211] [PMID: 31166402]
[61]
Tziotzios C, Stefanato CM, Fenton DA, Simpson MA, McGrath JÁ. Frontal fibrosing alopecia: Reflections and hypotheses on aetiology and pathogenesis. Exp Dermatol 2016; 25(11): 847-52.
[http://dx.doi.org/10.1111/exd.13071] [PMID: 27198858]
[62]
Pratt CH, King LE Jr, Messenger AG, Christiano AM, Sundberg JP. Alopecia areata. Nat Rev Dis Primers 2017; 3(1): 17011.
[http://dx.doi.org/10.1038/nrdp.2017.11] [PMID: 28300084]
[63]
Rajabi F, Drake LA, Senna MM, Rezaei N. Alopecia areata: A review of disease pathogenesis. Br J Dermatol 2018; 179(5): 1033-48.
[http://dx.doi.org/10.1111/bjd.16808] [PMID: 29791718]
[64]
Navarini AA, Nobbe S, Trüeb RM. Marie antoinette syndrome. Arch Dermatol 2009; 145(6): 656.
[http://dx.doi.org/10.1001/archdermatol.2009.51] [PMID: 19528420]
[65]
Lebwohl B, Söderling J, Roelstraete B, Lebwohl MG, Green PH, Ludvigsson JF. Risk of skin disorders in patients with celiac disease: A population-based cohort study. J Am Acad Dermatol 2020; 32900-5.
[PMID: 33144153]
[66]
Paus R, Bulfone-Paus S, Bertolini M. Hair follicle immune privilege revisited: The key to alopecia areata management. J Investig Dermatol Symp Proc 2018; 19(1): S12-7.
[http://dx.doi.org/10.1016/j.jisp.2017.10.014] [PMID: 29273098]
[67]
Bertolini M, McElwee K, Gilhar A, Bulfone-Paus S, Paus R. Hair follicle immune privilege and its collapse in Alopecia areata. Exp Dermatol 2020; 29(8): 703-25.
[http://dx.doi.org/10.1111/exd.14155] [PMID: 32682334]
[68]
FIvenson D. COVID-19 Association with rapidly progressive forms of Alopecia areata. Int J Dermatol 2021; 60(1): 127-7.
[http://dx.doi.org/10.1111/ijd.15317] [PMID: 33226118]
[69]
Kutlu Ö, Aktaş H, İmren IG, Metin A. Short-term stress-related increasing cases of Alopecia areata during the COVID-19 pandemic. J Dermatolog Treat 2020; 0(0): 1-1.
[http://dx.doi.org/10.1080/09546634.2020.1782820] [PMID: 32538230]
[70]
Turkmen D, Altunisik N, Sener S, Colak C. Evaluation of the effects of COVID-19 pandemic on hair diseases through a web-based questionnaire. Dermatol Ther 2020; 33(6): e13923.
[http://dx.doi.org/10.1111/dth.13923] [PMID: 32594627]
[71]
Rudnicka L, Rakowska A, Waskiel-Burnat A, Kurzeja M, Olszewska M. Mild-to-moderate COVID-19 is not associated with worsening of Alopecia areata: A retrospective analysis of 32 patients. J Am Acad Dermatol 2021; 85(3): 723-5.
[http://dx.doi.org/10.1016/j.jaad.2021.05.020] [PMID: 34051315]
[72]
Rinaldi F, Trink A, Giuliani G, Pinto D. Italian survey for the evaluation of the effects of coronavirus disease 2019 (COVID-19) pandemic on Alopecia areata recurrence. Dermatol Ther (Heidelb) 2021; 11(2): 339-45.
[http://dx.doi.org/10.1007/s13555-021-00498-9] [PMID: 33580408]
[73]
Ramos PM, Miot HA. Female pattern hair loss: A clinical and pathophysiological review. An Bras Dermatol 2015; 90(4): 529-43.
[http://dx.doi.org/10.1590/abd1806-4841.20153370] [PMID: 26375223]
[74]
Siah TW, Muir-Green L, Shapiro J. Female pattern hair loss: A retrospective study in a tertiary referral center. Int J Trichology 2016; 8(2): 57-61.
[http://dx.doi.org/10.4103/0974-7753.188033] [PMID: 27601857]
[75]
Nanes BA. Androgenetic alopecia in COVID-19: Compared to what? J Am Acad Dermatol 2020; 83(6): e451.
[http://dx.doi.org/10.1016/j.jaad.2020.06.1031] [PMID: 32735968]
[76]
Mohamed MS, Moulin TC, Schiöth HB. Sex differences in COVID-19: The role of androgens in disease severity and progression. Endocrine 2021; 71(1): 3-8.
[http://dx.doi.org/10.1007/s12020-020-02536-6] [PMID: 33179220]
[77]
Goren A, McCoy J, Wambier CG, et al. What does androgenetic alopecia have to do with COVID-19? An insight into a potential new therapy. Dermatol Ther 2020; 33(4): e13365.
[http://dx.doi.org/10.1111/dth.13365] [PMID: 32237190]
[78]
McCoy J, Wambier CG, Vano-Galvan S, et al. Racial variations in COVID-19 deaths may be due to androgen receptor genetic variants associated with prostate cancer and androgenetic alopecia. Are anti-androgens a potential treatment for COVID-19? J Cosmet Dermatol 2020; 19(7): 1542-3.
[http://dx.doi.org/10.1111/jocd.13455] [PMID: 32333494]
[79]
Pechtel P, Pizzagalli DA. Effects of early life stress on cognitive and affective function: An integrated review of human literature. Psychopharmacology (Berl) 2011; 214(1): 55-70.
[http://dx.doi.org/10.1007/s00213-010-2009-2] [PMID: 20865251]
[80]
Suor JH, Sturge-Apple ML, Davies PT, Cicchetti D, Manning LG. Tracing differential pathways of risk: Associations among family adversity, cortisol, and cognitive functioning in childhood. Child Dev 2015; 86(4): 1142-58.
[http://dx.doi.org/10.1111/cdev.12376] [PMID: 26081792]
[81]
Mazza M, Marano G, Lai C, Janiri L, Sani G. Danger in danger: Interpersonal violence during COVID-19 quarantine. Psychiatry Res 2020; 289: 113046.
[http://dx.doi.org/10.1016/j.psychres.2020.113046]
[82]
Chamberlain SR, Fineberg NA, Blackwell AD, Clark L, Robbins TW, Sahakian BJ. A neuropsychological comparison of obsessive-compulsive disorder and trichotillomania. Neuropsychologia 2007; 45(4): 654-62.
[http://dx.doi.org/10.1016/j.neuropsychologia.2006.07.016] [PMID: 17005210]
[83]
Pathoulas JT, Olson SJ, Idnani A, Farah RS, Hordinsky MK, Widge AS. Cross-sectional survey examining skin picking and hair pulling disorders during the COVID-19 pandemic. J Am Acad Dermatol 2021; 84(3): 771-3.
[http://dx.doi.org/10.1016/j.jaad.2020.11.011] [PMID: 33279648]
[84]
Öner Ü. Children with trichotillomania in COVID-19 outbreak. J Cosmet Dermatol 2021; 20(7): 1967-8.
[http://dx.doi.org/10.1111/jocd.14200] [PMID: 33950551]
[85]
Phillips TG, Slomiany WP, Allison R. Hair loss: Common causes and treatment. Am Fam Physician 2017; 96(6): 371-8.
[PMID: 28925637]
[86]
Psychology today. How do various cortisol levels impact cognitive functioning? Available from: https://www.psychologytoday.com/us/blog/the-athletes-way/201506/how-do-various-cortisol-levels-impact-cognitive-functioning Accessed on May, 2021.
[87]
Tarry-Adkins JL, Ozanne SE. Mechanisms of early life programming: Current knowledge and future directions. Am J Clin Nutr 2011; 94(6)(Suppl.): 1765S-71S.
[http://dx.doi.org/10.3945/ajcn.110.000620] [PMID: 21543536]
[88]
Choi KR, Records K, Low LK, et al. Promotion of maternal-infant mental health and trauma-informed care during the COVID-19 pandemic. J Obstet Gynecol Neonatal Nurs 2020; 49(5): 409-15.
[http://dx.doi.org/10.1016/j.jogn.2020.07.004] [PMID: 32795425]
[89]
Wang J, Wu Z, Li D, et al. Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 2012; 17(2): 282-301.
[http://dx.doi.org/10.1089/ars.2011.4381] [PMID: 22044276]
[90]
Tiffon C. The impact of nutrition and environmental epigenetics on human health and disease. Int J Mol Sci 2018; 19(11): 3425.
[http://dx.doi.org/10.3390/ijms19113425] [PMID: 30388784]
[91]
Simmons R. Epigenetics and maternal nutrition: Nature v. nurture. Proc Nutr Soc 2011; 70(1): 73-81.
[http://dx.doi.org/10.1017/S0029665110003988] [PMID: 21110912]
[92]
Talarowska M. Epigenetic mechanisms in the neurodevelopmental theory of depression. Depress Res Treat 2020; 2020: 6357873.
[http://dx.doi.org/10.1155/2020/6357873] [PMID: 32373361]
[93]
Poston L, Harthoorn LF, Van Der Beek EM. Obesity in pregnancy: Implications for the mother and lifelong health of the child. A consensus statement. Pediatr Res 2011; 69(2): 175-80.
[http://dx.doi.org/10.1203/PDR.0b013e3182055ede] [PMID: 21076366]
[94]
Schäfer A, Baric RS. Epigenetic landscape during coronavirus infection. Pathogens 2017; 6(1): 8.
[http://dx.doi.org/10.3390/pathogens6010008] [PMID: 28212305]
[95]
Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev 2009; 23(7): 781-3.
[http://dx.doi.org/10.1101/gad.1787609] [PMID: 19339683]
[96]
Jin Z, Liu Y. DNA methylation in human diseases. Genes Dis 2018; 5(1): 1-8.
[http://dx.doi.org/10.1016/j.gendis.2018.01.002] [PMID: 30258928]
[97]
Davis EP, Sandman CA. The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Dev 2010; 81(1): 131-48.
[http://dx.doi.org/10.1111/j.1467-8624.2009.01385.x] [PMID: 20331658]
[98]
Weissman MM, Wickramaratne P, Nomura Y, Warner V, Pilowsky D, Verdeli H. Offspring of depressed parents: 20 years later. Am J Psychiatry 2006; 163(6): 1001-8.
[http://dx.doi.org/10.1176/ajp.2006.163.6.1001] [PMID: 16741200]
[99]
Gavin NI, Gaynes BN, Lohr KN, Meltzer-Brody S, Gartlehner G, Swinson T. Perinatal depression: A systematic review of prevalence and incidence. Obstet Gynecol 2005; 106(5 Pt 1): 1071-83.
[http://dx.doi.org/10.1097/01.AOG.0000183597.31630.db] [PMID: 16260528]
[100]
Osborne S, Biaggi A, Chua TE, et al. Antenatal depression programs cortisol stress reactivity in offspring through increased maternal inflammation and cortisol in pregnancy: The Psychiatry Research and Motherhood - Depression (PRAM-D) Study. Psychoneuroendocrinology 2018; 98: 211-21.
[http://dx.doi.org/10.1016/j.psyneuen.2018.06.017] [PMID: 30033161]
[101]
Non AL, Binder AM, Kubzansky LD, Michels KB. Genome-wide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy. Epigenetics 2014; 9(7): 964-72.
[http://dx.doi.org/10.4161/epi.28853] [PMID: 24751725]
[102]
Vigod SN, Wilson CA, Howard LM. Depression in pregnancy. BMJ 2016; 352: i1547.
[http://dx.doi.org/10.1136/bmj.i1547] [PMID: 27013603]
[103]
Gentile S. Untreated depression during pregnancy: Short- and long-term effects in offspring. A systematic review. Neuroscience 2017; 342: 154-66.
[http://dx.doi.org/10.1016/j.neuroscience.2015.09.001] [PMID: 26343292]
[104]
Nemoda Z, Szyf M. Epigenetic alterations and prenatal maternal depression. Birth Defects Res 2017; 109(12): 888-97.
[http://dx.doi.org/10.1002/bdr2.1081] [PMID: 28714605]
[105]
Viuff AC, Sharp GC, Rai D, et al. Maternal depression during pregnancy and cord blood DNA methylation: Findings from the avon longitudinal study of parents and children. Transl Psychiatry 2018; 8(1): 244.
[http://dx.doi.org/10.1038/s41398-018-0286-4] [PMID: 30405117]

© 2025 Bentham Science Publishers | Privacy Policy