Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Antidiabetic Properties of Nymphaea Species (Water Lilies): A Review

Author(s): A. H. M. Safayet Ullah Prodhan* and Farzana Sharmin Mridu

Volume 13, Issue 1, 2023

Published on: 23 August, 2022

Article ID: e050422203103 Pages: 35

DOI: 10.2174/2210315512666220405083207

Price: $65

Abstract

Diabetes mellitus is a highly prevalent metabolic disease specified by increased blood glucose and impaired insulin function. Various antidiabetic drugs are currently being used, but plant sources of antidiabetic agents are of recent scientific interest as they possess multitarget effects and the most negligible side effects. Nymphaea species (water lilies) have long been traditionally taken as food and antidiabetic agents. Growing research evidence suggests that different Nymphaea species exhibit antidiabetic activity. Therefore, we took an endeavor to summarize the available scientific literature on the antidiabetic activity of the genus Nymphaea. We extensively searched in three search engines and selected 27 in vivo, 9 in vitro, and 4 in silico studies regarding antidiabetic properties of 7 Nymphaea species named Nymphaea stellata, Nymphaea pubescens, Nymphaea lotus, Nymphaea alba, Nymphaea nouchali, Nymphaea rubra, and Nymphaea odorata. All these studies coincided with the conclusion that the Nymphaea species have effective antidiabetic properties and safety. Therefore, Nymphaea species are potential candidates for evidence-based complementary and alternative medicine and integrative medicine. The species have shown antidiabetic properties through antihyperglycemic, antihyperlipidemic, pancreatic β cell-regenerating, insulin secretion and sensitivity promoting, glucose uptake and metabolizing protein-expressing, intestinal glucose metabolizing enzyme inhibiting, hepatoprotective, cardiovascular protective, nephroprotective, antioxidant, and anti-inflammatory activities. A variety of antidiabetic compounds have been identified in the 7 Nymphaea species, which can be responsible for the antidiabetic activity exerted by diverse mechanisms. Future studies should be conducted on other Nymphaea species and different plant parts and diabetic parameters to investigate their antidiabetic activity and responsible phytochemical contents.

Keywords: Nymphaea, diabetes mellitus, antidiabetic plant, bioactive compounds, complementary medicine, alternative medicine, traditional medicine, phytotherapy.

Graphical Abstract

[1]
Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci. Rep., 2020, 10(1), 14790.
[http://dx.doi.org/10.1038/s41598-020-71908-9] [PMID: 32901098]
[2]
Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabe-tes: A systematic review. Electron. Physician, 2016, 8(1), 1832-1842.
[http://dx.doi.org/10.19082/1832] [PMID: 26955456]
[3]
Salehi, B.; Ata, A. V Anil Kumar, N.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Tsouh Fokou, P.V.; Kobarfard, F.; Amiruddin Zakaria, Z.; Iriti, M.; Taheri, Y.; Martorell, M.; Sureda, A.; Setzer, W.N.; Durazzo, A.; Lucarini, M.; Santini, A.; Capasso, R.; Ostrander, E.A.; Choudhary, M.I.; Cho, W.C.; Sharifi-Rad, J. Antidiabetic potential of medicinal plants and their active com-ponents. Biomolecules, 2019, 9(10), 551.
[http://dx.doi.org/10.3390/biom9100551] [PMID: 31575072]
[4]
Makhoba, X.H.; Viegas, C., Jr; Mosa, R.A.; Viegas, F.P.D.; Pooe, O.J. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des. Devel. Ther., 2020, 14, 3235-3249.
[http://dx.doi.org/10.2147/DDDT.S257494] [PMID: 32884235]
[5]
Tabish, S.A. Complementary and alternative healthcare: Is it evidence-based? Int. J. Health Sci. (Qassim), 2008, 2(1), V-IX.
[PMID: 21475465]
[6]
Gannotta, R.; Malik, S.; Chan, A.Y.; Urgun, K.; Hsu, F.; Vadera, S. Integrative medicine as a vital component of patient care. Cureus, 2018, 10(8), e3098.
[http://dx.doi.org/10.7759/cureus.3098] [PMID: 30338174]
[7]
Selvakumari, E.; Shantha, A.; Kumar, C.S.; Prabhu, T.P. Phytochemistry and pharmacology of the genus Nymphaea. J. Acad. Ind. Res., 2016, 5(7), 98-108.
[8]
Singh, M.; Jain, A.P. A review on genus Nymphaea: Multi-potential medicinal plant. Asian J. Pharm. Educ. Res., 2017, 6(4), 1-9.
[9]
Pareek, A.; Kumar, A. Pharmocognostic studies on Nymphaea spp. World J. Pharm. Res., 2016, 5(6), 1273-1290.
[10]
Chauhan, A.; Semwal, R.B.; Semwal, D.K. Ayurvedic approaches used in prevention and treatment of type 2 diabetes mellitus. J. Convent. Knowl. Holist. Health, 2017, 1(1), 1-15.
[11]
Debnath, S.; Ghosh, S.; Hazra, B. Inhibitory effect of Nymphaea pubescens Willd. flower extract on carrageenan-induced inflammation and CCl4-induced hepatotoxicity in rats. Food Chem. Toxicol., 2013, 59, 485-491.
[http://dx.doi.org/10.1016/j.fct.2013.06.036] [PMID: 23827777]
[12]
Sarma, B. Survey of medicinal plants with potential antidiabetic activity used by villagers in lower Assam districts of North-East, India. Int. J. Herb. Med., 2020, 8(2), 01-6.
[13]
Simmonds, M.S.J.; Howes, M-J.R. Plants used in the treatment of diabetes. In: Traditional Medicines for Modern Times Antidiabetic Plants, 1st ed; Soumyanath, A., Ed.; CRC Press: Boca Raton, 2005, pp. 19-82.
[14]
Salihu Shinkafi, T.; Bello, L.; Wara Hassan, S.; Ali, S. An ethnobotanical survey of antidiabetic plants used by Hausa-Fulani tribes in So-koto, Northwest Nigeria. J. Ethnopharmacol., 2015, 172, 91-99.
[http://dx.doi.org/10.1016/j.jep.2015.06.014] [PMID: 26117532]
[15]
Oosthuizen, C.B.; Fisher, M.; Lall, N. Chapter 31 Nymphaea caerulea. In: Underexplored medicinal plants from Sub-Saharan Africa; Lall, N., Ed.; Academic Press, 2020, pp. 205-210.
[http://dx.doi.org/10.1016/B978-0-12-816814-1.00031-4]
[16]
Raja, M.M.; Mishra, S.H.; Tamboli, R.S.; Agilandeswari, D. Antidiabetic and antiplatelet aggregation study of various methanol fractions of Nymphaea stellata Willd. leaves. Herba Pol., 2017, 63(3), 25-34.
[http://dx.doi.org/10.1515/hepo-2017-0016]
[17]
Anand, A.; Komati, A.; Katragunta, K.; Shaik, H.; Nagendla, N.K.; Kuncha, M.; Mudiam, M.K.R.; Babu, K.S.; Tiwari, A.K. Phytometabo-lomic analysis of boiled rhizome of Nymphaea nouchali (Burm. f.) using UPLC-Q-TOF-MSE, LC-QqQ-MS & GC-MS and evaluation of antihyperglycemic and antioxidant activities. Food Chem., 2021, 342, 128313.
[http://dx.doi.org/10.1016/j.foodchem.2020.128313 ] [PMID: 33067043]
[18]
Rahuja, N.; Mishra, A.; Gautam, S. Antidiabetic activity in flowers of Nymphaea rubra. Int. J. Pharm. Sci. Rev. Res., 2013, 22(1), 121-133.
[19]
Shajeela, P.S.; Kalpanadevi, V.; Mohan, V.R. Potential antidiabetic, hypolipidaemic and antioxidant effects of Nymphaea pubescens extract in alloxan induced diabetic rats. J. Appl. Pharm. Sci., 2012, 2(2), 83-88.
[20]
Chaurasia, S.; Sharma, V.; Dar, A.I. In-vivo antidiabetic activity of alcoholic and aqueous extract of Nymphaea lotus in rat model. Inventi Rapid. Ethnopharmacology, 2011, 2011(3), 1-2.
[21]
Mushtaq, A.; Iqbal, N.; Jamil, M. Anti-diabetic and anti-hyperlipidemic action of aqueous ethanolic extracts of Mentha spicata (leaves), Plumeria alba (leaves) and Nymphaea alba (flowers and rhizomes). Int. J. Biol. Pharm. Allied Sci., 2017, 6(1), 108-124.
[22]
Dodamani, S.S.; Sanakal, R.D.; Kaliwal, B.B. Antidiabetic efficacy of ethanolic leaf extract of Nymphaea odorata in alloxan induced dia-betic mice. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 338-341.
[23]
Stalin, A.; Stephen Irudayaraj, S.; Ramesh Kumar, D.; Balakrishna, K.; Ignacimuthu, S.; Al-Dhabi, N.A.; Duraipandiyan, V. Identifying potential PPARγ agonist/partial agonist from plant molecules to control type 2 diabetes using in silico and in vivo models. Med. Chem. Res., 2016, 25(9), 1980-1992.
[http://dx.doi.org/10.1007/s00044-016-1621-z]
[24]
Munhoz, A.C.M.; Frode, T.S. Isolated compounds from natural products with potential antidiabetic activity - a systematic review. Curr. Diabetes Rev., 2018, 14(1), 36-106.
[PMID: 28474555]
[25]
Somasundaram, G.; Inbaraj, S.D.; Madhusudhanan, N.; Konda, V.G.R.; Madhavi, E. Antioxidant and free radical scavenging activity of Nymphaea stellata: In vitro study. J. Pharm. Res., 2012, 5(3), 1350-1352.
[26]
Aliyu, M.; Atiku, M.K.; Abdullahi, N.; Imam, A.A.; Kankara, I.A. Evaluation of in vitro antioxidant potentials of Nymphaea lotus and Nymphaea pubescens seed oils. Int. J. Biochem. Res. Rev., 2018, 24(1), 1-8.
[http://dx.doi.org/10.9734/IJBCRR/2018/40107]
[27]
Khan, M.A.H. Nutritional composition, phytochemical and antioxidant activity of stem of (Nymphaea nouchali) and (Nymphaea rubra),, Master of Science in Applied Human Nutrition and Dietetics Thesis. Chittagong, Bangladesh: Chattogram Veterinary and Animal Sciences University, 2019.
[28]
Maritim, A.C.; Sanders, R.A.; Watkins, J.B. III Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol., 2003, 17(1), 24-38.
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[29]
Giacco, F.; Brownlee, M.; Schmidt, A.M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[30]
Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev., 2013, 93(1), 137-188.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[31]
van Belle, T.L.; Coppieters, K.T.; von Herrath, M.G. Type 1 diabetes: Etiology, immunology, and therapeutic strategies. Physiol. Rev., 2011, 91(1), 79-118.
[http://dx.doi.org/10.1152/physrev.00003.2010] [PMID: 21248163]
[32]
Alonso-Magdalena, P.; Quesada, I.; Nadal, A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2011, 7(6), 346-353.
[http://dx.doi.org/10.1038/nrendo.2011.56] [PMID: 21467970]
[33]
Fonseca, V.A. Defining and characterizing the progression of type 2 diabetes. Diabetes Care, 2009, 32(Suppl. 2), S151-S156.
[http://dx.doi.org/10.2337/dc09-S301] [PMID: 19875543]
[34]
Mauricio, D.; Alonso, N.; Gratacòs, M. Chronic diabetes complications: The need to move beyond classical concepts. Trends Endocrinol. Metab., 2020, 31(4), 287-295.
[http://dx.doi.org/10.1016/j.tem.2020.01.007] [PMID: 32033865]
[35]
Verhulst, M.J.L.; Loos, B.G.; Gerdes, V.E.A.; Teeuw, W.J. Evaluating all potential oral complications of diabetes mellitus. Front. Endocrinol. (Lausanne), 2019, 10, 56.
[http://dx.doi.org/10.3389/fendo.2019.00056] [PMID: 30962800]
[36]
Sailaja, Y.R.; Baskar, R.; Saralakumari, D. The antioxidant status during maturation of reticulocytes to erythrocytes in type 2 diabetics. Free Radic. Biol. Med., 2003, 35(2), 133-139.
[http://dx.doi.org/10.1016/S0891-5849(03)00071-6] [PMID: 12853069]
[37]
Mahmoud, A.A.; Nor El-Din, A.K.A. Glucose-6-phosphate dehydrogenase activity and protein oxidative modification in patients with type 2 diabetes mellitus. J. Biomark., 2013, 2013, 430813.
[http://dx.doi.org/10.1155/2013/430813] [PMID: 26317017]
[38]
Turkmen, K. Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: The Four Horse-men of the Apocalypse. Int. Urol. Nephrol., 2017, 49(5), 837-844.
[http://dx.doi.org/10.1007/s11255-016-1488-4] [PMID: 28035619]
[39]
Vergès, B. Pathophysiology of diabetic dyslipidaemia: Where are we? Diabetologia, 2015, 58(5), 886-899.
[http://dx.doi.org/10.1007/s00125-015-3525-8] [PMID: 25725623]
[40]
Sobczak, A.I.S.; Blindauer, C.A.; Stewart, A.J. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients, 2019, 11(9), 2022.
[http://dx.doi.org/10.3390/nu11092022]
[41]
Mooradian, A.D. Dyslipidemia in type 2 diabetes mellitus. Nat. Clin. Pract. Endocrinol. Metab., 2009, 5(3), 150-159.
[PMID: 19229235]
[42]
Dokken, B.B. The pathophysiology of cardiovascular disease and diabetes: Beyond blood pressure and lipids. Diabetes Spectr., 2008, 21(3), 160-165.
[http://dx.doi.org/10.2337/diaspect.21.3.160]
[43]
Vinik, A.I.; Erbas, T.; Park, T.S.; Nolan, R.; Pittenger, G.L. Platelet dysfunction in type 2 diabetes. Diabetes Care, 2001, 24(8), 1476-1485.
[http://dx.doi.org/10.2337/diacare.24.8.1476] [PMID: 11473089]
[44]
Cheung, B.M.Y.; Li, C. Diabetes and hypertension: Is there a common metabolic pathway? Curr. Atheroscler. Rep., 2012, 14(2), 160-166.
[http://dx.doi.org/10.1007/s11883-012-0227-2] [PMID: 22281657]
[45]
Islam, S.; Rahman, S.; Haque, T.; Sumon, A.H.; Ahmed, A.M.; Ali, N. Prevalence of elevated liver enzymes and its association with type 2 diabetes: A cross-sectional study in Bangladeshi adults. Endocrinol. Diabetes Metab., 2020, 3(2), e00116.
[http://dx.doi.org/10.1002/edm2.116] [PMID: 32318634]
[46]
Harris, E.H. Elevated liver function tests in type 2 diabetes. Clin. Diabetes, 2005, 23(3), 115-119.
[http://dx.doi.org/10.2337/diaclin.23.3.115]
[47]
Agius, L. Targeting hepatic glucokinase in type 2 diabetes: Weighing the benefits and risks. Diabetes, 2009, 58(1), 18-20.
[http://dx.doi.org/10.2337/db08-1470] [PMID: 19114725]
[48]
van Poelje, P.D.; Potter, S.C.; Erion, M.D. Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes.In: Diabetes - perspectives in drug therapy; Schwanstecher, M., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011, pp. 279-301.
[http://dx.doi.org/10.1007/978-3-642-17214-4_12]
[49]
Clore, J.N.; Stillman, J.; Sugerman, H. Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes, 2000, 49(6), 969-974.
[http://dx.doi.org/10.2337/diabetes.49.6.969] [PMID: 10866049]
[50]
Habte, M.L.; Melka, D.S.; Degef, M.; Menon, M.K.C.; Yifter, H.; Feyisa, T.O. Comparison of lipid profile, liver enzymes, creatine kinase and lactate dehydrogenase among type II diabetes mellitus patients on statin therapy. Diabetes Metab. Syndr. Obes., 2020, 13, 763-773.
[http://dx.doi.org/10.2147/DMSO.S234382] [PMID: 32256093]
[51]
Bhatt, H.B.; Smith, R.J. Fatty liver disease in diabetes mellitus. Hepatobiliary Surg. Nutr., 2015, 4(2), 101-108.
[PMID: 26005676]
[52]
Simonen, P.P.; Gylling, H.K.; Miettinen, T.A. Diabetes contributes to cholesterol metabolism regardless of obesity. Diabetes Care, 2002, 25(9), 1511-1515.
[http://dx.doi.org/10.2337/diacare.25.9.1511] [PMID: 12196419]
[53]
Ma, D.W.L.; Arendt, B.M.; Hillyer, L.M.; Fung, S.K.; McGilvray, I.; Guindi, M.; Allard, J.P. Plasma phospholipids and fatty acid composi-tion differ between liver biopsy-proven nonalcoholic fatty liver disease and healthy subjects. Nutr. Diabetes, 2016, 6(7), e220.
[http://dx.doi.org/10.1038/nutd.2016.27] [PMID: 27428872]
[54]
Mohamed, J.; Nazratun Nafizah, A.H.; Zariyantey, A.H.; Budin, S.B. Mechanisms of diabetes-induced liver damage: The role of oxidative stress and inflammation. Sultan Qaboos Univ. Med. J., 2016, 16(2), e132-e141.
[http://dx.doi.org/10.18295/squmj.2016.16.02.002] [PMID: 27226903]
[55]
Kwon, E.; Ahn, C. Low hemoglobin concentration is associated with several diabetic profiles. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2012, 27(3), 273-274.
[http://dx.doi.org/10.3904/kjim.2012.27.3.273] [PMID: 23019390]
[56]
Bhatia, K.; Misra, P.; Singh, A.; Mukherjee, B.; Ambade, V.N. Study of blood urea nitrogen (BUN), serum creatinine in diabetic and non-diabetic patients in a tertiary care hospital. Int. J. Med. Biomed. Sci., 2019, 3(4), 180-186.
[http://dx.doi.org/10.32553/ijmbs.v3i4.216]
[57]
Pathan, S.B.; Jawade, P.; Lalla, P. Correlation of serum urea and serum creatinine in diabetics patients and normal individuals. Int. J. Clin. Biochem. Res., 2020, 7(1), 45-48.
[http://dx.doi.org/10.18231/j.ijcbr.2020.009]
[58]
Kodama, S.; Saito, K.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Saito, A.; Sone, H. Association between serum uric acid and development of type 2 diabetes. Diabetes Care, 2009, 32(9), 1737-1742.
[http://dx.doi.org/10.2337/dc09-0288] [PMID: 19549729]
[59]
Bae, J.C.; Seo, S.H.; Hur, K.Y.; Kim, J.H.; Lee, M.S.; Lee, M.K.; Lee, W.Y.; Rhee, E.J.; Oh, K.W. Association between serum albumin, insulin resistance, and incident diabetes in nondiabetic subjects. Endocrinol. Metab. (Seoul), 2013, 28(1), 26-32.
[http://dx.doi.org/10.3803/EnM.2013.28.1.26] [PMID: 24396647]
[60]
Chang, D.C.; Xu, X.; Ferrante, A.W., Jr; Krakoff, J. Reduced plasma albumin predicts type 2 diabetes and is associated with greater adi-pose tissue macrophage content and activation. Diabetol. Metab. Syndr., 2019, 11(1), 14.
[http://dx.doi.org/10.1186/s13098-019-0409-y] [PMID: 30774722]
[61]
Gul, A.; Rahman, M.A. Comparison of blood protein levels between diabetic and non-diabetic patients with retinopathy. J. Coll. Physicians Surg. Pak., 2006, 16(6), 408-411.
[PMID: 16787618]
[62]
Mohammed, N.J. AL-Gazally, M.E.; Awadh, M.A.A. Evaluation the serum total protein in patients with diabetes mellitus (type I and type II) and study genetic level of glutathione-S-transferaseµ 1. Med. J. Babylon., 2015, 12(3), 625-631.
[63]
Sun, H.; Yuan, Y.; Sun, Z-L. Cholesterol contributes to diabetic nephropathy through SCAP-SREBP-2 pathway. Int. J. Endocrinol., 2013, 2013, 592576.
[http://dx.doi.org/10.1155/2013/592576] [PMID: 24369464]
[64]
Penno, G.; Solini, A.; Zoppini, G.; Fondelli, C.; Trevisan, R.; Vedovato, M.; Gruden, G.; Lamacchia, O.; Pontiroli, A.E.; Arosio, M.; Orsi, E.; Pugliese, G. Hypertriglyceridemia is independently associated with renal, but not retinal complications in subjects with type 2 diabetes: A cross-sectional analysis of the renal insufficiency and cardiovascular events (RIACE) Italian multicenter study. PLoS One, 2015, 10(5), e0125512.
[http://dx.doi.org/10.1371/journal.pone.0125512] [PMID: 25942403]
[65]
Hou, B.; He, P.; Ma, P.; Yang, X.; Xu, C.; Lam, S.M.; Shui, G.; Yang, X.; Zhang, L.; Qiang, G.; Du, G. Comprehensive lipidome profiling of the kidney in early-stage diabetic nephropathy. Front. Endocrinol. (Lausanne), 2020, 11, 359.
[http://dx.doi.org/10.3389/fendo.2020.00359] [PMID: 32655493]
[66]
Wiwanitkit, V. Glucosuria and albuminuria in diabetic nephropathy: A consideration at nanolevel. J. Diabetes Complications, 2007, 21(3), 164-165.
[http://dx.doi.org/10.1016/j.jdiacomp.2005.11.001] [PMID: 17493549]
[67]
Lee, C.G.; Boyko, E.J.; Barrett-Connor, E.; Miljkovic, I.; Hoffman, A.R.; Everson-Rose, S.A.; Lewis, C.E.; Cawthon, P.M.; Strotmeyer, E.S.; Orwoll, E.S. Insulin sensitizers may attenuate lean mass loss in older men with diabetes. Diabetes Care, 2011, 34(11), 2381-2386.
[http://dx.doi.org/10.2337/dc11-1032] [PMID: 21926282]
[68]
Dheir, I.M.; Abu Mettleq, A.S.; Elsharif, A.A.; Abu Al-qumboz, M.N.; Abu-Naser, S.S. Knowledge based system for diabetes diagnosis using SL5 object. Int. J. Acad. Res., 2019, 3(4), 1-10.
[69]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuria-kose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne), 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[70]
Kerru, N.; Singh-Pillay, A.; Awolade, P.; Singh, P. Current anti-diabetic agents and their molecular targets: A review. Eur. J. Med. Chem., 2018, 152, 436-488.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.061] [PMID: 29751237]
[71]
Kaur, P.; Mittal, A.; Nayak, S.K.; Vyas, M.; Mishra, V.; Khatik, G.L. Current strategies and drug targets in the management of type 2 dia-betes mellitus. Curr. Drug Targets, 2018, 19(15), 1738-1766.
[http://dx.doi.org/10.2174/1389450119666180727142902] [PMID: 30051787]
[72]
Bashary, R.; Vyas, M.; Nayak, S.K.; Suttee, A.; Verma, S.; Narang, R.; Khatik, G.L. An insight of alpha-amylase inhibitors as a valuable tool in the management of type 2 diabetes mellitus. Curr. Diabetes Rev., 2020, 16(2), 117-136.
[http://dx.doi.org/10.2174/1573399815666190618093315] [PMID: 31237215]
[73]
Alam, F.; Islam, M.A.; Khalil, M.I.; Gan, S.H. Metabolic control of type 2 diabetes by targeting the GLUT4 glucose transporter: Interven-tion approaches. Curr. Pharm. Des., 2016, 22(20), 3034-3049.
[http://dx.doi.org/10.2174/1381612822666160307145801] [PMID: 26951104]
[74]
Sandouk, T.; Reda, D.; Hofmann, C. Antidiabetic agent pioglitazone enhances adipocyte differentiation of 3T3-F442A cells. Am. J. Physiol., 1993, 264(6 Pt 1), C1600-C1608.
[http://dx.doi.org/10.1152/ajpcell.1993.264.6.C1600] [PMID: 8333508]
[75]
Yamagishi, S.; Nakamura, N.; Suematsu, M.; Kaseda, K.; Matsui, T. Advanced glycation end products: A molecular target for vascular complications in diabetes. Mol. Med., 2015, 21(1)(Suppl. 1), S32-S40.
[http://dx.doi.org/10.2119/molmed.2015.00067] [PMID: 26605646]
[76]
Yaribeygi, H.; Atkin, S.L.; Jamialahmadi, T.; Sahebkar, A. A review on the effects of new anti-diabetic drugs on platelet function. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(3), 328-334.
[http://dx.doi.org/10.2174/1871530319666191014110414] [PMID: 31612835]
[77]
Pollack, R.M.; Donath, M.Y.; LeRoith, D.; Leibowitz, G. Anti-inflammatory agents in the treatment of diabetes and its vascular complica-tions. Diabetes Care, 2016, 39(Suppl. 2), S244-S252.
[http://dx.doi.org/10.2337/dcS15-3015] [PMID: 27440839]
[78]
Liu, X.; Liu, W.; Ding, C.; Zhao, Y.; Chen, X.; Khatoon, S.; Zheng, Y.; Cheng, Z.; Xi, G. Antidiabetic effects of arginyl-fructosyl-glucose, a nonsaponin fraction from ginseng processing in streptozotocin-induced type 2 diabetic mice through regulating the PI3K/AKT/GSK-3B AND BCL-2/BAX signaling pathways. Evid. Based Complement. Alternat. Med., 2020, 2020, 3707904.
[http://dx.doi.org/10.1155/2020/3707904] [PMID: 32714403]
[79]
Lavin, D.P.; White, M.F.; Brazil, D.P. IRS proteins and diabetic complications. Diabetologia, 2016, 59(11), 2280-2291.
[http://dx.doi.org/10.1007/s00125-016-4072-7] [PMID: 27514532]
[80]
Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci., 2018, 14(11), 1483-1496.
[http://dx.doi.org/10.7150/ijbs.27173] [PMID: 30263000]
[81]
Stanger, B.Z. HNF4A and diabetes: Injury before insult? Diabetes, 2008, 57(6), 1461-1462.
[http://dx.doi.org/10.2337/db08-0454] [PMID: 18511449]
[82]
Krishan, S.; Richardson, D.R.; Sahni, S. Gene of the month. AMP kinase (PRKAA1). J. Clin. Pathol., 2014, 67(9), 758-763.
[http://dx.doi.org/10.1136/jclinpath-2014-202422] [PMID: 24895169]
[83]
Hirasaka, K.; Kohno, S.; Goto, J.; Furochi, H.; Mawatari, K.; Harada, N.; Hosaka, T.; Nakaya, Y.; Ishidoh, K.; Obata, T.; Ebina, Y.; Gu, H.; Takeda, S.; Kishi, K.; Nikawa, T. Deficiency of Cbl-b gene enhances infiltration and activation of macrophages in adipose tissue and causes peripheral insulin resistance in mice. Diabetes, 2007, 56(10), 2511-2522.
[http://dx.doi.org/10.2337/db06-1768] [PMID: 17601987]
[84]
Zhang, F.; Xu, X.; Zhang, Y.; Zhou, B.; He, Z.; Zhai, Q. Gene expression profile analysis of type 2 diabetic mouse liver. PLoS One, 2013, 8(3), e57766.
[http://dx.doi.org/10.1371/journal.pone.0057766] [PMID: 23469233]
[85]
von Wilamowitz-Moellendorff, A.; Hunter, R.W.; García-Rocha, M.; Kang, L.; López-Soldado, I.; Lantier, L.; Patel, K.; Peggie, M.W.; Martínez-Pons, C.; Voss, M.; Calbó, J.; Cohen, P.T.; Wasserman, D.H.; Guinovart, J.J.; Sakamoto, K. Glucose-6-phosphate-mediated acti-vation of liver glycogen synthase plays a key role in hepatic glycogen synthesis. Diabetes, 2013, 62(12), 4070-4082.
[http://dx.doi.org/10.2337/db13-0880] [PMID: 23990365]
[86]
Selvakumari, E. Studies on Nymphaea pubescens Willd. (Nymphaeaceae) - a plant drug of aquatic flora interest. Doctor of Philosophy in Pharmacy Thesis. Chennai, India: C.L. Baid Metha College of Pharmacy, 2012.
[87]
Subash-Babu, P.; Ignacimuthu, S.; Alshatwi, A.A. Nymphayol increases glucose-stimulated insulin secretion by RIN-5F cells and GLUT4-mediated insulin sensitization in type 2 diabetic rat liver. Chem. Biol. Interact., 2015, 226, 72-81.
[http://dx.doi.org/10.1016/j.cbi.2014.12.011] [PMID: 25499137]
[88]
Inthongkaew, P. Chatsumpun, N.; Supasuteekul, C.; Kitisripanya, T.; Putalun, W.; Likhitwitayawuid, K.; Sritularak, B. α-glucosidase and pancreatic lipase inhibitory activity and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum. Rev. Bras. Farmacogn., 2017, 27(4), 480-487.
[http://dx.doi.org/10.1016/j.bjp.2017.05.005]
[89]
Dhanabal, S.P.; Raja, M.K.; Ramanathan, M.; Suresh, B. Hypoglycemic activity of Nymphaea stellata leaves ethanolic extract in alloxan induced diabetic rats. Fitoterapia, 2007, 78(4), 288-291.
[http://dx.doi.org/10.1016/j.fitote.2007.02.009] [PMID: 17498889]
[90]
Rajagopal, K.; Sasikala, K. Antidiabetic activity of hydro-ethanolic extracts of Nymphaea stellata flowers in normal and alloxan induced diabetic rats. Afr. J. Pharm. Pharmacol., 2008, 2(8), 173-178.
[91]
Rajagopal, K.; Sasikala, K. Antihyperglycaemic and antihyperlipidaemic effects of Nymphaea stellata in alloxan-induced diabetic rats. Singapore Med. J., 2008, 49(2), 137-141.
[PMID: 18301841]
[92]
Rajagopal, K.; Sasikala, K.; Ragavan, B. Hypoglycemic and antihyperglycemic activity of Nymphaea stellata flowers in normal and alloxan diabetic rats. Pharm. Biol., 2008, 46(9), 654-659.
[http://dx.doi.org/10.1080/13880200802182554]
[93]
Subash-Babu, P.; Ignacimuthu, S.; Agastian, P.; Varghese, B. Partial regeneration of β-cells in the islets of Langerhans by Nymphayol a sterol isolated from Nymphaea stellata (Willd.) flowers. Bioorg. Med. Chem., 2009, 17(7), 2864-2870.
[http://dx.doi.org/10.1016/j.bmc.2009.02.021] [PMID: 19272781]
[94]
Sreenathkumar, S.; Arcot, S. Andiabetic activity of Nymphaea pubescens Willd - a plant drug of aquatic flora interest. J. Pharm. Res., 2010, 3(12), 3067-3069.
[95]
Karthiyayini, T.; Sandu, N.R.; Senthilkumar, K. Anti diabetic activity on the flowers of Nymphaea pubescens willd. Res. J. Pharm. Biol. Chem. Sci., 2011, 2(1), 866-873.
[96]
Angadi, KK; Kandru, A; Rahaman, A Antihyperglycaemic, antihyperlipidaemic and antioxidant assays (in vivo) of Nymphaea pubescens leaf extract. Int. J. Pharm. Bio. Sci., 2013, 4(2), (B)624-30.
[97]
Hemalatha, P. Ilavarasan. Anti diabetic activity of Siddha herbal preparation Allipoo Chooranam (Nymphaea pubescens flowers) on STZ induced diabetic rats. Int. J. Pharm. Pharm. Res., 2016, 7(2), 283-291.
[98]
Vijay, S. Evaluation on anti-diabetic effect of ethanolic extract of whole plant of Nymphaea pubescens on streptozotocin induced diabetes in Wistar rats., Master of Pharmacy in Pharmacology Dissertation. Chennai, India: C.L. Baid Metha College of Pharmacy, 2017.
[99]
Jain, S.R.; Sharma, S.N. Hypoglycaemic drugs of Indian indigenous origin. Planta Med., 1967, 15(4), 439-442.
[http://dx.doi.org/10.1055/s-0028-1100005] [PMID: 5603487]
[100]
Sharaibi, O.J.; Ogundipe, O.T.; Magbagbeola, O.A.; Kazeem, M.I.; Afolayan, A.J. Acute and sub-acute toxicity profile of aqueous leaf extract of Nymphaea lotus Linn. (Nymphaeaceae) in wistar rats. Trop. J. Pharm. Res., 2015, 14(7), 1231-1238.
[http://dx.doi.org/10.4314/tjpr.v14i7.16]
[101]
Rani, S.J. Hypoglycemic activity of Vellallipoo Chooranam (Nymphaea alba) and haematinic activity of Kaandha Chenduram., Doctor of Medicine (Siddha) Dissertation. Tamil Nadu, India: Govt. Siddha Medical College, 2013.
[102]
Karthikeyan, G.; Rajaram, S.; Arulraja, S. Pharmacological potential of Nymphaea alba flower extract against streptozotocin induced ex-perimental diabetes mellitus model. Indian J. Appl. Res., 2019, 9(7), 22-24.
[103]
Parimala, M.; Shoba, F.G. Evaluation of antidiabetic potential of Nymphaea nouchali Burm. F. Seeds in STZ - induced diabetic rats. Int. J. Pharm. Pharm. Sci., 2014, 6(4), 536-541.
[104]
Saha, M.; Das, A.K.; Sultana, Z.; Haque, S.; Rahmatullah, M. Antihyperglycemic, antinociceptive activity, phytochemical analysis and toxicity studies on stems of Nymphaea nouchali Burm. F. J. Chem. Pharm. Res., 2015, 7(6), 107-111.
[105]
Kumar, K.; Sharma, S.; Kumar, A.; Bhardwaj, P.; Barhwal, K.; Hota, S.K. Acute and sub-acute toxicological evaluation of lyophilized Nymphaea x rubra Roxb. ex Andrews rhizome extract. Regul. Toxicol. Pharmacol., 2017, 88, 12-21.
[http://dx.doi.org/10.1016/j.yrtph.2017.04.008] [PMID: 28414041]
[106]
Gertsch, J. How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. J. Ethnopharmacol., 2009, 122(2), 177-183.
[http://dx.doi.org/10.1016/j.jep.2009.01.010] [PMID: 19185054]
[107]
Huang, Y.-N.; Zhao, Y.-L.; Gao, X.-L.; Zhao, Z.F.; Jing, Z.; Zeng, W.C.; Yang, R.; Peng, R.; Tong, T.; Wang, L.F.; Cen, J.Q.; Gao, H. Intestinal α-glucosidase inhibitory activity and toxicological evaluation of Nymphaea stellata flowers extract. J. Ethnopharmacol., 2010, 131(2), 306-312.
[http://dx.doi.org/10.1016/j.jep.2010.06.035] [PMID: 20600753]
[108]
Parimala, M.; Debjani, M.; Vasanthi, H.R.; Shoba, F.G. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose con-sumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization. J. Adv. Pharm. Technol. Res., 2015, 6(4), 183-189.
[http://dx.doi.org/10.4103/2231-4040.165013] [PMID: 26605160]
[109]
Priyanka, U.; Anand, A.; Bhargavi, K.; Zehra, A.; Tiwari, A.K. Presence of postprandial antidysmetabolic and antioxidative stress proper-ties in aqueous methanol extract of seeds and tuber of aquatic food plant Nymphaea nouchali (Burm. F.). Cogent Food Agric., 2016, 2(1), 1249172.
[http://dx.doi.org/10.1080/23311932.2016.1249172]
[110]
Gautam, S.; Rahuja, N.; Ishrat, N.; Asthana, R.K.; Mishra, D.K.; Maurya, R.; Jain, S.K.; Srivastava, A.K. Nymphaea rubra ameliorates TNF-α-induced insulin resistance via suppression of c-Jun NH2-terminal kinase and nuclear factor-κB in the rat skeletal muscle cells. Appl. Biochem. Biotechnol., 2014, 174(7), 2446-2457.
[http://dx.doi.org/10.1007/s12010-014-1192-8] [PMID: 25234391]
[111]
Rushender, C.R.; Eerike, M.; Madhusudhanan, N.; Konda, V.G.R. Antidiabetic activity of Nymphaea pubescens ethanolic extract – in vitro study. J. Pharm. Res., 2012, 5(7), 3807-3809.
[112]
Angadi, K.K.; Gundampati, R.K.; Jagannadham, M.V.; Kandru, A. Molecular docking studies of guggultetrol from Nymphaea pubescens with target glucokinase (GK) related to type-II diabetes. J. Appl. Pharm. Sci., 2013, 3(2), 127-131.
[113]
Agnihotri, S.; Singh, G.; Verma, S.K.; Narwal, S. In silico antidiabetic characterization and ADME studies of Nymphaea alba and Typha elephantina phytoconstituents. Int. J. Adv. Sci., 2020, 29(4), 10468-10476.
[114]
Nanda, G.C.; Padhi, M.M.; Pathak, N.N.; Choppra, K.K. Screening of Madhumehaghna (anti diabetic) plants in Vrihattrayee. Bull. Indian Inst. Hist. Med. Hyderabad, 2000, 30(1), 15-26.
[PMID: 12578004]
[115]
Susila, R.; Gladys, R.J.; Arunadevi, R. A review on anti-diabetic herbs of Siddha system with special reference to it’s organoleptic quality (taste) as per tridosam concept. Int. J. Herb. Med., 2017, 5(5), 97-101.
[116]
Deutschländer, M.S.; Lall, N.; van de Venter, M. Plant species used in the treatment of diabetes by South African traditional healers: An inventory. Pharm. Biol., 2009, 47(4), 348-365.
[http://dx.doi.org/10.1080/13880200902752959]
[117]
Panda, A.; Misra, M.K. Ethnomedicinal survey of some wetland plants of South Orissa and their conservation. Indian J. Tradit. Knowl., 2011, 10(2), 296-303.
[118]
Rahman, M.M.; Uddin, M.J.; Reza, A.S.M.A.; Tareq, A.M.; Emran, T.B.; Simal-Gandara, J. Ethnomedicinal value of antidiabetic plants in Bangladesh: A comprehensive review. Plants, 2021, 10(4), 729.
[http://dx.doi.org/10.3390/plants10040729] [PMID: 33918026]
[119]
Mishra, L.C.; Adra, T. Diabetes mellitus (Madhumeha). In: Scientific basis for ayurvedic therapies, 1st ed; Mishra, L.C., Ed.; Routledge: New York, 2003, pp. 101-131.
[http://dx.doi.org/10.1201/9780203498583]
[120]
Padal, S.B.; Roja, N.M.; Soundarya, S.D. A review on ethnomedicinal plants used for antidiabetic medicine in Andhra Pradesh. Adv. Biol. Biomed. Res., 2015, 2(1), 1-7.
[121]
Verma, R.S.; Parveen, S.; Rehman, S. Comparative evaluation of efficacy and safety of a Unani coded drug Unim-221 and metformin in cases of diabetes mellitus type-II: A preliminary study. Int. J. Unani. Integ. Med., 2021, 5(1), 9-16.
[122]
Ghosh Tarafdar, R.; Nath, S.; Das Talukdar, A.; Dutta Choudhury, M. Antidiabetic plants used among the ethnic communities of Unakoti district of Tripura, India. J. Ethnopharmacol., 2015, 160, 219-226.
[http://dx.doi.org/10.1016/j.jep.2014.11.019] [PMID: 25457986]
[123]
Cock, I.E.; Ndlovu, N.; Van Vuuren, S.F. The use of South African botanical species for the control of blood sugar. J. Ethnopharmacol., 2021, 264, 113234.
[http://dx.doi.org/10.1016/j.jep.2020.113234] [PMID: 32768640]
[124]
Montonen, J.; Knekt, P.; Järvinen, R.; Reunanen, A. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care, 2004, 27(2), 362-366.
[http://dx.doi.org/10.2337/diacare.27.2.362] [PMID: 14747214]
[125]
Akbar, S.; Bellary, S.; Griffiths, H.R. Dietary antioxidant interventions in type 2 diabetes patients: A meta-analysis. Br. J. Diabetes Vasc. Dis., 2011, 11(2), 62-68.
[http://dx.doi.org/10.1177/1474651411407558]
[126]
Baehaki, A.; Lestari, S.D.; Apriyanti, W. Phytochemical screening and antioxidant activity of seeds extract of water plant (Nymphaea stel-lata and Nelumbo nucifera). J. Chem. Pharm. Res., 2015, 7(11), 221-224.
[127]
Daffodil, E.D.; Mohan, V.R. Total phenolics, flavonoids and in vitro antioxidant activity of Nymphaea pubescens Wild rhizome. World J. Pharm. Pharm. Sci., 2013, 2(5), 3710-3722.
[128]
Tungmunnithum, D.; Kongsawadworakul, P.; Hano, C. A cosmetic perspective on the antioxidant flavonoids from Nymphaea lotus L. Cosmetics, 2021, 8(1), 12.
[http://dx.doi.org/10.3390/cosmetics8010012]
[129]
Cudalbeanu, M.; Ghinea, I.O.; Furdui, B.; Dah-Nouvlessounon, D.; Raclea, R.; Costache, T.; Cucolea, I.E.; Urlan, F.; Dinica, R.M. Explor-ing new antioxidant and mineral compounds from Nymphaea alba wild-grown in danube delta biosphere. Molecules, 2018, 23(6), 1247.
[http://dx.doi.org/10.3390/molecules23061247] [PMID: 29882880]
[130]
Alam, M.B.; Naznin, M.; Islam, S.; Alshammari, F.H.; Choi, H.J.; Song, B.R.; Kim, S.; Lee, S.H. High resolution mass spectroscopy-based secondary metabolite profiling of Nymphaea nouchali (Burm. F.) stem attenuates oxidative stress via regulation of MAPK/Nrf2/HO-1/ROS pathway. Antioxidants, 2021, 10(5), 719.
[http://dx.doi.org/10.3390/antiox10050719] [PMID: 34063678]
[131]
Singh, M.; Jain, A.P. Qualitative and quantitative determination of secondary metabolites and antioxidant potential of Nymphaea nouchali flowers. J. Drug Deliv. Ther., 2018, 8(6-S), 111-115.
[http://dx.doi.org/10.22270/jddt.v8i6-s.2095]
[132]
Parimala, M.; Shoba, F.G. Phytochemical analysis and in vitro antioxidant acitivity of hydroalcoholic seed extract of Nymphaea nouchali Burm. F. Asian Pac. J. Trop. Biomed., 2013, 3(11), 887-895.
[http://dx.doi.org/10.1016/S2221-1691(13)60174-4]
[133]
Uddin, M.N.; Samad, M.A.; Zubair, M.A.; Haque, M.Z.; Mitra, K.; Khan, T.A.; Hossain, M.A.; Syed, A.; Afroze, A. Potential bioactive phytochemicals, antioxidant properties and anticancer pathways of Nymphaea nouchali. Asian Pac. J. Trop. Biomed., 2020, 10(12), 555-562.
[http://dx.doi.org/10.4103/2221-1691.297055]
[134]
Bajpai, V.K.; Alam, M.B.; Ju, M-K.; Kwon, K.R.; Huh, Y.S.; Han, Y.K.; Lee, S.H. Antioxidant mechanism of polyphenol-rich Nymphaea nouchali leaf extract protecting DNA damage and attenuating oxidative stress-induced cell death via Nrf2-mediated heme-oxygenase-1 in-duction coupled with ERK/p38 signaling pathway. Biomed. Pharmacother., 2018, 103, 1397-1407.
[http://dx.doi.org/10.1016/j.biopha.2018.04.186] [PMID: 29864924]
[135]
Daffodil, E.D.; Mohan, V.R. In vitro antioxidant activity of Nymphaea rubra L. rhizome. World J. Pharm. Res., 2014, 3(4), 2178-2189.
[136]
Metasari, S. Muharni; Elfita; Yohandini, H. Study of antioxidant activity from antihypertension drug plant of the Indralaya area. In-dones. J. Fundam. Appl. Chem., 2020, 5(1), 22-28.
[http://dx.doi.org/10.24845/ijfac.v5.i1.22]
[137]
Kamma, M.; Lin, W.C.; Lau, S-C.; Chansakaow, S.; Leelapornpisid, P. Anti-aging cosmeceutical product containing of Nymphaea rubra Roxb. ex Andrews extract. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2019, 46(6), 1143-1160.
[138]
Zhi, W.W.; Wei, T.C.; Jen, Y.W.; Long, W.H.; Lin, C.C.; Der, C.J.; Kuang, L.M.; Tung, L.W. Comparative study on the physicochemical and functional properties of the mucilage in the carpel of Nymphaea odorata using ultrasonic and classical heating extractions. Int. J. Biol. Macromol., 2018, 117, 1367-1373.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.118] [PMID: 29476852]
[139]
Joyce, Y.H.L.; Sasidharan, S.; Latha, L.Y. Antioxidant activity of Nymphaea odorata and Nelumbo nucifera from Nymphaeales order. Pharmacologyonline, 2010, 2, 160-164.
[140]
Dodamani, S.S.; Sanakal, R.D.; Kaliwal, B.B. Effect of ethanolic leaf extract of Nymphaea odorata on biochemical and oxidative stress parameters of liver and pancreas in alloxan induced diabetic mice. Res. Opin. Anim. Vet. Sci., 2012, 2(3), 151-157.
[141]
Zhong, J.; Gong, Q.; Mima, A. Inflammatory regulation in diabetes and metabolic dysfunction. J. Diabetes Res., 2017, 2017, 5165268.
[http://dx.doi.org/10.1155/2017/5165268] [PMID: 28396875]
[142]
Antonisamy, P.; Subash-Babu, P.; Alshatwi, A.A.; Aravinthan, A.; Ignacimuthu, S.; Choi, K.C.; Kim, J.H. Gastroprotective effect of nym-phayol isolated from Nymphaea stellata (Willd.) flowers: Contribution of antioxidant, anti-inflammatory and anti-apoptotic activities. Chem. Biol. Interact., 2014, 224, 157-163.
[http://dx.doi.org/10.1016/j.cbi.2014.09.020] [PMID: 25289771]
[143]
Raja, M.K.M.M.; Sethiya, N.K.; Mishra, S.H. A comprehensive review on Nymphaea stellata: A traditionally used bitter. J. Adv. Pharm. Technol. Res., 2010, 1(3), 311-319.
[http://dx.doi.org/10.4103/0110-5558.72424] [PMID: 22247863]
[144]
Jahan, I.; Mamun, M.A.A.; Hossen, M.A. Antioxidant, analgesic and anti-inflammatory activity of Nymphaea nouchali flowers. Res. J. Pharmacol., 2012, 6(5), 62-70.
[145]
Biozid, M.S.; Rahman, M.M.; Alam, M.N. In-vitro comparative study of anti-inflammatory and anti-arthritic effects of Flemingia stricta Roxb. and Nymphaea nouchali leaf. Int. J. Pharm. Pharm. Sci., 2015, 7(8), 49-52.
[146]
Rege, M.G.; Ayanwuyi, L.O.; Zezi, A.U.; Odoma, S. Anti-nociceptive, anti-inflammatory and possible mechanism of anti-nociceptive action of methanol leaf extract of Nymphaea lotus Linn. (Nymphaeceae). J. Tradit. Complement. Med., 2020, 11(2), 123-129.
[http://dx.doi.org/10.1016/j.jtcme.2020.02.010] [PMID: 33728272]
[147]
N’guessan, B.B.; Asiamah, A.D.; Arthur, N.K.; Frimpong-Manso, S.; Amoateng, P.; Amponsah, S.K.; Kukuia, K.E.; Sarkodie, J.A.; Opuni, K.F.; Asiedu-Gyekye, I.J.; Appiah-Opong, R. Ethanolic extract of Nymphaea lotus L. (Nymphaeaceae) leaves exhibits in vitro antioxidant, in vivo anti-inflammatory and cytotoxic activities on Jurkat and MCF-7 cancer cell lines. BMC Complement. Med. Ther., 2021, 21(1), 22.
[http://dx.doi.org/10.1186/s12906-020-03195-w] [PMID: 33413340]
[148]
Koushik, O.S.; Himaja, V.; Babu, P.S.; Karthikeyan, R. Anti - inflammatory activity of flowers of Nymphaea alba by HRBC membrane stabilization method. Res. Plant Biol., 2015, 5(4), 18-20.
[149]
Jacob Jesurun, R.S.; Senthilkumaran, J.; Somasundaram, G.; Venugopala Rao, K.; Madhavi, E. Anti inflammatory activity of ethanolic extract of Nymphaea alba flower in Swiss albino mice. Int. J. Med. Health Res., 2013, 2(3), 474-478.
[http://dx.doi.org/10.5958/j.2319-5886.2.3.082]
[150]
Bakr, R.O.; El-Naa, M.M.; Zaghloul, S.S.; Omar, M.M. Profile of bioactive compounds in Nymphaea alba L. leaves growing in Egypt: Hepatoprotective, antioxidant and anti-inflammatory activity. BMC Complement. Altern. Med., 2017, 17(1), 52.
[http://dx.doi.org/10.1186/s12906-017-1561-2] [PMID: 28095910]
[151]
Yisa, J. Phytochemical analysis and antimicrobial activity of Scoparia dulcis and Nymphaea lotus. Aust. J. Basic Appl. Sci., 2009, 3(4), 3975-3979.
[152]
Jambor, J.; Skrzypczak, L. Flavonoids from the flowers of Nymphaea alba L. Acta Soc. Bot. Pol., 1991, 60(1-2), 119-125.
[http://dx.doi.org/10.5586/asbp.1991.010]
[153]
Stephen, E.C.; Adebisi, A.K.; Chinedu, I.; Samuel, A.A. Chemical composition of water lily (Nymphaea lotus) bulbs. Am. J. Food Sci. Nutr., 2017, 4(2), 7-12.
[154]
Verma, A.; Ahmed, B.; Upadhyay, R.; Soni, N. Nymphasterol, a new steroid from Nymphaea stellata. Med. Chem. Res., 2012, 21(6), 783-787.
[http://dx.doi.org/10.1007/s00044-011-9591-7]
[155]
Afolayan, A.J.; Sharaibi, O.J.; Kazeem, M.I. Phytochemical analysis and in vitro antioxidant activity of Nymphaea lotus L. Asian. J. Biochem., 2013, 9(5), 297-304.
[156]
Tunan, A.M. Phytochemical investigation of Nymphaea pubescens and study of its antimicrobial activity. Bachelor of Pharmacy Dissertation; Dhaka, Bangladesh: East West University, 2012.
[157]
Paharia, A.K.; Pandurangan, A. Evaluation of anti-ulcer activity of ethanolic extract of Nymphaea alba Linn. flower in experimental rats. Am. J. Pharm. Tech. Res., 2019, 10(1), 1-14.
[http://dx.doi.org/10.46624/ajptr.2020.v10.i1.001]
[158]
Angadi, K.K. Studies on phytochemical, antidiabetic, antioxidant, antimicrobial analysis of Nymphaea pubescens and characterization of isolated novel compound and in silico modeling. Doctor of Philosophy in Biotechnology Thesis. Andhra Pradesh, India: Aeharya Nagarjuna University, 2013.
[159]
Bose, A.; Sahoo, M.; Ray, S.D. In vivo evaluation of anti-diarrheal activity of the rhizome of Nymphaea alba (Nymphaeaceae). Orient. Pharm. Exp. Med., 2012, 12(2), 129-134.
[http://dx.doi.org/10.1007/s13596-012-0062-6]
[160]
Das, D.R.; Sachan, A.K.; Mohd, S.; Gangwar, S.S. Nymphaea stellata: A potential herb and its medicinal importance. J. Drug Deliv. Ther., 2012, 2(3), 41-44.
[http://dx.doi.org/10.22270/jddt.v2i3.173]
[161]
Akinjogunla, O.J.; Yah, C.S.; Eghafona, N.O.; Ogbemudia, F.O. Antibacterial activity of leave extracts of Nymphaea lotus (Nymphaeaceae) on methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Staphylococcus aureus (VRSA) isolated from clinical samples. Ann. Biol. Res., 2010, 1(2), 174-184.
[162]
Cudalbeanu, M.; Furdui, B.; Cârâc, G.; Barbu, V.; Iancu, A.V.; Marques, F.; Leitão, J.H.; Sousa, S.A.; Dinica, R.M. Antifungal, antitumoral and antioxidant potential of the danube delta Nymphaea alba extracts. Antibiotics (Basel), 2019, 9(1), 7.
[http://dx.doi.org/10.3390/antibiotics9010007] [PMID: 31877815]
[163]
Zhang, Z.; ElSohly, H.N.; Li, X-C.; Khan, S.I.; Broedel, S.E., Jr; Raulli, R.E.; Cihlar, R.L.; Burandt, C.; Walker, L.A. Phenolic compounds from Nymphaea odorata. J. Nat. Prod., 2003, 66(4), 548-550.
[http://dx.doi.org/10.1021/np020442j] [PMID: 12713413]
[164]
Raja, M.K.M.M.; Agilandeswari, D.; Beyatricks, K.J. Preliminary quality control parameters of Nymphaea stellata Willd. Leaves. Contemp. Investig. Obs. Pharm., 2013, 2(4), 118-123.
[165]
Maji, A.; Beg, M.; Das, S.; Chandra Jana, G.; Jha, P.K.; Islam, M.M.; Hossain, M. Spectroscopic study on interaction of Nymphaea nouchali leaf extract mediated bactericidal gold nanoparticles with human serum albumin. J. Mol. Struct., 2019, 1179, 685-693.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.055]
[166]
Anand, A.; Priyanka, U.; Nayak, V.L. Nutritional composition and antioxidative stress properties in boiled tuberous rhizome of Neel Kamal (Nymphaea nouchali Burm. F.). Indian J. Nat. Prod. Resour., 2019, 10(1), 59-67.
[167]
Kok, C.J.; Hof, C.H.J.; Lenssen, J.P.M.; van der Velde, G. The influence of pH on concentrations of protein and phenolics and resource quality of decomposing floating leaf material of Nymphaea alba L. (Nymphaeaceae) for the detritivore Asellus aquaticus (L.). Oecologia, 1992, 91(2), 229-234.
[http://dx.doi.org/10.1007/BF00317788] [PMID: 28313461]
[168]
Adelakun, K.M.; Mustapha, M.K.; Muazu, M.M.; Omotayo, O.L.; Olaoye, O. Phytochemical screening and antibacterial activity of crude extract of Nymphaea lotus (water lily) against fish pathogens. J. Biomed. Sci., 2015, 2(4), 38-42.
[http://dx.doi.org/10.3126/jbs.v2i4.15427]
[169]
Rasouli, H.; Yarani, R.; Pociot, F. Popović-Djordjević J. Anti-diabetic potential of plant alkaloids: Revisiting current findings and future perspectives. Pharmacol. Res., 2020, 155, 104723.
[http://dx.doi.org/10.1016/j.phrs.2020.104723] [PMID: 32105756]
[170]
Elekofehinti, O.O. Saponins: Anti-diabetic principles from medicinal plants - A review. Pathophysiology, 2015, 22(2), 95-103.
[http://dx.doi.org/10.1016/j.pathophys.2015.02.001] [PMID: 25753168]
[171]
Daisy, P.; Jasmine, R.; Ignacimuthu, S.; Murugan, E. A novel steroid from Elephantopus scaber L. an ethnomedicinal plant with antidia-betic activity. Phytomedicine, 2009, 16(2-3), 252-257.
[http://dx.doi.org/10.1016/j.phymed.2008.06.001] [PMID: 18693100]
[172]
Santas, J.; Codony, R.; Rafecas, M. Phytosterols: Beneficial effects. In: Natural products: Phytochemistry, botany and metabolism of alka-loids, phenolics and terpenes; Ramawat, K.G.; Mérillon, J-M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013, pp. 3437-3464.
[http://dx.doi.org/10.1007/978-3-642-22144-6_149]
[173]
Pałasz, A.; Cież D.; Trzewik, B.; Miszczak, K.; Tynor, G.; Bazan, B. In the search of glycoside-based molecules as antidiabetic agents. Top. Curr. Chem. (Cham), 2019, 377(4), 19.
[http://dx.doi.org/10.1007/s41061-019-0243-6] [PMID: 31165274]
[174]
AL-Ishaq. R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 2019, 9(9), 430.
[http://dx.doi.org/10.3390/biom9090430]
[175]
Inam, B.; Inam, A.; Verma, M.; Naik, K.K.; Alam, A. Antidiabetic potential of flavones on streptozotocin-induced diabetes mellitus in rat. Int. J. Pharm. Investig., 2019, 9(4), 195-199.
[http://dx.doi.org/10.5530/ijpi.2019.4.36]
[176]
Abdel Motaal, A.; Salem, H.H.; Almaghaslah, D.; Alsayari, A.; Bin Muhsinah, A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Shati, A.A.; El-Askary, H. Flavonol glycosides: In vitro inhibition of DPPIV, aldose reductase and combating oxidative stress are potential mechanisms for medi-ating the antidiabetic activity of Cleome droserifolia. Molecules, 2020, 25(24), 5864.
[http://dx.doi.org/10.3390/molecules25245864] [PMID: 33322431]
[177]
Panigrahy, S.K.; Bhatt, R.; Kumar, A. Targeting type II diabetes with plant terpenes: The new and promising antidiabetic therapeutics. Biologia (Bratisl.), 2021, 76(1), 241-254.
[http://dx.doi.org/10.2478/s11756-020-00575-y]
[178]
Yang, W; Chen, X; Li, Y Advances in pharmacological activity of terpenoids. Nat Prod Commun, 2020, 15(3), 1934578X20903555.
[http://dx.doi.org/10.1177/1934578X2090355]
[179]
Roohbakhsh, A.; Karimi, G.; Iranshahi, M. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed. Pharmacother., 2017, 91, 31-42.
[http://dx.doi.org/10.1016/j.biopha.2017.04.057] [PMID: 28445831]
[180]
Ali Asgar, M. Anti-diabetic potential of phenolic compounds: A review. Int. J. Food Prop., 2013, 16(1), 91-103.
[http://dx.doi.org/10.1080/10942912.2011.595864]
[181]
Li, H.; Yao, Y.; Li, L. Coumarins as potential antidiabetic agents. J. Pharm. Pharmacol., 2017, 69(10), 1253-1264.
[http://dx.doi.org/10.1111/jphp.12774] [PMID: 28675434]
[182]
Domínguez Avila, J.A.; Rodrigo García, J.; González Aguilar, G.A.; de la Rosa, L.A. The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and insulin signaling. Molecules, 2017, 22(6), 903.
[http://dx.doi.org/10.3390/molecules22060903] [PMID: 28556815]
[183]
Zhang, L.; Gao, H.Y.; Baba, M.; Okada, Y.; Okuyama, T.; Wu, L.J.; Zhan, L.B. Extracts and compounds with anti-diabetic complications and anti-cancer activity from Castanea mollissina Blume (Chinese chestnut). BMC Complement. Altern. Med., 2014, 14(1), 422.
[http://dx.doi.org/10.1186/1472-6882-14-422] [PMID: 25351676]
[184]
Ajebli, M.; Eddouks, M. The promising role of plant tannins as bioactive antidiabetic agents. Curr. Med. Chem., 2019, 26(25), 4852-4884.
[http://dx.doi.org/10.2174/0929867325666180605124256] [PMID: 29874989]
[185]
Demir, Y.; Özaslan, M.S.; Duran, H.E. Küfrevioğlu, Ö.İ Beydemir, Ş Inhibition effects of quinones on aldose reductase: Antidiabetic properties. Environ. Toxicol. Pharmacol., 2019, 70, 103195.
[http://dx.doi.org/10.1016/j.etap.2019.103195] [PMID: 31125830]
[186]
Attia, E.Z.; Khalifa, M.F.; Fahim, J.R.; Kamel, M.S. Anti-diabetic potential of mucilage from Hippeastrum vittatum bulbs in streptozotocin-induced diabetic rats. S. Afr. J. Bot., 2021, 136, 100-104.
[http://dx.doi.org/10.1016/j.sajb.2020.06.027]
[187]
Acharya, J.; Dutta, M.; Chaudhury, K.; De, B. Metabolomics and chemometric study for identification of acetylcholinesterase inhibitor(s) from the flower extracts of Nymphaea pubescens. J. Food Biochem., 2018, 42(5), e12575.
[http://dx.doi.org/10.1111/jfbc.12575]
[188]
Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine, 2020, 73, 152906.
[http://dx.doi.org/10.1016/j.phymed.2019.152906] [PMID: 31064680]
[189]
Spence, S.K. Bioassay-directed isolation of the allelopathic constituents of the aquatic plant Nymphaea odorata, Doctor of Philosophy Dissertation: The University of Southern Mississippi, 1997.
[190]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem., 2011, 11(4), 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[191]
Jadhav, R.; Puchchakayala, G. Hypoglycemic and antidiabetic activity of flavonoids: Boswellic acid, allagic acid, quercetin, rutin on strep-tozotocin-nicotinamide induced type 2 diabetic rats. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 251-256.
[192]
Eid, H.M.; Haddad, P.S. The antidiabetic potential of quercetin: Underlying mechanisms. Curr. Med. Chem., 2017, 24(4), 355-364.
[http://dx.doi.org/10.2174/0929867323666160909153707] [PMID: 27633685]
[193]
Aliyu, M.; Kano, M.A.; Abdullahi, N. Extraction, characterization and fatty acids profiles of Nymphaea lotus and Nymphaea pubescens seed oils. Biosci. Biotechnol. Res. Asia, 2017, 14(4), 1299-1307.
[http://dx.doi.org/10.13005/bbra/2573]
[194]
Moloney, F.; Toomey, S.; Noone, E.; Nugent, A.; Allan, B.; Loscher, C.E.; Roche, H.M. Antidiabetic effects of cis-9, trans-11-conjugated linoleic acid may be mediated via anti-inflammatory effects in white adipose tissue. Diabetes, 2007, 56(3), 574-582.
[http://dx.doi.org/10.2337/db06-0384] [PMID: 17327424]
[195]
Ghorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother., 2017, 96, 305-312.
[http://dx.doi.org/10.1016/j.biopha.2017.10.001] [PMID: 29017142]
[196]
Nandini, H.S.; Naik, P.R. Action of corilagin on hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. Chem. Biol. Interact., 2019, 299, 186-193.
[http://dx.doi.org/10.1016/j.cbi.2018.12.012] [PMID: 30582900]
[197]
Al-Salih, R.M.H. Clinical experimental evidence: Synergistic effect of gallic acid and tannic acid as antidiabetic and antioxidant agents. Thi-Qar Med. J. 2010, 4(4), 109-119.
[198]
Liu, X.; Kim, J.K.; Li, Y.; Li, J.; Liu, F.; Chen, X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. J. Nutr., 2005, 135(2), 165-171.
[http://dx.doi.org/10.1093/jn/135.2.165] [PMID: 15671208]
[199]
Raja, M.K.M.M.; Mishra, S.H.; Devarajan, A. Anti-acetylcholinesterase activity of extracts, fractions and compounds of Nymphaea stellata Willd. Leaves. World J. Pharm. Res., 2017, 6(5), 1243-1247.
[200]
Elakovich, S.D.; Spence, S.; Yang, J. Phytochemical inhibitors from the Nymphaeceae: Nymphaea odorata and Nuphar lutea. In: Biologi-cally active natural products; Cutler, H.G.; Cutler, S.J., Eds.; CRC Press: Boca Raton, 1999, p. 8.
[201]
Ponnulakshmi, R.; Shyamaladevi, B.; Vijayalakshmi, P.; Selvaraj, J. In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. Toxicol. Mech. Methods, 2019, 29(4), 276-290.
[http://dx.doi.org/10.1080/15376516.2018.1545815] [PMID: 30461321]
[202]
Babu, S.; Jayaraman, S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother., 2020, 131, 110702.
[http://dx.doi.org/10.1016/j.biopha.2020.110702] [PMID: 32882583]
[203]
Yusuf, M.; Nasiruddin, M.; Sultana, N. Badruddeen,; Akhtar, J.; Khan, M.I.; Ahmad, M. Regulatory mechanism of caffeic acid on glucose metabolism in diabetes. Res. J. Pharm. Technol., 2019, 12(10), 4735-4740.
[http://dx.doi.org/10.5958/0974-360X.2019.00816.3]
[204]
Jung, U.J.; Lee, M-K.; Park, Y.B.; Jeon, S-M.; Choi, M-S. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharmacol. Exp. Ther., 2006, 318(2), 476-483.
[http://dx.doi.org/10.1124/jpet.106.105163] [PMID: 16644902]
[205]
Sangeetha, R. Luteolin in the management of type 2 diabetes mellitus. Curr. Res. Nutr. Food Sci., 2019, 7(2), 393-398.
[http://dx.doi.org/10.12944/CRNFSJ.7.2.09]
[206]
Khan, N.; Sultana, S. Inhibition of potassium bromate-induced renal oxidative stress and hyperproliferative response by Nymphaea alba in Wistar rats. J. Enzyme Inhib. Med. Chem., 2005, 20(3), 275-283.
[http://dx.doi.org/10.1080/14756360400028119] [PMID: 16119199]
[207]
Amor, A.J.; Gómez-Guerrero, C.; Ortega, E.; Sala-Vila, A.; Lázaro, I. Ellagic acid as a tool to limit the diabetes burden: Updated evidence. Antioxidants, 2020, 9(12), 1226.
[http://dx.doi.org/10.3390/antiox9121226] [PMID: 33287432]
[208]
Alipour, M.; Malihi, R.; Hosseini, S.A. The effects of catechins on related risk factors with type 2 diabetes: A review. Prog. Nutr., 2018, 20(1), 12-20.
[209]
Rey, D.; Miranda Sulis, P.; Alves Fernandes, T.; Gonçalves, R.; Silva Frederico, M.J.; Costa, G.M.; Aragon, M.; Ospina, L.F.; Mena Barreto Silva, F.R. Astragalin augments basal calcium influx and insulin secretion in rat pancreatic islets. Cell Calcium, 2019, 80, 56-62.
[http://dx.doi.org/10.1016/j.ceca.2019.03.009] [PMID: 30965223]
[210]
Ke, M.; Hu, X-Q.; Ouyang, J.; Dai, B.; Xu, Y. The effect of astragalin on the VEGF production of cultured Müller cells under high glucose conditions. Biomed. Mater. Eng., 2012, 22(1-3), 113-119.
[http://dx.doi.org/10.3233/BME-2012-0696] [PMID: 22766709]
[211]
Lakshmi, V.; Mahdi, A.A.; Ahmad, M.K.; Agarwal, S.K.; Srivastava, A.K. Antidiabetic activity of lupeol and lupeol esters in streptozoto-cininduced diabetic rats. Bangladesh J. Pharmacol., 2014, 17(2), 138-146.
[http://dx.doi.org/10.3329/bpj.v17i2.22330]
[212]
Gupta, R.; Sharma, A.K.; Sharma, M.C.; Dobhal, M.P.; Gupta, R.S. Evaluation of antidiabetic and antioxidant potential of lupeol in exper-imental hyperglycaemia. Nat. Prod. Res., 2012, 26(12), 1125-1129.
[http://dx.doi.org/10.1080/14786419.2011.560845] [PMID: 22043924]
[213]
Marcelino, G.; Machate, D.J.; Freitas, K.C.; Hiane, P.A.; Maldonade, I.R.; Pott, A.; Asato, M.A.; Candido, C.J.; Guimarães, R.C.A. B-carotene: Preventive role for type 2 diabetes mellitus and obesity: A review. Molecules, 2020, 25(24), 5803.
[http://dx.doi.org/10.3390/molecules25245803] [PMID: 33316948]
[214]
Vassiliou, E.K.; Gonzalez, A.; Garcia, C.; Tadros, J.H.; Chakraborty, G.; Toney, J.H. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both in vitro and in vivo systems. Lipids Health Dis., 2009, 8(1), 25.
[http://dx.doi.org/10.1186/1476-511X-8-25] [PMID: 19558671]
[215]
Nunes, E.A.; Rafacho, A. Implications of palmitoleic acid (palmitoleate) on glucose homeostasis, insulin resistance and diabetes. Curr. Drug Targets, 2017, 18(6), 619-628.
[http://dx.doi.org/10.2174/1389450117666151209120345] [PMID: 26648072]
[216]
Channabasava, G.M.; Chandrappa, C.P.; Sadananda, T.S. In vitro antidiabetic activity of three fractions of methanol extracts of loranthus micranthus, identification of phytoconstituents by GC-MS and possible mechanism identified by Gemdock method. Asian J. Biomed. Pharm. Sci., 2014, 4(34), 34-41.
[http://dx.doi.org/10.15272/ajbps.v4i34.520]
[217]
Abdulkhaleq, L.A.; Assi, M.A.; Noor, M.H.M.; Abdullah, R.; Saad, M.Z.; Taufiq-Yap, Y.H. Therapeutic uses of epicatechin in diabetes and cancer. Vet. World, 2017, 10(8), 869-872.
[http://dx.doi.org/10.14202/vetworld.2017.869-872] [PMID: 28919675]
[218]
Den Hartogh, D.J.; Tsiani, E. Antidiabetic properties of naringenin: A citrus fruit polyphenol. Biomolecules, 2019, 9(3), 99.
[http://dx.doi.org/10.3390/biom9030099] [PMID: 30871083]
[219]
Zhang, B.; Shen, Q.; Chen, Y.; Pan, R.; Kuang, S.; Liu, G.; Sun, G.; Sun, X. Myricitrin alleviates oxidative stress-induced inflammation and apoptosis and protects mice against diabetic cardiomyopathy. Sci. Rep., 2017, 7(1), 44239.
[http://dx.doi.org/10.1038/srep44239] [PMID: 28287141]
[220]
Kim, D.Y.; Kim, S.R.; Jung, U.J. Myricitrin ameliorates hyperglycemia, glucose intolerance, hepatic steatosis, and inflammation in high-fat diet/streptozotocin-induced diabetic mice. Int. J. Mol. Sci., 2020, 21(5), 1870.
[http://dx.doi.org/10.3390/ijms21051870] [PMID: 32182914]
[221]
Ward, M.G.; Li, G.; Barbosa-Lorenzi, V.C.; Hao, M. Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion. Sci. Rep., 2017, 7(1), 9536.
[http://dx.doi.org/10.1038/s41598-017-10209-0] [PMID: 28842702]
[222]
Wang, J.; Huang, M.; Yang, J.; Ma, X.; Zheng, S.; Deng, S.; Huang, Y.; Yang, X.; Zhao, P. Anti-diabetic activity of stigmasterol from soy-bean oil by targeting the GLUT4 glucose transporter. Food Nutr. Res., 2017, 61(1), 1364117.
[http://dx.doi.org/10.1080/16546628.2017.1364117] [PMID: 28970778]
[223]
Li, Y.; Ding, Y. Minireview: Therapeutic potential of myricetin in diabetes mellitus. Food Sci. Hum. Wellness, 2012, 1(1), 19-25.
[http://dx.doi.org/10.1016/j.fshw.2012.08.002]
[224]
Zhu, R.; Chen, B.; Bai, Y.; Miao, T.; Rui, L.; Zhang, H.; Xia, B.; Li, Y.; Gao, S.; Wang, X.D.; Zhang, D. Lycopene in protection against obesity and diabetes: A mechanistic review. Pharmacol. Res., 2020, 159, 104966.
[http://dx.doi.org/10.1016/j.phrs.2020.104966] [PMID: 32535223]
[225]
Acharya, J.; De, B. Bioactivity-guided fractionation to identify β-glucuronidase inhibitors in Nymphaea pubescens flower extract. Cogent Food Agric., 2016, 2(1), 1134379.
[http://dx.doi.org/10.1080/23311932.2015.1134379]
[226]
Heikkilä, E.; Hermant, A.; Thevenet, J.; Bermont, F.; Kulkarni, S.S.; Ratajczak, J.; Santo-Domingo, J.; Dioum, E.H.; Canto, C.; Barron, D.; Wiederkehr, A.; De Marchi, U. The plant product quinic acid activates Ca2+ -dependent mitochondrial function and promotes insulin se-cretion from pancreatic beta cells. Br. J. Pharmacol., 2019, 176(17), 3250-3263.
[PMID: 31166006]
[227]
Narasimhan, A.; Chinnaiyan, M.; Karundevi, B. Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Appl. Physiol. Nutr. Metab., 2015, 40(8), 769-781.
[http://dx.doi.org/10.1139/apnm-2015-0002] [PMID: 26201855]
[228]
Chowdhury, S.; Ghosh, S.; Das, A.K.; Sil, P.C. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front. Pharmacol., 2019, 10, 27.
[http://dx.doi.org/10.3389/fphar.2019.00027] [PMID: 30804780]
[229]
Barky, A.R.E.; Ezz, A.A.H.; Mohammed, T.M. The potential role of apigenin in diabetes mellitus. Int. J. Clinical Case Reports Rev., 2020, 3(1), 1-3.
[230]
Yan, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of chlorogenic acid against diabetes mellitus and its complications. J. Immunol. Res., 2020, 2020, 9680508.
[http://dx.doi.org/10.1155/2020/9680508] [PMID: 32566690]
[231]
Ku, S-K.; Kwak, S.; Bae, J-S. Orientin inhibits high glucose-induced vascular inflammation in vitro and in vivo. Inflammation, 2014, 37(6), 2164-2173.
[http://dx.doi.org/10.1007/s10753-014-9950-x] [PMID: 24950780]
[232]
Kong, Z-L.; Che, K.; Hu, J-X.; Chen, Y.; Wang, Y.Y.; Wang, X.; Lü, W.S.; Wang, Y.G.; Chi, J.W. Orientin protects podocytes from high glucose induced apoptosis through mitophagy. Chem. Biodivers., 2020, 17(3), e1900647.
[http://dx.doi.org/10.1002/cbdv.201900647] [PMID: 31951311]
[233]
Adisakwattana, S. Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications. Nutrients, 2017, 9(2), 163.
[http://dx.doi.org/10.3390/nu9020163] [PMID: 28230764]
[234]
Jovanovski, E.; Li, D.; Thanh Ho, H.V.; Djedovic, V.; Ruiz Marques, A.C.; Shishtar, E.; Mejia, S.B.; Sievenpiper, J.L.; de Souza, R.J.; Duvnjak, L.; Vuksan, V. The effect of alpha-linolenic acid on glycemic control in individuals with type 2 diabetes: A systematic review and meta-analysis of randomized controlled clinical trials. Medicine (Baltimore), 2017, 96(21), e6531.
[http://dx.doi.org/10.1097/MD.0000000000006531] [PMID: 28538363]
[235]
Zhang, J.; Li, L.; Kim, S-H.; Hagerman, A.E.; Lü, J. Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm. Res., 2009, 26(9), 2066-2080.
[http://dx.doi.org/10.1007/s11095-009-9932-0] [PMID: 19575286]
[236]
Song, T-J.; Park, C-H. In, K-R.; Kim, J.B.; Kim, J.H.; Kim, M.; Chang, H.J. Antidiabetic effects of betulinic acid mediated by the activation of the AMP-activated protein kinase pathway. PLoS One, 2021, 16(4), e0249109.
[http://dx.doi.org/10.1371/journal.pone.0249109] [PMID: 33819291]
[237]
Silva, E.; Lobo, J.; Vinther, J.; Borges, R.; Staerk, D. High-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of antidiabetic compounds in Eremanthus crotonoides (Asteraceae). Molecules, 2016, 21(6), 782.
[http://dx.doi.org/10.3390/molecules21060782]
[238]
Wolfram, S.; Raederstorff, D.; Preller, M.; Wang, Y.; Teixeira, S.R.; Riegger, C.; Weber, P. Epigallocatechin gallate supplementation allevi-ates diabetes in rodents. J. Nutr., 2006, 136(10), 2512-2518.
[http://dx.doi.org/10.1093/jn/136.10.2512] [PMID: 16988119]
[239]
Ni, D.; Ai, Z.; Munoz-Sandoval, D.; Suresh, R.; Ellis, P.R.; Yuqiong, C.; Sharp, P.A.; Butterworth, P.J.; Yu, Z.; Corpe, C.P. Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins. FASEB J., 2020, 34(8), 9995-10010.
[http://dx.doi.org/10.1096/fj.202000057RR] [PMID: 32564472]
[240]
Rahman, M.A.; Islam, M.S. Xylitol improves pancreatic islets morphology to ameliorate type 2 diabetes in rats: A dose response study. J. Food Sci., 2014, 79(7), H1436-H1442.
[http://dx.doi.org/10.1111/1750-3841.12520] [PMID: 24962431]
[241]
Lakshmanasenthil, S.; Vinoth Kumar, T.; Geetharamani, D.; Shanthi Priya, S. A-amylase and α-glucosidase inhibitoryactivity of tetradeca-noic acid (TDA) from Sargassum wightii with relevance to type 2 diabetes mellitus. J. Biol. Act. Prod. Nat, 2018, 8(3), 180-191.
[http://dx.doi.org/10.1080/22311866.2018.1474803]
[242]
Ardisson Korat, A.V.; Malik, V.S.; Furtado, J.D.; Sacks, F.; Rosner, B.; Rexrode, K.M.; Willett, W.C.; Mozaffarian, D.; Hu, F.B.; Sun, Q. Circulating very-long-chain SFA concentrations are inversely associated with incident type 2 diabetes in us men and women. J. Nutr., 2020, 150(2), 340-349.
[http://dx.doi.org/10.1093/jn/nxz240] [PMID: 31618417]
[243]
Pintaudi, B.; Di Vieste, G.; Bonomo, M. The effectiveness of myo-inositol and D-chiro inositol treatment in type 2 diabetes. Int. J. Endocrinol., 2016, 2016, 9132052.
[http://dx.doi.org/10.1155/2016/9132052] [PMID: 27807448]
[244]
Shi, Y-B.; Yin, D. A good sugar, d-mannose, suppresses autoimmune diabetes. Cell Biosci., 2017, 7(1), 48.
[http://dx.doi.org/10.1186/s13578-017-0175-1] [PMID: 29021891]
[245]
Alam, M.B.; Ahmed, A.; Motin, M.A.; Kim, S.; Lee, S-H. Attenuation of melanogenesis by Nymphaea nouchali (Burm. F.) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and proteasomal degradation of tyrosinase. Sci. Rep., 2018, 8(1), 13928.
[http://dx.doi.org/10.1038/s41598-018-32303-7] [PMID: 30224716]
[246]
Matboli, M.; Saad, M.; Hasanin, A.H.; A Saleh, L.; Baher, W.; Bekhet, M.M.; Eissa, S. New insight into the role of isorhamnetin as a regulator of insulin signaling pathway in type 2 diabetes mellitus rat model: Molecular and computational approach. Biomed. Pharmacother., 2021, 135, 111176.
[http://dx.doi.org/10.1016/j.biopha.2020.111176] [PMID: 33401224]
[247]
Krishnan, B.; Ramu Ganesan, A.; Balasubramani, R.; Nguyen, D.D.; Chang, S.W.; Wang, S.; Xiao, J.; Balasubramanian, B. Chrysoeriol ameliorates hyperglycemia by regulating the carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food Sci. Hum. Wellness, 2020, 9(4), 346-354.
[http://dx.doi.org/10.1016/j.fshw.2020.05.014]
[248]
Chang, W-C.; Wu, S-C.; Xu, K-D.; Liao, B.C.; Wu, J.F.; Cheng, A.S. Scopoletin protects against methylglyoxal-induced hyperglycemia and insulin resistance mediated by suppression of advanced glycation endproducts (AGEs) generation and anti-glycation. Molecules, 2015, 20(2), 2786-2801.
[http://dx.doi.org/10.3390/molecules20022786] [PMID: 25671364]
[249]
Jang, J.H.; Park, J.E.; Han, J.S. Scopoletin increases glucose uptake through activation of PI3K and AMPK signaling pathway and improves insulin sensitivity in 3T3-L1 cells. Nutr. Res., 2020, 74, 52-61.
[http://dx.doi.org/10.1016/j.nutres.2019.12.003] [PMID: 31945607]
[250]
Hammeso, W.W.; Emiru, Y.K.; Ayalew Getahun, K.; Kahaliw, W. Antidiabetic and antihyperlipidemic activity of the leaf latex extract of Aloe megalacantha Baker (Aloaceae) in streptozotocin-induced diabetic model. Evid. Based Complement. Alternat. Med., 2019, 2019, 8263786.
[http://dx.doi.org/10.1155/2019/8263786] [PMID: 31178917]
[251]
Karan, S.K.; Mondal, A.; Mishra, S.K.; Pal, D.; Rout, K.K. Antidiabetic effect of Streblus asper in streptozotocin-induced diabetic rats. Pharm. Biol., 2013, 51(3), 369-375.
[http://dx.doi.org/10.3109/13880209.2012.730531] [PMID: 23406357]
[252]
Sridevi, H.; Jayaraman, P.; Pachaiyappan, P. Evaluation of α-glucosidase inhibitory action of isolated compound beta amyrin from Me-mecylon umbellatum Burm. F. Int. J. Pharmacogn. Phytochem. Res., 2015, 7(6), 1033-1038.
[253]
Krishnan, K.; Mathew, L.E.; Vijayalakshmi, N.R.; Helen, A. Anti-inflammatory potential of β-amyrin, a triterpenoid isolated from Costus igneus. Inflammopharmacology, 2014, 22(6), 373-385.
[http://dx.doi.org/10.1007/s10787-014-0218-8] [PMID: 25300965]
[254]
Sangeetha, K.N.; Shilpa, K.; Jyothi Kumari, P.; Lakshmi, B.S. Reversal of dexamethasone induced insulin resistance in 3T3L1 adipocytes by 3β-taraxerol of Mangifera indica. Phytomedicine, 2013, 20(3-4), 213-220.
[http://dx.doi.org/10.1016/j.phymed.2012.10.011] [PMID: 23219340]
[255]
Suhendi, A. Muhtadi; Sutrisna, E. Anti-inflammatory and antidiabetic of Channa striata powder and Nephelium lappaceum fruit peel ethanolic extracts on albino Wistar mice. Drug Invent. Today, 2019, 12(11), 2472-2476.
[256]
Hujjatullah, S.; Bloch, A.K.; Jabbar, A. Chemical composition and utilisation of the roots of Nymphaea lotus L. J. Sci. Food Agric., 1967, 18(10), 470-473.
[http://dx.doi.org/10.1002/jsfa.2740181007]
[257]
Dehghan, P.; Pourghassem Gargari, B.; Asgharijafarabadi, M. Effects of high performance inulin supplementation on glycemic status and lipid profile in women with type 2 diabetes: a randomized, placebo-controlled clinical trial. Health Promot. Perspect., 2013, 3(1), 55-63.
[PMID: 24688953]
[258]
Msomi, N.Z.; Erukainure, O.L.; Islam, M.S. Suitability of sugar alcohols as antidiabetic supplements: A review. Yao Wu Shi Pin Fen Xi, 2021, 29(1), 1-14.
[http://dx.doi.org/10.38212/2224-6614.3107]
[259]
Gilbert, E.R.; Liu, D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function. Food Funct., 2013, 4(2), 200-212.
[http://dx.doi.org/10.1039/C2FO30199G] [PMID: 23160185]
[260]
Mahmoud, A.M.; Hussein, O.E. Hesperidin as a promising anti-diabetic flavonoid: The underlying molecular mechanism. Int. J. Food Sci. Nutr., 2016, 3(2), 313-314.
[261]
Mohammed, A.; Ibrahim, M.A.; Tajuddeen, N.; Aliyu, A.B.; Isah, M.B. Antidiabetic potential of anthraquinones: A review. Phytother. Res., 2020, 34(3), 486-504.
[http://dx.doi.org/10.1002/ptr.6544] [PMID: 31773816]
[262]
Al-Malki, A.L. Shikimic acid from Artemisia absinthium inhibits protein glycation in diabetic rats. Int. J. Biol. Macromol., 2019, 122, 1212-1216.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.072] [PMID: 30227208]
[263]
Peungvicha, P.; Thirawarapan, S.S.; Watanabe, H. Possible mechanism of hypoglycemic effect of 4-hydroxybenzoic acid, a constituent of Pandanus odorus root. Jpn. J. Pharmacol., 1998, 78(3), 395-398.
[http://dx.doi.org/10.1254/jjp.78.395] [PMID: 9869276]
[264]
Yoshinari, O.; Igarashi, K. Anti-diabetic effect of pyroglutamic acid in type 2 diabetic Goto-Kakizaki rats and KK-Ay mice. Br. J. Nutr., 2011, 106(7), 995-1004.
[http://dx.doi.org/10.1017/S0007114511001279] [PMID: 21736843]
[265]
Xiong, M.; Huang, Y.; Liu, Y.; Huang, M.; Song, G.; Ming, Q.; Ma, X.; Yang, J.; Deng, S.; Wen, Y.; Shen, J.; Liu, Q.H.; Zhao, P.; Yang, X. Antidiabetic activity of ergosterol from Pleurotus ostreatus in KK-Ay mice with spontaneous type 2 diabetes mellitus. Mol. Nutr. Food Res., 2018, 62(3), 1700444.
[http://dx.doi.org/10.1002/mnfr.201700444] [PMID: 29080247]
[266]
Abdulai, I.L.; Kwofie, S.K.; Gbewonyo, W.S.; Boison, D.; Puplampu, J.B.; Adinortey, M.B. Multitargeted effects of vitexin and isovitexin on diabetes mellitus and its complications. Sci. World J., 2021, 2021, 6641128.
[http://dx.doi.org/10.1155/2021/6641128] [PMID: 33935599]
[267]
Bhattacharjee, N.; Dua, T.K.; Khanra, R.; Joardar, S.; Nandy, A.; Saha, A.; De Feo, V.; Dewanjee, S. Protocatechuic acid, a phenolic from Sansevieria roxburghiana leaves, suppresses diabetic cardiomyopathy via stimulating glucose metabolism, ameliorating oxidative stress, and inhibiting inflammation. Front. Pharmacol., 2017, 8, 251.
[http://dx.doi.org/10.3389/fphar.2017.00251] [PMID: 28533752]
[268]
Ma, Y.; Chen, F.; Yang, S.; Chen, B.; Shi, J. Protocatechuic acid ameliorates high glucose-induced extracellular matrix accumulation in diabetic nephropathy. Biomed. Pharmacother., 2018, 98, 18-22.
[http://dx.doi.org/10.1016/j.biopha.2017.12.032] [PMID: 29241070]
[269]
Yoon, J-Y.; Choi, H.; Jun, H-S. The effect of phloroglucinol, a component of Ecklonia cava extract, on hepatic glucose production. Mar. Drugs, 2017, 15(4), 106.
[http://dx.doi.org/10.3390/md15040106] [PMID: 28379184]
[270]
Rena, G.; Sakamoto, K. Salicylic acid: old and new implications for the treatment of type 2 diabetes? Diabetol. Int., 2014, 5(4), 212-218.
[http://dx.doi.org/10.1007/s13340-014-0177-8] [PMID: 27656338]
[271]
Brock, T.C.M.; Boon, J.J.; Paffen, B.G.P. The effects of the season and of water chemistry on the decomposition of Nymphaea alba L.; weight loss and pyrolysis mass spectrometry of the particulate matter. Aquat. Bot., 1985, 22(3), 197-229.
[http://dx.doi.org/10.1016/0304-3770(85)90001-4]
[272]
Vinardell, M.P.; Mitjans, M. Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci., 2017, 18(6), 1219.
[http://dx.doi.org/10.3390/ijms18061219] [PMID: 28590454]
[273]
Zhang, R.; Yao, Y.; Wang, Y.; Ren, G. Antidiabetic activity of isoquercetin in diabetic KK -Ay mice. Nutr. Metab. (Lond.), 2011, 8(1), 85.
[http://dx.doi.org/10.1186/1743-7075-8-85] [PMID: 22133267]
[274]
Jayachandran, M.; Zhang, T.; Ganesan, K.; Xu, B.; Chung, S.S.M. Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. Eur. J. Pharmacol., 2018, 829, 112-120.
[http://dx.doi.org/10.1016/j.ejphar.2018.04.015] [PMID: 29665363]
[275]
Zhang, L.; Zhang, S-T.; Yin, Y-C.; Xing, S.; Li, W-N.; Fu, X-Q. Hypoglycemic effect and mechanism of isoquercitrin as an inhibitor of dipeptidyl peptidase-4 in type 2 diabetic mice. RSC Advances, 2018, 8(27), 14967-14974.
[http://dx.doi.org/10.1039/C8RA00675J]
[276]
Wu, W.; Xie, Z.; Zhang, Q.; Ma, Y.; Bi, X.; Yang, X.; Li, B.; Chen, J. Hyperoside ameliorates diabetic retinopathy via anti-oxidation, inhib-iting cell damage and apoptosis induced by high glucose. Front. Pharmacol., 2020, 11, 797.
[http://dx.doi.org/10.3389/fphar.2020.00797] [PMID: 32547397]
[277]
Zhou, J.; Zhang, S.; Sun, X.; Lou, Y.; Bao, J.; Yu, J. Hyperoside ameliorates diabetic nephropathy induced by STZ via targeting the miR-499-5p/APC axis. J. Pharmacol. Sci., 2021, 146(1), 10-20.
[http://dx.doi.org/10.1016/j.jphs.2021.02.005] [PMID: 33858650]
[278]
Kawser Hossain, M.; Abdal Dayem, A.; Han, J.; Yin, Y.; Kim, K.; Kumar Saha, S.; Yang, G.M.; Choi, H.Y.; Cho, S.G. Molecular mecha-nisms of the anti-obesity and anti-diabetic properties of flavonoids. Int. J. Mol. Sci., 2016, 17(4), 569.
[http://dx.doi.org/10.3390/ijms17040569] [PMID: 27092490]
[279]
Amalan, V.; Vijayakumar, N.; Indumathi, D.; Ramakrishnan, A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: in vivo approach. Biomed. Pharmacother., 2016, 84, 230-236.
[http://dx.doi.org/10.1016/j.biopha.2016.09.039] [PMID: 27662473]
[280]
Abdel-Moneim, A.; El-Twab, S.M.A.; Yousef, A.I.; Reheim, E.S.A.; Ashour, M.B. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid: The role of adipocytokines and PPARγ Biomed. Pharmacother., 2018, 105, 1091-1097.
[http://dx.doi.org/10.1016/j.biopha.2018.06.096] [PMID: 30021345]
[281]
Raja Kumar, S.; Mohd Ramli, E.S.; Abdul Nasir, N.A.; Ismail, N.H.M.; Mohd Fahami, N.A. Preventive effect of naringin on metabolic syndrome and its mechanism of action: A systematic review. Evid. Based Complement. Alternat. Med., 2019, 2019, 9752826.
[http://dx.doi.org/10.1155/2019/9752826] [PMID: 30854019]
[282]
Pinto, M.S.; de Carvalho, J.E.; Lajolo, F.M.; Genovese, M.I.; Shetty, K. Evaluation of antiproliferative, anti-type 2 diabetes, and antihyper-tension potentials of ellagitannins from strawberries (Fragaria ananassa Duch.) using in vitro models. J. Med. Food, 2010, 13(5), 1027-1035.
[http://dx.doi.org/10.1089/jmf.2009.0257] [PMID: 20626254]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy