Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

The Investigation of Carrier Mobility Effect on the Performance Characteristics of the InGaN-Based Vertical Cavity Surface Emitting Laser (VCSEL) by Solving the Rate Equations

Author(s): Azita Zandi Goharrizi* and Ghasem Alahyarizadeh

Volume 14, Issue 4, 2022

Published on: 17 May, 2022

Page: [375 - 386] Pages: 12

DOI: 10.2174/1876402914666220330014428

Price: $65

Abstract

Background: Among the parameters that play an important role in describing the performance of many devices is carrier mobility which is a criterion for the easy movement in semiconductor crystals.

Objective: The effect of carrier mobility on the performance characteristics of InGaN quantum well vertical-cavity surface-emitting laser was analytically investigated.

Methods: By solving the Poisson’s equation, current density equation, charge concentration continuity equation and carrier and photon rate equations, the variation of current density and carrier density with respect to the position and time and the effects of carrier mobility and temperature on these parameters were investigated. Furthermore, the effect of mobility on the variation of output power versus the injection current and on the time variation of photon and carrier density and the output power was investigated.

Results: By increasing the carrier mobility, the threshold current is reduced and the output power is increased. In studying the effect of temperature on the desired parameters, the variation of carrier density with respect to time and position was affected by the temperature change. This phenomenon is due to the dependence of these parameters on the diffusion coefficients and consequently on the mobility of the carriers and the dependence of mobility on temperature.

Conclusion: The output power increased, and the time delay in accruing the laser decreased. Consequently, the carrier recombination increased, further resulting in a rapid laser operation.

Keywords: Vertical cavity surface-emitting lasers, mobility, distributed Bragg reflectors, Quantum well, carrier recombination, gallium nitride.

Graphical Abstract

[1]
Bahauddin, S.M.; Sumana, F.D.; Hossain, Md. R; Uddin, Md. A.; Mahmood, Z. H. Theoretical analysis on quantum well at undoped GaN/InxGa1-xN/GaN heterostructure interface; Prog. Electromagn. Res: Xi'an, China, 2010, pp. 1283-1286.
[2]
Biswas, D.; Kumar, S.; Das, T. Band offsets of InxGa1-xN/GaN quantum wells reestimated. Thin Solid Films, 2007, 515(10), 4488-4491.
[http://dx.doi.org/10.1016/j.tsf.2006.07.139]
[3]
Trivellin, N.; Meneghini, M.; Zanoni, E.; Meneghesso, G.; Orita, K.; Yuri, M.; Tanaka, T.; Ueda, D. Degradation of InGaN-based laser diodes due to increased non-radiative recombination rate. Phys. Status Solidi., A Appl. Mater. Sci., 2010, 207(1), 41-44.
[http://dx.doi.org/10.1002/pssa.200982620]
[4]
Kundu, J.; Sarkar, C.K.; Mallick, P.S. Calculation of electron mobility and effect of dislocation scattering in GaN. Semicond Phys. Quan-tum Elect & Optoelect, 2007, 10, 1-3.
[5]
Hai, G.Q.; Studart, N.; Peeters, F.M.; Koenraad, P.M.; Wolter, J.H. Intersubband-coupling and screening effects on the electron transport in a quasi-two-dimensional δ-doped semiconductor system. J. Appl. Phys., 1996, 80(10), 5809-5814.
[http://dx.doi.org/10.1063/1.363573]
[6]
Deb, S.; Singh, C.J.C.; Singh, N.B.; De, A.K.; Sarkar, S.K. Parameter optimization of quantum well nanostructure: A PSO and GA based comparative study. Int. J. Latest Trends Comput., 2010, 1, 35-40.
[7]
Lee, K.; Shur, M.S.; Drummond, T.J.; Morkoc, H.J. Low field mobility of 2‐d electron gas in modulation doped AlxGa1− xAs/GaAs layers. J. Appl. Phys., 1983, 54(11), 6432-6438.
[http://dx.doi.org/10.1063/1.331922]
[8]
Thobel, J.L.; Baudry, L.; Dessenne, F.; Charef, M.; Fauquembergue, R. Theoretical investigation of impurity scattering limited mobility in quantum wells: The influence of wave‐function modeling. J. Appl. Phys., 1993, 73(1), 233-238.
[http://dx.doi.org/10.1063/1.353895]
[9]
Yarar, Z. Electron mobility in modulation doped AlGaN/GaN and InGaN/GaN quantum wells: A comparative study. Solid State Commun., 2008, 147(3-4), 98-102.
[http://dx.doi.org/10.1016/j.ssc.2008.05.006]
[10]
Mitchel, W.C.; Brown, G.J.; Lo, I.; Elhamri, S.; Ahoujja, M.; Ravindran, K.; Newrock, R.S.; Razeghi, M.; He, X. Interface roughness scat-tering in thin, undoped GaInP/GaAs quantum wells. Appl. Phys. Lett., 1994, 65(12), 1578-1580.
[http://dx.doi.org/10.1063/1.112920]
[11]
Elhamri, S.; Ahoujja, M.; Newrock, R.S.; Mast, D.B.; Herbert, S.T.; Mitchel, W.C.; Razeghi, M. Electrical properties of undoped Gax In1−xP/GaAs quantum wells. Phys. Rev., 1996, 54(15), 10688-10695.
[12]
Nag, B.R.; Mukhopadhyay, S.; Das, M. Interface roughness scattering-limited electron mobility in AlAs/GaAs and Ga0.5In0.5P/GaAs wells. J. Appl. Phys., 1999, 86(1), 459-463.
[http://dx.doi.org/10.1063/1.370752]
[13]
Lyo, S.K. Real-space and energy representations for the interface-roughness scattering in quantum-well structures. J. Phys. Condens. Matter, 2001, 13(6), 1259-1264.
[http://dx.doi.org/10.1088/0953-8984/13/6/306]
[14]
Sahu, T.; Shore, K.A. Multi-interface roughness effects on electron mobility in a Ga0.5In0.5P/GaAs multisubband coupled quantum well structure. Semicond. Sci. Technol., 2009, 24(9), 1-7.
[http://dx.doi.org/10.1088/0268-1242/24/9/095021]
[15]
Sahu, T.; Shore, K.A. Effect of electric field on low temperature multisubband electron mobility in a coupled Ga0.5In0.5P/GaAs quantum well structure. J. Appl. Phys., 2010, 107(1-6), 113708.
[16]
Vitanov, S.; Palankovski, V. Electron mobility models for III-nitrides. Ann. J. Electron., 2010, 4, 18-21.
[17]
Sahu, T.; Palo, S.; Panda, A. K. Enhancement of multisubband electron mobility in parabolic AlxGa1-xAs/GaAs double quantum well structures. J. Appl. Phys., 2013, 113(1-9), 083704.
[18]
Das, S.; Nayak, R.K.; Sahu, T.; Panda, A.K. Electron mobility enhancement in barrier delta doped asymmetric double quantum well struc-tures. In: Physics of Semiconductor Devices; Springer International Publishing: Cham, 2014, pp. 255-258.
[19]
Svelto, O., Ed.; Principles of Lasers, 4th ed; Kluwer Academic/Plenum: Dordrecht, Netherlands, 1998.
[20]
Sze, S.M. Semiconductor Physics and Technology; John Wiley & Sons, 1990.
[21]
Movla, H. Influence of the charge carrier mobility on the dynamic behavior and performance of the single-layer OLED. Optik, 2015, 126(24), 5237-5240.
[http://dx.doi.org/10.1016/j.ijleo.2015.09.123]
[22]
Alahyarizadeh, G.; Aghajani, H.; Mahmodi, H.; Rahmani, R.; Hassan, Z. Analytical and visual modelling of InGaN/GaN single quantum well laser based on rate equations. Opt. Laser Technol., 2012, 44(1), 12-20.
[http://dx.doi.org/10.1016/j.optlastec.2011.05.003]
[23]
Mena, P.V.; Morikuni, J.J.; Kang, S.M.; Harton, A.V.; Wyatt, K.W. A comprehensive circuit-level model of vertical-cavity surface-emitting Lasers. J. Lightwave Technol., 1999, 17(12), 2612-2632.
[http://dx.doi.org/10.1109/50.809684]
[24]
Liu, J.; Chen, W.L.; Li, Y. Rate-equation-based VCSEL thermal model and simulation. J. Zhejiang Univ. Sci. A, 2006, 7(12), 1968-1972.
[http://dx.doi.org/10.1631/jzus.2006.A1968]
[25]
Hwang, D.K.; Kang, S.H.; Lim, J.H.; Yang, E.J.; Oh, J.Y.; Yang, J.H.; Parka, S.J. p-ZnO/n-GaN heterostructure ZnO light-emitting diodes. Appl. Phys. Lett., 2005, 86(1-3), 222101.
[26]
Kipshidze, G.; Kuryatkov, V.; Borisov, B.; Holtz, M.; Nikishina, S.; Temkin, H. AlGaInN-based ultraviolet light-emitting diodes grown on Si(111). Appl. Phys. Lett., 2002, 80(20), 3682-3684.
[http://dx.doi.org/10.1063/1.1480886]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy