Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

Droop Control-Based Grid Forming Inverters with an Auxiliary Grid Support Control for Frequency Regulation in a Low Voltage Microgrid

Author(s): Athira Mohanan* and Asha Elizabeth Daniel

Volume 15, Issue 2, 2022

Published on: 22 April, 2022

Page: [127 - 142] Pages: 16

DOI: 10.2174/1874476105666220330013400

Price: $65

Abstract

Aim: Improving the frequency regulation in a Low Voltage (LV) microgrid during grid mode transition using Grid Forming Grid Support (GFGS) converters with inertia emulation.

Background: The ever-increasing demand for energy and the depleting fossil fuels has increased the proliferation of converter-fed Renewable Sources (RES) in the conventional grid. The reduced system inertia results in frequency regulation issues which are further aggravated by the unpredictable nature of RES and dynamic switching of loads. This scenario results in blackouts, unwanted load shedding, power quality issues, and discrepancies in protection schemes.

Objective: A control scheme is presented on the principle of swing equation-based synchronization to regulate the active power output of a grid-tied voltage-source converter operating in a grid forming grid supporting mode in a low voltage PV-based microgrid. The Virtual Synchronous Machine control (VSM) is implemented for controlling the active power output, which follows the grid frequency deviations, ensuring the safe State of Charge (SoC) limits of the Battery Energy Storage System (BESS).

Methods: The stability issues due to the absence of inertia in an inverter-fed LV microgrid are staved off by giving auxiliary grid support by implementing VSM control in a BESS inverter in the grid forming mode. The LV microgrid model with all the converters in the GFGS converter is developed in the MATLAB/Simulink environment. Particle Swarm Optimization (PSO) is used to fine- tune the control parameters. The effectiveness of the control strategy has been investigated for unintentional islanding events.

Results: The droop control-based GFGS grid-tied converters with power balance equation-based VSM control gave frequency regulation within the range stipulated by the grid codes during the islanding events.

Conclusion: The work demonstrates the effectiveness of VSM control in providing the auxiliary grid support for droop-based grid forming converters in an LV microgrid.

Keywords: Droop control, virtual synchronous machine control, microgrid, frequency regulation, particle swarm optimization, Grid Forming Grid Support inverters (GFGS).

Graphical Abstract

[1]
P. Tielens, and D. Van Hertem, "The relevance of inertia in power systems", Renew. Sustain. Energy Rev., vol. 55, pp. 999-1009, 2016.
[http://dx.doi.org/10.1016/j.rser.2015.11.016]
[2]
J.G. Slootweg, and W.L. Kling, Impacts of distributed generation on power system transient stability In: IEEE Power Engineering Society Summer Meeting, vol. 2. 2002, pp. 862-867
[http://dx.doi.org/10.1109/PESS.2002.1043465]
[3]
R. Shi, and X. Zhang, "VSG-Based dynamic frequency support control for autonomous PV–diesel microgrids", Energies, vol. 11, no. 7, p. 1814, 2018.
[http://dx.doi.org/10.3390/en11071814]
[4]
H. Bevrani, Robust Power System Frequency Control., Springer: New York, USA, 2009.
[http://dx.doi.org/10.1007/978-0-387-84878-5]
[5]
L. Zhang, L. Harnefors, and H.P. Nee, "Power-synchronization control of grid-connected voltage-source converters", IEEE Trans. Power Syst., vol. 25, no. 2, pp. 809-820, 2010.
[http://dx.doi.org/10.1109/TPWRS.2009.2032231]
[6]
J.M. Guerrero, J.C. Vasquez, J. Matas, L.G. de Vicu˜na, and M. Castilla, "Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization", IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2011.
[http://dx.doi.org/10.1109/TIE.2010.2066534]
[7]
S. Golestan, M. Monfared, and F.D. Freijedo, "Design-oriented study of advanced synchronous reference frame phase-locked loops", IEEE Trans. Power Electron., vol. 28, no. 2, pp. 765-778, 2013.
[http://dx.doi.org/10.1109/TPEL.2012.2204276]
[8]
S.A. Khajehoddin, M. Karimi-Ghartemani, and M. Ebrahimi, "Grid-supporting inverters with improved dynamics", IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3655-3667, 2018.
[http://dx.doi.org/10.1109/TIE.2018.2850002]
[9]
C.K. Sao, and P.W. Lehn, "Control and power management of converter fed microgrids", IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1088-1098, 2008.
[http://dx.doi.org/10.1109/TPWRS.2008.922232]
[10]
M.C. Chandorkar, D.M. Divan, and R. Adapa, "Control of parallel-connected inverters in standalone ac supply systems", IEEE Trans. Ind. Appl., vol. 29, no. 1, pp. 136-143, 1993.
[http://dx.doi.org/10.1109/28.195899]
[11]
K. Debrabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, and R. Belmans, "A voltage and frequency droop control method for parallel inverters", IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1107-1115, 2007.
[http://dx.doi.org/10.1109/TPEL.2007.900456]
[12]
M.E. Elkhatib, W. Du, and R.H. Lasseter, Evaluation of Inverter-based Grid Frequency Support using Frequency-Watt and Grid-Forming PV Inverters.In: 2018 IEEE Power & Energy Society General Meeting., PESGM, 2018, pp. 1-5.
[http://dx.doi.org/10.1109/PESGM.2018.8585958]
[13]
H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J.M. Guerrero, "review of power sharing control strategies for islanding operation of AC microgrids", IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 200-215, 2016.
[http://dx.doi.org/10.1109/TSG.2015.2434849]
[14]
U.B. Tayab, M.A.B. Roslan, L.J. Hwai, and M. Kashif, "A review of droop control techniques for microgrid", Renew. Sustain. Energy Rev., vol. 76, pp. 717-727, 2017.
[http://dx.doi.org/10.1016/j.rser.2017.03.028]
[15]
L. Ruiming, and W. Shengtie, "The power distribution of parallel converters in islanded microgrid using virtual resistance droop control", In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA) Wuhan, China., 2018, pp. 1671-1675.
[http://dx.doi.org/10.1109/ICIEA.2018.8397978]
[16]
R. Majumder, B. Chaudhuri, A. Ghosh, R. Majumder, G. Ledwich, and F. Zare, "Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop", IEEE Trans. Power Syst., vol. 25, no. 2, pp. 796-808, 2010.
[http://dx.doi.org/10.1109/TPWRS.2009.2032049]
[17]
J.W. Kim, H.S. Choi, and B.H. Cho, "A novel droop method for converter parallel operation", IEEE Trans. Power Electron., vol. 17, no. 1, pp. 25-32, 2002.
[http://dx.doi.org/10.1109/63.988666]
[18]
A. Solanki, A. Nasiri, V. Bhavaraju, Y.L. Familiant, and Q. Fu, "A new framework for microgrid management: Virtual droop control", IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 554-566, 2016.
[http://dx.doi.org/10.1109/TSG.2015.2474264]
[19]
R. Hesse, D. Turschner, and H.P. Beck, "Microgrid stabilization using the virtual synchronous machine VISMA", In: Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’09), 2009, pp. 15-17.
[20]
K.Y. Yap, C.R. Sarimuthu, and J.M. Lim, "Virtual inertia-based inverters for mitigating frequency instability in grid-connected renewable energy system: A review", Appl. Sci. , vol. 9, no. 24, p. 5300, 2019.
[http://dx.doi.org/10.3390/app9245300]
[21]
R. Aouini, B. Marinescu, K. Ben Kilani, and M. Elleuch, "Synchronverter-based emulation and control of HVDC transmission", IEEE Trans. Power Syst., vol. 31, no. 1, pp. 278-286, 2016.
[22]
C. Li, R. Burgos, I. Cvetkovic, D. Boroyevich, L. Mili, and P. Rodriguez, "Analysis and design of virtual synchronous machine-based STATCOM controller", In: 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL) Santender, Spain, 2014, pp. 1-6.
[http://dx.doi.org/10.1109/COMPEL.2014.6877134]
[23]
M. Athira, and A.E. Daniel, Fine-tuning of control parameters for virtual synchronous machine based DSTATCOM using modified Krill Herd optimization technique2016 International Conference on Emerging Technological Trends (ICETT). Kollum. India,, 2016, pp. 1-5.
[http://dx.doi.org/10.1109/ICETT.2016.7873729]
[24]
H.A. Alsiraji, and R. El-Shatshat, "Comprehensive assessment of virtual synchronous machine-based voltage source converter controllers", IET Gener. Transm. Distrib., vol. 11, no. 7, pp. 1762-1769, 2017.
[http://dx.doi.org/10.1049/iet-gtd.2016.1423]
[25]
J. Fang, X. Li, Y. Tang, and H. Li, Design of virtual synchronous generators with enhanced frequency regulation and reduced voltage distortions.In: 2018 IEEE Applied Power Electronics Conference and Exposition., APEC: Texas, USA, 2018, pp. 1412-1419.
[http://dx.doi.org/10.1109/APEC.2018.8341202]
[26]
J. Alipoor, Y. Miura, and T. Ise, "Distributed generation grid integration using a virtual synchronous generator with adaptive virtual inertia", IEEE Energy Convers. Congr. Expo. ECCE, vol. 2013, pp. 4546-4552, 2013.
[27]
J. Li, B. Wen, and H. Wang, "Adaptive virtual inertia control strategy of VSG for micro-grid based on improved bang-bang control strategy", IEEE Access, vol. 7, pp. 39509-39514, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2904943]
[28]
S. Saadatmand, P. Shamsi, and M. Ferdowsi, "Power and frequency regulation of synchronverters using a model-free neural network-based predictive controller", IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 3662-3671, 2021.
[http://dx.doi.org/10.1109/TIE.2020.2984419]
[29]
Z. Afshar, N.T. Bazargani, and S.M.T. Bathaee, "Virtual synchronous generator for frequency response improving and power damping in microgrids using adaptive sliding mode control", In: International Conference and Exposition on Electrical And Power Engineering (EPE), 2018.Romania
[http://dx.doi.org/10.1109/ICEPE.2018.8559616]
[30]
O. Stanojev, U. Markovic, P. Aristidou, G. Hug, D.S. Callaway, and E. Vrettos, MPC-based fast frequency control of voltage source converters in low-inertia power systems.IEEE Trans. Power Syst., 2020, pp. 1-1.
[http://dx.doi.org/10.1109/TPWRS.2020.2999652]
[31]
K.Y. Yap, C.R. Sarimuthu, and J.M.Y. Lim, "Grid integration of solar photovoltaic system using machine learning-based virtual inertia synthetization in synchronverter", IEEE Access, vol. 8, pp. 49961-49976, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2980187]
[32]
Y. Hu, W. Wei, Y. Peng, and J. Lei, Fuzzy virtual inertia control for virtual synchronous generator In: 2016 35th Chinese Control Conference (CCC).Chengdu, China,, 2016, pp. 8523-8527.
[http://dx.doi.org/10.1109/ChiCC.2016.7554718]
[33]
R. Heydari, M. Savaghebi, and F. Blaabjerg, Fast frequency control of low-inertia hybrid grid utilizing extended virtual synchronous machine In: 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). Tehran, Iran,, 2020, pp. 1-5.
[http://dx.doi.org/10.1109/PEDSTC49159.2020.9088504]
[34]
D. Shrestha, U. Tamrakar, N. Malla, Z. Ni, and R. Tonkoski, "Reduction of energy consumption of virtual synchronous machine using supplementary adaptive dynamic programming", In: 2016 IEEE International Conference on Electro Information Technology (EIT) MI, USA, 2016, pp. 690-694.
[http://dx.doi.org/10.1109/EIT.2016.7535323]
[35]
W. Guo, F. Liu, J. Si, and S. Mei, "Incorporating approximate dynamic programming-based parameter tuning into PD-type virtual inertia control of DFIGs", In: 2013 International Joint Conference on Neural Networks (IJCNN) TX, USA,, 2013, pp. 1-8.
[http://dx.doi.org/10.1109/IJCNN.2013.6707069]
[36]
B. Rathore, S. Chakrabarti, and S. Anand, Frequency response improvement in microgrid using optimized VSG control2016 National Power Systems Conference (NPSC) Bhubaneswar, India, 2016, pp. 1-6.
[http://dx.doi.org/10.1109/NPSC.2016.7858916]
[37]
M.H. Othman, H. Mokhlis, M. Mubin, S. Talpur, N. Fadilah, A. Aziz, and H. Mohamad, "Progress in control and coordination of energy storage system-based VSG : A review", IET Renew. Power Gener., vol. 14, no. 2, pp. 177-187, 2019.
[http://dx.doi.org/10.1049/iet-rpg.2019.0274]
[38]
Kutaiba S., "El-Bidairi, Hung Duc Nguyen, S.D.G. Jayasinghe, Thair S. Mahmoud, and Irene Penesis, “A hybrid energy management and battery size optimization for standalone microgrids: A case study for Flinders Island”", Energy Convers. Manage., vol. 175, pp. 192-212, 2018.
[39]
A.A. Khodadoost Arani, and B. Gharehpetian, "Review on energy storage systems control methods in microgrids", Int. J. Electr. Power Energy Syst., vol. 107, pp. 745-757, 2019.
[40]
M.J. Erickson, and R.H. Lasseter, Integration of battery energy storage element in a CERTS microgrid In: 2010 IEEE Energy Conversion Congress and Exposition., 2010, pp. 2570-2577.
[http://dx.doi.org/10.1109/ECCE.2010.5617986]
[41]
A. Vinayagam, K.S.V. Swarna, S.Y. Khoo, A.T. Oo, and A. Stojcevski, "PV based microgrid with grid support grid forming inverter control (simulation and analysis)", Smart Grid Renew. Energy, vol. 8, no. 1, pp. 1-30, 2017.
[http://dx.doi.org/10.4236/sgre.2017.81001]
[42]
S. D’Arco, J.A. Suul, and O.B. Fosso, "Electrical power and energy systems small-signal modeling and parametric sensitivity of a virtual synchronous machine in islanded operation", Int. J. Electr. Power Energy Syst., vol. 72, pp. 3-15, 2015.
[http://dx.doi.org/10.1016/j.ijepes.2015.02.005]
[43]
Zuo Zuo, Z. Yuan, F. Sossan, A. Zecchino, R. Cherkaoui, and M. Paolone, Performance assessment of grid-forming and grid-following converter-interfaced battery energy storage systems on frequency regulation in low-inertia power grids Sustain. Energy Grids Netw.. vol. 27, p. 100496.
[http://dx.doi.org/10.1016/j.segan.2021.100496]
[44]
J. Matevosyan, V. Vital, J. O’Sullivan, R. Quint, B. Badrzadeh, T. Prevost, E. Quitmann, D. Ramasubramanian, H. Urdal, S. Achilles, J. MacDowell, and S.H. Huang, "Grid-forming inverters: Are they the key for high renewable penetration?", IEEE Power Energy Mag., vol. 17, no. 6, pp. 89-98, 2019.
[http://dx.doi.org/10.1109/MPE.2019.2933072]
[45]
D. Pattabiraman, R.H. Lasseter, and T.M. Jahns, Comparison of grid following and grid forming control for a high inverter penetration power system.In: 2018 IEEE Power & Energy Society General Meeting., PESGM: Origon, USA, 2018, pp. 1-5.
[http://dx.doi.org/10.1109/PESGM.2018.8586162]
[46]
H. Zhang, W. Xiang, W. Lin, and J. Wen, "Grid forming converters in renewable energy sources dominated power grid: Control strategy, stability, application, and challenges", J. Mod. Power Syst. Clean Energy, vol. 9, no. 6, pp. 1239-1256, 2021.
[http://dx.doi.org/10.35833/MPCE.2021.000257]
[47]
D.B. Rathnayake, M. Akrami, C. Phurailatpam, S.P. Me, S. Hadavi, G. Jayasinghe, S. Zabihi, and B. Bahrani, "Grid forming inverter modeling, control, and applications", IEEE Access, vol. 9, pp. 114781-114807, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3104617]
[48]
P. Unruh, M. Nuschke, P. Strauß, and F. Welck, "Overview on grid-forming inverter control methods", Energies, vol. 13, no. 10, p. 2589, 2020.
[http://dx.doi.org/10.3390/en13102589]
[49]
U. Markovic, O. Stanojev, P. Aristidou, and G. Hug, Partial grid forming concept for 100% inverter-based transmission systems In: 2018 IEEE Power & Energy Society General Meeting PESGM., 2018, pp. 1-5.
[http://dx.doi.org/10.1109/PESGM.2018.8586114]
[50]
X. Wang, J.M. Guerrero, F. Blaabjerg, and Z. Chen, "A review of power electronics-based microgrids", Int. J. Power Electron., vol. 12, no. 1, pp. 181-192, 2012.
[http://dx.doi.org/10.6113/JPE.2012.12.1.181]
[51]
P. Tenti, A. Costabeber, D. Trombetti, and P. Mattavelli, "Plug & play operation of distributed energy resources in micro-grids", In: International Telecommunications Energy Conference (INTELEC’10), 2010, pp. 1-6.
[http://dx.doi.org/10.1109/INTLEC.2010.5525692]
[52]
J. Kennedy, and R. Eberhart, Particle swarm optimizationIEEE International Conference on Neural Networks, 1995, pp. 1942-1948.
[http://dx.doi.org/10.1109/ICNN.1995.488968]
[53]
Y. del Valle, G.K. Venayagamoorthy, S. Mohagheghi, J-C. Hernandez, and R.G. Harley, "Particle swarm optimization: Basic concepts, variants, and applications in power systems", IEEE Trans. Evol. Comput., vol. 12, no. 2, pp. 171-195, 2008.
[http://dx.doi.org/10.1109/TEVC.2007.896686]
[54]
A. Abido, "Optimal design of power-system stabilizers using particle swarm optimization", IEEE Trans. Energ. Convers., vol. 17, no. 3, pp. 406-413, 2002.
[http://dx.doi.org/10.1109/TEC.2002.801992]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy