Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

α-Glucosidase and α-Amylase Inhibition Study and In Silico Analysis of Mimosa pudica L. of Nepalese Origin

Author(s): Dipesh Shrestha, Tamlal Pokhrel, Kamal Dhakal, Anisha Pandey, Prabha Sharma, Sima Sapkota and Achyut Adhikari*

Volume 18, Issue 10, 2022

Published on: 31 May, 2022

Article ID: e280322202693 Pages: 7

DOI: 10.2174/1573407218666220328133408

Price: $65

Abstract

Background: Diabetes has become a considerably more frequent condition and has increased alarmingly in recent years, possibly due to the adoption of modern lifestyle and food habits. The two prominent features of diabetes mellitus are high blood glucose and insulin deficiency, leading to severe consequences. Developing next-generation anti-diabetic medicines with fewer side effects has been a major focus in this situation.

Objective: This research aimed to investigate the total phenolic and flavonoid content, antioxidant, antibacterial, α-amylase, and α-glucosidase inhibition activity, as well as in silico analysis of Mimosa pudica L.

Methods: The inhibitory activity against α-amylase and α-glucosidase was performed using CNPG3 and PNPG, respectively. Antioxidant activity was estimated using DPPH free radical scavenging assay. The well diffusion method was used for the antibacterial. Using folin- ciocalteu’s reagent, the total phenolic content was determined. The total flavonoid content was determined using the aluminium trichloride method. In addition, molecular docking was performed using autodock vina.

Results: Inhibition of α-glucosidase (IC50 = 1.059±0.14μg/mL) was found to be more significant than α-amylase (IC50 = 164.9±0.95μg/mL). The plant was also found to have antioxidant activity (IC50 = 8.207 ±0.23μg/mL), as well as antibacterial activity against Staphylococcus aureus (ZOI = 13mm) and Bacillus subtilis (ZOI = 10mm). Similarly, the total phenolic and flavonoid content was found to be 177.93±1.8 mg GAE/g, and 19.747±6.11 mg QE/g, respectively. In addition, compounds (stigmasterol, quercetin, and avicularin) isolated from M. pudica showed perfect binding to the enzyme’s active site.

Conclusion: Mimosa pudica of Nepalese origin possess potent inhibition against digestive enzymes. Therefore, M. pudica can be used as an alternative therapeutic source to combat the global threat of diabetes.

Keywords: Mimosa pudica, anti-diabetic, α-glucosidase, α-amylase, antioxidant, antibacterial, molecular docking.

Graphical Abstract

[1]
Baker, D.D.; Chu, M.; Oza, U.; Rajgarhia, V. The value of natural products to future pharmaceutical discovery. Nat. Prod. Rep., 2007, 24(6), 1225-1244.
[http://dx.doi.org/10.1039/b602241n] [PMID: 18033577]
[2]
Ekiert, H.M.; Szopa, A. Biological activities of natural products. Molecules, 2020, 25(23), 5769.
[http://dx.doi.org/10.3390/molecules25235769] [PMID: 33297511]
[3]
Amengialue, O.O.; Oviasogie, E.F.; Omoigberale, M.N.O.; Omoregie, B.O.; Bodunrinde, R.E. Phytochemical screening and assessment of antimicrobial activity of mimosa pudica. European Virtual Conference on Natural and Applied Sciences., 2016. Available from: www.idpublications.org
[4]
Tasnuva, S.T.; Ferdosh, S.; Ahmed, Q.; Ghafoor, K.; Juliana, J.; Sarker, M.Z. Mimosa pudica L. A comparative study via in vitro analysis and GC Q-TOF MS profiling on conventional and supercritical fluid extraction using food grade ethanol. Indian J. Nat. Prod. Resour., 2017, 8, 54-62.
[5]
Lakshmibai, R.; Amirtham, D. Evaluation of free radical scavenging activity of Mimosa Pudica thorns. Asian J. Pharm. Clin. Res., 2018, 11(11), 153.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i11.27426]
[6]
DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; Simonson, D.C.; Testa, M.A.; Weiss, R. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers, 2015, 1(1), 15019.
[http://dx.doi.org/10.1038/nrdp.2015.19] [PMID: 27189025]
[7]
Nair, S.S.; Kavrekar, V.; Mishra, A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur. J. Exp. Biol., 2013, 3(1), 128-132.
[8]
Etsassala, N.G.E.R.; Badmus, J.A.; Waryo, T.T.; Marnewick, J.L.; Cupido, C.N.; Hussein, A.A.; Iwuoha, E.I. Alpha-glucosidase and alpha-amylase inhibitory activities of novel abietane diterpenes from Salvia Africana-Lutea. Antioxidants, 2019, 8(10), 1-12.
[http://dx.doi.org/10.3390/antiox8100421] [PMID: 31547166]
[9]
Narkhede, M. Investigation of in vitro α-amylase and α-glucosidase inhibitory activity of polyherbal extract. Int. J. Pharm. Res. Develop., 2011, 3, 97.
[10]
Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev., 2011, 5(9), 19-29.
[http://dx.doi.org/10.4103/0973-7847.79096] [PMID: 22096315]
[11]
Sudha, P.; Zinjarde, S.S.; Bhargava, S.Y.; Kumar, A.R. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement. Altern. Med., 2011, 11(1), 5.
[http://dx.doi.org/10.1186/1472-6882-11-5] [PMID: 21251279]
[12]
Ali, H.; Houghton, P.J.; Soumyanath, A. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J. Ethnopharmacol., 2006, 107(3), 449-455.
[http://dx.doi.org/10.1016/j.jep.2006.04.004] [PMID: 16678367]
[13]
Assefa, S.T.; Yang, E-Y.; Chae, S-Y.; Song, M.; Lee, J.; Cho, M-C.; Jang, S. Alpha glucosidase inhibitory activities of plants with focus on common vegetables. Plants, 2019, 9(1), E2.
[http://dx.doi.org/10.3390/plants9010002] [PMID: 31861279]
[14]
Rosa, M.M.; Dias, T. Commonly used endocrine drugs, Handbook of Clinical Neurology; Elsevier B.V., 2014, Vol. 120, pp. 809-824.
[http://dx.doi.org/10.1016/B978-0-7020-4087-0.00054-1]
[15]
Joseph, B.; George, J.; Mohan, J. Pharmacology and Traditional Uses of Mimosa pudica. Int. J. Pharm. Sci. Drug Res., 2013, 5, 41-44.
[16]
Parasuraman, S.; Ching, H.; Leong, C.H.; Banik, U. Antidiabetic and antihyperlipidemic effects of a methanolic extract of Mimosa pudica (Fabaceae) in diabetic rats. Egyptian J. Basic Appl. Sci., 2019, 6(1), 137-148.
[http://dx.doi.org/10.1080/2314808X.2019.1681660]
[17]
Genest, S.; Kerr, C.; Shah, A.; Rahman, M.M.; Saief-E-Naser, G.M.M.; Nigam, P.; Nahar, L.; Sarker, S.D. Comparative bioactivity studies on two Mimosa species. Bol. Latinoam. Caribe Plantas Med. Aromat., 2008, 7(1), 38-43.
[18]
Ahmad, H.; Sehgal, S.; Mishra, A.; Gupta, R. Mimosa pudica L. (Laajvanti): An overview. Pharmacogn. Rev., 2012, 6(12), 115-124.
[http://dx.doi.org/10.4103/0973-7847.99945] [PMID: 23055637]
[19]
Thamizharasan, S.; Umamaheswari, S.R.H. α - Amylase and α - Glucosidase activity of mimosa. Paripex - Indian J. Res., 2016, 223-224.
[20]
Tunna, T.S.; Zaidul, I.S.M.; Ahmed, Q.U.; Ghafoor, K.; Al-Juhaimi, F.Y.; Uddin, M.S.; Hasan, M.; Ferdous, S. Analyses and profiling of extract and fractions of neglected weed Mimosa pudica Linn. traditionally used in Southeast Asia to treat diabetes. S. Afr. J. Bot., 2015, 99, 144-152.
[http://dx.doi.org/10.1016/j.sajb.2015.02.016]
[21]
Tasnuva, S.T.; Qamar, U.A.; Ghafoor, K.; Sahena, F.; Jahurul, M.H.A.; Rukshana, A.H.; Juliana, M.J.; Al-Juhaimi, F.Y.; Jalifah, L.; Jalal, K.C.A.; Ali, M.E.; Zaidul, I.S.M. α-glucosidase inhibitors isolated from Mimosa pudica L. Nat. Prod. Res., 2019, 33(10), 1495-1499.
[http://dx.doi.org/10.1080/14786419.2017.1419224] [PMID: 29281898]
[22]
Sutar, N.G.; Sutar, U.N.; Behera, B.C. Antidiabetic activity of the leaves of Mimosa pudica linn. in albino rats, 2009, 3(1), 123-126.
[23]
Rajendiran, D.; Khan, H.B.H.; Packirisamy, S.; Gunasekaran, K. Dose dependent antidiabetic effect of Mimosa pudica leaves extract in type 2 diabetic rat model. Pharma Innov., 2019, 8(3-A), 1-4.
[24]
Ngo Bum, E.; Dawack, D.L.; Schmutz, M.; Rakotonirina, A.; Rakotonirina, S.V.; Portet, C.; Jeker, A.; Olpe, H-R.; Herrling, P. Anticonvulsant activity of Mimosa pudica decoction. Fitoterapia, 2004, 75(3-4), 309-314.
[http://dx.doi.org/10.1016/j.fitote.2004.01.012] [PMID: 15158987]
[25]
Kumaresan, R.; Veerakumar, S.; Elango, V. A study on hepatoprotective activity of Mimosa pudica in albino rats. Int. J. Pharm. Phytochemical Res., 2015, 7(2), 337-339.
[26]
Azmi, L.; Singh, M.K.; Akhtar, A.K. Pharmacological and biological overview on Mimosa pudica Linn. Int. J. Pharm. & Life Sci., 2011, 2, 1226-1234.
[27]
Javanmardi, J.; Stushnoff, C.; Locke, E.; Vivanco, J.M. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem., 2003, 83(4), 547-550.
[http://dx.doi.org/10.1016/S0308-8146(03)00151-1]
[28]
Chang, C-C.; Yang, M-H.; Wen, H-M.; Chern, J-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. Yao Wu Shi Pin Fen Xi, 2020, 10(3), 3.
[http://dx.doi.org/10.38212/2224-6614.2748]
[29]
Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; dos Santos, T.C.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res., 2001, 15(2), 127-130.
[http://dx.doi.org/10.1002/ptr.687] [PMID: 11268111]
[30]
Telagari, M.; Hullatti, K. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian J. Pharmacol., 2015, 47(4), 425-429.
[http://dx.doi.org/10.4103/0253-7613.161270] [PMID: 26288477]
[31]
Senger, M.R.; Gomes, L.C.; Ferreira, S.B.; Kaiser, C.R.; Ferreira, V.F.; Silva, F.P. Jr Kinetics studies on the inhibition mechanism of pancreatic α-amylase by glycoconjugated 1H-1,2,3-triazoles: A new class of inhibitors with hypoglycemiant activity. ChemBioChem, 2012, 13(11), 1584-1593.
[http://dx.doi.org/10.1002/cbic.201200272] [PMID: 22753086]
[32]
Joshi, B.; Sah, G.P.; Basnet, B.B.; Bhatt, M.R.; Sharma, D.; Subedi, K.; Pandey, J.; Malla, R. Phytochemical extraction and antimicrobial properties of different medicinal plants: Ocimum sanctum (Tulsi), Eugenia caryophyllata (Clove), Achyranthes bidentata (Datiwan) and Azadirachta indica (Neem). J. Microbiol. Antimicrob., 2011, 3(1), 1-7.
[http://dx.doi.org/10.5897/JMA.9000046]
[33]
Oleg, T.; Arthur, O.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimisation, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[34]
Yamamoto, K.; Miyake, H.; Kusunoki, M.; Osaki, S. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS J., 2010, 277(20), 4205-4214.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07810.x] [PMID: 20812985]
[35]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[36]
Adinortey, M.B.; Agbeko, R.; Boison, D.; Ekloh, W.; Kuatsienu, L.E.; Biney, E.E.; Affum, O.O.; Kwarteng, J.; Nyarko, A.K. Phytomedicines used for diabetes mellitus in Ghana: A systematic search and review of preclinical and clinical evidence. Evid. Based Complement. Alternat. Med., 2019, 2019, 6021209.
[http://dx.doi.org/10.1155/2019/6021209] [PMID: 31118963]
[37]
Sunday, R.M.; Obuotor, E.M.; Kumar, A. Antioxidant and antidiabetic properties of Mimosa pudica seeds in streptozotocin-induced diabetic wistar rats. Asian Journal of Biotechnology, 2019, 12(1), 1-8.
[http://dx.doi.org/10.3923/ajbkr.2020.1.8]
[38]
Sapkota, B.K.; Khadayat, K.; Adhikari, B.; Poudel, D.B.; Niraula, P.; Budhathoki, P.; Aryal, B.; Basnet, K.; Ghimire, M.; Marahatya, R.; Parajuli, N. Phytochemical analysis, antidiabetic potential and in-silico evaluation of some medicinal plants. Pharmacognosy Res., 2021, 13(3), 140-148.
[http://dx.doi.org/10.5530/pres.13.3.6]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy