Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Mini-Review Article

A Discursive Review of Recent Development and Patents on Glycerosomes

Author(s): Ragini Singh, Fatima Zeeshan*, Dipti Srivastava and Himani Awasthi

Volume 17, Issue 3, 2023

Published on: 13 May, 2022

Page: [183 - 189] Pages: 7

DOI: 10.2174/1872210516666220328124450

Price: $65

Abstract

Background: To achieve a target-based drug delivery with minimal side effects, novel drug delivery systems are being continuously explored. Vesicular systems are one such system that can ameliorate the bioavailability of the encapsulated drug by delivering the drug at the targeted site and can minimize the side effect.

Objective: The objective of this patent review is to provide a vivid description of glycerosomes and their applications. Glycerosomes are sphere-shaped versatile vesicles consisting of one or more phospholipid bilayers similar to liposomes but contain a high concentration of glycerol, which modifies the liposome bilayer fluidity. Glycerosomes can encapsulate both hydrophobic and hydrophilic drugs, which makes them the promising vehicle in the field of drug delivery.

Conclusion: Most of the glycerosome formulations prepared were targeted for topical delivery and in particular, a cutaneous route where they have shown promising results. These vesicles are biocompatible and due to the high glycerol concentration, they have improved spreadability and penetrability. It is therefore imperative to explore the other topical routes such as ocular, vaginal, nasal, and rectal for delivery of drugs.

Keywords: Glycerosomes, glycerol, phospholipid vesicles, vesicular systems, bilayer fluidity, topical delivery.

Graphical Abstract

[1]
Manca ML,, Zaru M, Manconi M, et al. Glycerosomes: A new tool for effective dermal and transdermal drug delivery. Int J Pharm 2013; 455(1-2): 66-74.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.060] [PMID: 23911913]
[2]
Zaru M, Manca ML,, Fadda AM,, Orsini G. Glycerosomes and use thereof in pharmaceutical and cosmetic preparations for topical applications Google Patents 2014.
[3]
Liu D-Z, Chen W-Y, Tasi L-M, Yang S-P. Microcalorimetric and shear studies on the effects of cholesterol on the physical stability of lipid vesicles. Colloids Surf A Physicochem Eng Asp 2000; 172(1-3): 57-67.
[http://dx.doi.org/10.1016/S0927-7757(00)00560-4]
[4]
Bangham AD,, Standish MM,, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-52.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[5]
Dua J, Rana A, Bhandari A. Liposome: Methods of preparation and applications. Int J Pharm Stud Res 2012; 3(2): 14-20.
[6]
Wang Q, Tan G, Lawson LB,, John VT,, Papadopoulos KD. Liposomes in double-emulsion globules. Langmuir 2010; 26(5): 3225-31.
[http://dx.doi.org/10.1021/la9032157] [PMID: 19958007]
[7]
Salimi A. Liposomes as a novel drug delivery system: Fundamental and pharmaceutical application. Asian J Pharm 2018; 12(01)
[8]
Makhmalzadeh BS,, Azh Z, Azarpanah A. Preparation and evaluation of mafenide acetate liposomal formulation as eschar delivery system. Int J Drug Dev & Res 2011; 3(4): 129-40.
[9]
Tiwari S, Verma P. Microencapsulation technique by solvent evaporation method (Study of effect of process variables). Int J Pharm Life Sci 2011; 2(8)
[10]
Pinna R, Filigheddu E, Juliano C, et al. Antimicrobial effect of Thymus capitatus and Citrus limon var. pompia as raw extracts and nanovesicles. Pharmaceutics 2019; 11(5): 234.
[http://dx.doi.org/10.3390/pharmaceutics11050234] [PMID: 31091818]
[11]
Lai F, Caddeo C, Manca ML,, Manconi M, Sinico C, Fadda AM. What’s new in the field of phospholipid vesicular nanocarriers for skin drug delivery. Int J Pharm 2020; 583: 119398.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119398] [PMID: 32376441]
[12]
Vanti G, Dourdouni V, Lazari D, Panagiotidis C, Ntallis S, Litsiou S, et al. Melissa officinalis essential oil loaded glycerosomes: Preparation and in vitro activity evaluation against herpes labialis (HSV-1). Planta Medica 2019; 85(18) : SL YRW-05
[13]
Vanti G, Ntallis SG,, Panagiotidis CA, et al. Glycerosome of Melissa officinalis L. essential oil for effective anti-HSV Type 1. Molecules 2020; 25(14): 3111.
[http://dx.doi.org/10.3390/molecules25143111] [PMID: 32650414]
[14]
Vitonyte J, Manca ML,, Caddeo C, et al. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. Eur J Pharm Biopharm 2017; 114: 278-87.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.004] [PMID: 28192250]
[15]
Zhang K, Zhang Y, Li Z, Li N, Feng N. Essential oil-mediated glycerosomes increase transdermal paeoniflorin delivery: Optimization, characterization, and evaluation in vitro and in vivo. Int J Nanomedicine 2017; 12: 3521-32.
[http://dx.doi.org/10.2147/IJN.S135749] [PMID: 28503066]
[16]
Salem HF,, Kharshoum RM,, Sayed OM,, Abdel Hakim LF. Formulation design and optimization of novel soft glycerosomes for enhanced topical delivery of celecoxib and cupferron by Box-Behnken statistical design. Drug Dev Ind Pharm 2018; 44(11): 1871-84.
[http://dx.doi.org/10.1080/03639045.2018.1504963] [PMID: 30044654]
[17]
Kitagawa S, Tanaka Y, Tanaka M, Endo K, Yoshii A. Enhanced skin delivery of quercetin by microemulsion. J Pharm Pharmacol 2009; 61(7): 855-60.
[http://dx.doi.org/10.1211/jpp.61.07.0003] [PMID: 19589226]
[18]
Montenegro L, Carbone C, Maniscalco C, et al. In vitro evaluation of quercetin-3-O-acyl esters as topical prodrugs. Int J Pharm 2007; 336(2): 257-62.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.003] [PMID: 17257788]
[19]
Manca ML,, Castangia I, Caddeo C, et al. Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles. Colloids Surf B Biointerfaces 2014; 123: 566-74.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.059] [PMID: 25444664]
[20]
Manca ML,, Peris JE,, Melis V, et al. Nanoincorporation of curcumin in polymer-glycerosomes and evaluation of their in vitro–in vivo suitability as pulmonary delivery systems. RSC Advances 2015; 5(127): 105149-59.
[http://dx.doi.org/10.1039/C5RA24032H]
[21]
Manca ML,, Castangia I, Zaru M, et al. Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring. Biomaterials 2015; 71: 100-9.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.034] [PMID: 26321058]
[22]
Manca ML,, Cencetti C, Matricardi P, et al. Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration. Int J Pharm 2016; 511(1): 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.009] [PMID: 27418567]
[23]
Melis V, Manca ML,, Bullita E, et al. Inhalable polymer-glycerosomes as safe and effective carriers for rifampicin delivery to the lungs. Colloids Surf B Biointerfaces 2016; 143: 301-8.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.044] [PMID: 27022870]
[24]
Zaru M, Mourtas S, Klepetsanis P, Fadda AM,, Antimisiaris SG. Liposomes for drug delivery to the lungs by nebulization. Eur J Pharm Biopharm 2007; 67(3): 655-66.
[http://dx.doi.org/10.1016/j.ejpb.2007.04.005] [PMID: 17540552]
[25]
Zaru M, Sinico C, De Logu A, et al. Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: In vitro and in vivo evaluation. J Liposome Res 2009; 19(1): 68-76.
[http://dx.doi.org/10.1080/08982100802610835] [PMID: 19515009]
[26]
Nahar K, Gupta N, Gauvin R, et al. In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals. Eur J Pharm Sci 2013; 49(5): 805-18.
[http://dx.doi.org/10.1016/j.ejps.2013.06.004] [PMID: 23797056]
[27]
Manca ML,, Sinico C, Maccioni AM,, Diez O, Fadda AM,, Manconi M. Composition influence on pulmonary delivery of rifampicin liposomes. Pharmaceutics 2012; 4(4): 590-606.
[http://dx.doi.org/10.3390/pharmaceutics4040590] [PMID: 24300372]
[28]
Manconi M, Manca ML,, Marongiu F, et al. Chemical characterization of Citrus limon var. pompia and incorporation in phospholipid vesicles for skin delivery. Int J Pharm 2016; 506(1-2): 449-57.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.014] [PMID: 27084291]
[29]
Caddeo C, Manca ML,, Matos M, et al. Functional response of novel bioprotective poloxamer-structured vesicles on inflamed skin. Nanomedicine 2017; 13(3): 1127-36.
[http://dx.doi.org/10.1016/j.nano.2016.12.017] [PMID: 28064008]
[30]
He Z, Chen AY,, Rojanasakul Y, Rankin GO,, Chen YC. Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells. Oncol Rep 2016; 35(1): 291-7.
[http://dx.doi.org/10.3892/or.2015.4354] [PMID: 26530725]
[31]
Neves AR, Lucio M, Lima JL, Reis S. Resveratrol in medicinal chemistry: A critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr Med Chem 2012; 19(11): 1663-81.
[http://dx.doi.org/10.2174/092986712799945085] [PMID: 22257059]
[32]
Akl MA, Kartal-Hodzic A, Oksanen T, et al. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J Drug Deliv Sci Technol 2016; 32: 10-20.
[http://dx.doi.org/10.1016/j.jddst.2016.01.007]
[33]
Yilmaz Y, Toledo RT. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 2004; 52(2): 255-60.
[http://dx.doi.org/10.1021/jf030117h] [PMID: 14733505]
[34]
Lodzki M, Godin B, Rakou L, Mechoulam R, Gallily R, Touitou E. Cannabidiol-transdermal delivery and anti-inflammatory effect in a murine model. J Control Release 2003; 93(3): 377-87.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.001] [PMID: 14644587]
[35]
Croxtall JD, Plosker GL. Sertaconazole: A review of its use in the management of superficial mycoses in dermatology and gynaecology. Drugs 2009; 69(3): 339-59.
[http://dx.doi.org/10.2165/00003495-200969030-00009] [PMID: 19275277]
[36]
Abdellatif MM, Khalil IA, Khalil MAF. Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: In-vitro, ex-vivo and in-vivo evaluation. Int J Pharm 2017; 527(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.029] [PMID: 28522423]
[37]
Mourtas S, Fotopoulou S, Duraj S, Sfika V, Tsakiroglou C, Antimisiaris SG. Liposomal drugs dispersed in hydrogels. Effect of liposome, drug and gel properties on drug release kinetics. Colloids Surf B Biointerfaces 2007; 55(2): 212-21.
[http://dx.doi.org/10.1016/j.colsurfb.2006.12.005] [PMID: 17223020]
[38]
Margulis-Goshen K, Kesselman E, Danino D, Magdassi S. Formation of celecoxib nanoparticles from volatile microemulsions. Int J Pharm 2010; 393(1-2): 230-7.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.012] [PMID: 20403417]
[39]
Abdellatif KR, Chowdhury MA, Velázquez CA, et al. Celecoxib prodrugs possessing a diazen-1-ium-1,2-diolate nitric oxide donor moiety: Synthesis, biological evaluation and nitric oxide release studies. Bioorg Med Chem Lett 2010; 20(15): 4544-9.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.022] [PMID: 20576432]
[40]
Manconi M, Manca ML, Caddeo C, et al. Citrus limon extract loaded in vesicular systems for the protection of oral cavity. Medicines (Basel) 2018; 5(4): 108.
[http://dx.doi.org/10.3390/medicines5040108] [PMID: 30322189]
[41]
Manconi M, Petretto G, D’hallewin G, et al. Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids Surf B Biointerfaces 2018; 171: 115-22.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.021] [PMID: 30025373]
[42]
Manconi M, Caddeo C, Nacher A, et al. Eco-scalable baicalin loaded vesicles developed by combining phospholipid with ethanol, glycerol, and propylene glycol to enhance skin permeation and protection. Colloids Surf B Biointerfaces 2019; 184: 110504.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110504] [PMID: 31539753]
[43]
Dinda B, Dinda S, DasSharma S, Banik R, Chakraborty A, Dinda M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem 2017; 131: 68-80.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.004] [PMID: 28288320]
[44]
Shi GX, Shao J, Wang TM, Wang CZ. New advance in studies on antimicrobal activity of Scutellaria baicalensis and its effective ingredients. Zhongguo Zhongyao Zazhi 2014; 39(19): 3713-8.
[PMID: 25612426]
[45]
Chen Y, Minh LV, Liu J, et al. Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting. Colloids Surf B Biointerfaces 2016; 140: 74-82.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.018] [PMID: 26741267]
[46]
Sherry M, Charcosset C, Fessi H, Greige-Gerges H. Essential oils encapsulated in liposomes: A review. J Liposome Res 2013; 23(4): 268-75.
[http://dx.doi.org/10.3109/08982104.2013.819888] [PMID: 23879218]
[47]
Gupta P, Mazumder R, Padhi S. Development of natamycin loaded glycerosomes–a novel approach to defend ophthalmic keratitis. Indian J Pharma Edu Res 2020; 54(2s): s163-72.
[http://dx.doi.org/10.5530/ijper.54.2s.72]
[48]
Gupta P MR, Padhi S. Glycerosomes of natamycin for treatment of ophthalmic fungal keratitis. IN IN201911040868, 2019.
[49]
Moolakkadath T, Aqil M, Ahad A, et al. Preparation and optimization of fisetin loaded glycerol based soft nanovesicles by Box-Behnken design. Int J Pharm 2020; 578: 119125.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119125] [PMID: 32036010]
[50]
Hou D-X, Fukuda M, Johnson JA, Miyamori K, Ushikai M, Fujii M. Fisetin induces transcription of NADPH:quinone oxidoreductase gene through an antioxidant responsive element-involved activation. Int J Oncol 2001; 18(6): 1175-9.
[http://dx.doi.org/10.3892/ijo.18.6.1175] [PMID: 11351248]
[51]
Khan N, Afaq F, Khusro FH, Mustafa Adhami V, Suh Y, Mukhtar H. Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Int J Cancer 2012; 130(7): 1695-705.
[http://dx.doi.org/10.1002/ijc.26178] [PMID: 21618507]
[52]
Syed DN, Afaq F, Maddodi N, et al. Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased Mitf levels. J Invest Dermatol 2011; 131(6): 1291-9.
[http://dx.doi.org/10.1038/jid.2011.6] [PMID: 21346776]
[53]
Naguib MJ, Salah S, Abdel Halim SA, Badr-Eldin SM. Investigating the potential of utilizing glycerosomes as a novel vesicular platform for enhancing intranasal delivery of lacidipine. Int J Pharm 2020; 582: 119302.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119302] [PMID: 32276091]
[54]
Saravanakumar K, Hu X, Chelliah R, Oh DH, Kathiresan K, Wang MH. Biogenic silver nanoparticles-polyvinylpyrrolidone based glycerosomes coating to expand the shelf life of fresh-cut bell pepper (Capsicum annuum L. var. grossum (L.) Sendt). Postharvest Biol Technol 2020; 160: 111039.
[http://dx.doi.org/10.1016/j.postharvbio.2019.111039]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy