Abstract
The interaction of drugs with proteins plays a very important role in the distribution of the drug. Human serum albumin (HSA) is the most abundant protein in the human body, showing great binding characteristics, and has gained a lot of importance pharmaceutically. It plays an essential role in the pharmacokinetics of a number of drugs; hence, several reports are available on the interaction of drugs with HSA. It can bind to cancer drugs; thus, it is crucial to look at the binding characteristics of these drugs with HSA. Herein, we summarize the binding properties of some anti-cancer drugs by specifically looking into the binding site with HSA. The number of drugs binding at the Sudlow's site I situated in subdomain II A is more than the drugs binding at Sudlow's site II.
Keywords: Human serum albumin, anti-cancer drugs, distribution of drugs, pharmacokinetics, Sudlow's site II, subdomain II A.
Graphical Abstract
[http://dx.doi.org/10.3390/ijms15033580] [PMID: 24583848]
(b)Yang, M.; Hoppmann, S.; Chen, L.; Cheng, Z. Human serum albumin conjugated biomolecules for cancer molecular imaging. Curr. Pharm. Des., 2012, 18(8), 1023-1031.
[http://dx.doi.org/10.2174/138161212799315830] [PMID: 22272822]
[http://dx.doi.org/10.1021/bc034179p] [PMID: 15264860]
(b)Ranjbar, S.; Shokoohinia, Y.; Ghobadi, S.; Bijari, N.; Gholamzadeh, S.; Moradi, N.; Ashrafi-Kooshk, M.R.; Aghaei, A.; Khodarahmi, R. Studies of the interaction between isoimperatorin and human serum albumin by multispectroscopic method: Identification of possible binding site of the compound using esterase activity of the protein. ScientificWorldJournal, 2013, 2013, 305081.
[http://dx.doi.org/10.1155/2013/305081] [PMID: 24319355]
(c)Simard, J.R.; Zunszain, P.A.; Ha, C.E.; Yang, J.S.; Bhagavan, N.V.; Petitpas, I.; Curry, S.; Hamilton, J.A. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 2005, 102(50), 17958-17963.
[http://dx.doi.org/10.1073/pnas.0506440102] [PMID: 16330771]
[http://dx.doi.org/10.36648/1791-809X.14.2.698]
(b)Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7-7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[http://dx.doi.org/10.1016/j.jsps.2020.04.015] [PMID: 32550805]
[http://dx.doi.org/10.1016/j.jmb.2005.07.075] [PMID: 16169013]
(b)Li, M.; McAuley, E.; Zhang, Y.; Kong, L.; Yang, F.; Zhou, Z.; Wu, X.; Liang, H. Comparison of binding characterization of two antiviral drugs to human serum albumin. Chem. Biol. Drug Des., 2014, 83(5), 576-582.
[http://dx.doi.org/10.1111/cbdd.12270] [PMID: 24325603]
(c)Petitpas, I.; Petersen, C.E.; Ha, C.E.; Bhattacharya, A.A.; Zunszain, P.A.; Ghuman, J.; Bhagavan, N.V.; Curry, S. Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc. Natl. Acad. Sci. USA, 2003, 100(11), 6440-6445.
[http://dx.doi.org/10.1073/pnas.1137188100] [PMID: 12743361]
(d)Yang, F.; Yue, J.; Ma, L.; Ma, Z.; Li, M.; Wu, X.; Liang, H. Interactive associations of drug-drug and drug-drug-drug with IIA subdomain of human serum albumin. Mol. Pharm., 2012, 9(11), 3259-3265.
[http://dx.doi.org/10.1021/mp300322y] [PMID: 23009653]
[http://dx.doi.org/10.2174/138161282114150326101436] [PMID: 25837717]
[http://dx.doi.org/10.1016/j.jphotobiol.2007.10.005] [PMID: 18068375]
(b)Bos, O.J.; Fischer, M.J.; Wilting, J.; Janssen, L.H. Drug-binding and other physicochemical properties of a large tryptic and a large peptic fragment of human serum albumin. Biochim. Biophys. Acta, 1988, 953(1), 37-47.
[http://dx.doi.org/10.1016/0167-4838(88)90007-6] [PMID: 3124878]
(c)Boulton, D.W.; Walle, U.K.; Walle, T. Extensive binding of the bioflavonoid quercetin to human plasma proteins. J. Pharm. Pharmacol., 1998, 50(2), 243-249.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb06183.x] [PMID: 9530994]
(d)Dangles, O.; Dufour, C.; Manach, C.; Morand, C.; Remesy, C. Binding of flavonoids to plasma proteins. Methods Enzymol., 2001, 335, 319-333.
[http://dx.doi.org/10.1016/S0076-6879(01)35254-0] [PMID: 11400381]
(e)Manach, C.; Morand, C.; Texier, O.; Favier, M.L.; Agullo, G.; Demigné, C.; Régérat, F.; Rémésy, C. Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. J. Nutr., 1995, 125(7), 1911-1922.
[http://dx.doi.org/10.1093/jn/125.7.1911] [PMID: 7616308]
(f)Mandeville, J.S.; Froehlich, E.; Tajmir-Riahi, H.A. Study of curcumin and genistein interactions with human serum albumin. J. Pharm. Biomed. Anal., 2009, 49(2), 468-474.
[http://dx.doi.org/10.1016/j.jpba.2008.11.035] [PMID: 19135819]
(g)Patra, D. Synchronous fluorescence based biosensor for albumin determination by cooperative binding of fluorescence probe in a supra-biomolecular host-protein assembly. Biosens. Bioelectron., 2010, 25(5), 1149-1154.
[http://dx.doi.org/10.1016/j.bios.2009.09.041] [PMID: 19880306]
(h)Patra, D.; Ghaddar, T.H. Application of synchronous fluorescence scan spectroscopy for size dependent simultaneous analysis of CdTe nanocrystals and their mixtures. Talanta, 2009, 77(4), 1549-1554.
[http://dx.doi.org/10.1016/j.talanta.2008.09.007] [PMID: 19084678]
(i)Pulla Reddy, A.C.; Sudharshan, E.; Appu Rao, A.G.; Lokesh, B.R. Interaction of curcumin with human serum albumin-a spectroscopic study. Lipids, 1999, 34(10), 1025-1029.
[http://dx.doi.org/10.1007/s11745-999-0453-x] [PMID: 10580329]
(j)Sengupta, B.; Sengupta, P.K. The interaction of quercetin with human serum albumin: A fluorescence spectroscopic study. Biochem. Biophys. Res. Commun., 2002, 299(3), 400-403.
[http://dx.doi.org/10.1016/S0006-291X(02)02667-0] [PMID: 12445814]
(k)Sengupta, B.; Sengupta, P.K. Binding of quercetin with human serum albumin: A critical spectroscopic study. Biopolymers, 2003, 72(6), 427-434.
[http://dx.doi.org/10.1002/bip.10489] [PMID: 14587065]
(l)Sochacka, J.; Baran, W. The investigation of the binding of 6-mercaptopurine to site I on human serum albumin. Protein J., 2012, 31(8), 689-702.
[http://dx.doi.org/10.1007/s10930-012-9449-y] [PMID: 23001616]
(m)Tang, J.; Luan, F.; Chen, X. Binding analysis of glycyrrhetinic acid to human serum albumin: Fluorescence spectroscopy, FTIR, and molecular modeling. Bioorg. Med. Chem., 2006, 14(9), 3210-3217.
[http://dx.doi.org/10.1016/j.bmc.2005.12.034] [PMID: 16412649]
(n)Yue, Y.; Chen, X.; Qin, J.; Yao, X. Characterization of the mangiferin-human serum albumin complex by spectroscopic and molecular modeling approaches. J. Pharm. Biomed. Anal., 2009, 49(3), 753-759.
[http://dx.doi.org/10.1016/j.jpba.2008.12.017] [PMID: 19157745]
(o)Zsila, F.; Bikádi, Z.; Simonyi, M. Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods. Biochem. Pharmacol., 2003, 65(3), 447-456.
[http://dx.doi.org/10.1016/S0006-2952(02)01521-6] [PMID: 12527338]
[http://dx.doi.org/10.2174/0929866527666200921164536] [PMID: 32957871]
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.023] [PMID: 27019026]
(b)Rossi, A.; Di Maio, M. Platinum-based chemotherapy in advanced non-small-cell lung cancer: Optimal number of treatment cycles. Expert Rev. Anticancer Ther., 2016, 16(6), 653-660.
[http://dx.doi.org/10.1586/14737140.2016.1170596] [PMID: 27010977]
(c)Wong, K.E.; Mora, M.C.; Skinner, M.; McRae Page, S.; Crisi, G.M.; Arenas, R.B.; Schneider, S.S.; Emrick, T. Evaluation of PolyMPC-Dox prodrugs in a human ovarian tumor model. Mol. Pharm., 2016, 13(5), 1679-1687.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00092] [PMID: 27023764]
(d)Xie, H.; Xu, X.; Chen, J.; Li, L.; Wang, J.; Fang, T.; Zhou, L.; Wang, H.; Zheng, S. Rational design of multifunctional small-molecule prodrugs for simultaneous suppression of cancer cell growth and metastasis in vitro and in vivo. Chem. Commun. (Camb.), 2016, 52(32), 5601-5604.
[http://dx.doi.org/10.1039/C5CC10367C] [PMID: 27027105]
(e)Mikhaylenko, D.S.; Efremov, G.D.; Sivkov, A.V.; Zaletaev, D.V. Hormone resistance and neuroendocrine differentiation due to accumulation of genetic lesions during clonal evolution of prostate cancer. Mol. Biol. (Mosk.), 2016, 50(1), 34-43.
[PMID: 27028809]
(f)Moehler, M.; Delic, M.; Goepfert, K.; Aust, D.; Grabsch, H.I.; Halama, N.; Heinrich, B.; Julie, C.; Lordick, F.; Lutz, M.P.; Mauer, M.; Alsina Maqueda, M.; Schild, H.; Schimanski, C.C.; Wagner, A.D.; Roth, A.; Ducreux, M. Immunotherapy in gastrointestinal cancer: Recent results, current studies and future perspectives. Eur. J. Cancer, 2016, 59, 160-170.
[http://dx.doi.org/10.1016/j.ejca.2016.02.020] [PMID: 27039171]
[http://dx.doi.org/10.1007/s11095-012-0700-1] [PMID: 22322899]
(b)Ghatak, S.; Vyas, A.; Misra, S.; O’Brien, P.; Zambre, A.; Fresco, V.M.; Markwald, R.R.; Swamy, K.V.; Afrasiabi, Z.; Choudhury, A.; Khetmalas, M.; Padhye, S. Novel di-tertiary-butyl phenylhydrazones as dual cyclooxygenase-2/5-lipoxygenase inhibitors: Synthesis, COX/LOX inhibition, molecular modeling, and insights into their cytotoxicities. Bioorg. Med. Chem. Lett., 2014, 24(1), 317-324.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.015] [PMID: 24295787]
(c)Kanwar, S.S.; Yu, Y.; Nautiyal, J.; Patel, B.B.; Padhye, S.; Sarkar, F.H.; Majumdar, A.P. Difluorinated-curcumin (CDF): A novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm. Res., 2011, 28(4), 827-838.
[http://dx.doi.org/10.1007/s11095-010-0336-y] [PMID: 21161336]
(d)Misra, S.; Ghatak, S.; Vyas, A.; O’Brien, P.; Markwald, R.R.; Khetmalas, M.; Hascall, V.C.; McCarthy, J.B.; Karamanos, N.K.; Tammi, M.I.; Tammi, R.H.; Prestwitch, G.D.; Padhye, S. Isothiocyanate analogs targeting CD44 receptor as an effective strategy against colon cancer. Med. Chem. Res., 2014, 23(8), 3836-3851.
[http://dx.doi.org/10.1007/s00044-014-0958-4] [PMID: 25013352]
(e)Roy, S.; Yu, Y.; Padhye, S.B.; Sarkar, F.H.; Majumdar, A.P. Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21. PLoS One, 2013, 8(7), e68543.
[http://dx.doi.org/10.1371/journal.pone.0068543] [PMID: 23894315]
(f)Sahin, K.; Orhan, C.; Tuzcu, M.; Muqbil, I.; Sahin, N.; Gencoglu, H.; Guler, O.; Padhye, S.B.; Sarkar, F.H.; Mohammad, R.M. Comparative in vivo evaluations of curcumin and its analog difluorinated curcumin against cisplatin-induced nephrotoxicity. Biol. Trace Elem. Res., 2014, 157(2), 156-163.
[http://dx.doi.org/10.1007/s12011-014-9886-x] [PMID: 24415068]
(g)Salvioli, S.; Sikora, E.; Cooper, E.L.; Franceschi, C. Curcumin in cell death processes: A challenge for CAM of age-related pathologies. Evid. Based Complement. Alternat. Med., 2007, 4(2), 181-190.
[http://dx.doi.org/10.1093/ecam/nem043] [PMID: 17549234]
(h)Saquib, Q.; Al-Khedhairy, A.A.; Alarifi, S.A.; Dwivedi, S.; Mustafa, J.; Musarrat, J. Fungicide methyl thiophanate binding at sub-domain IIA of human serum albumin triggers conformational change and protein damage. Int. J. Biol. Macromol., 2010, 47(1), 60-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.03.020] [PMID: 20371370]
(i)Williams, R.J.; Spencer, J.P.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med., 2004, 36(7), 838-849.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001] [PMID: 15019969]
[http://dx.doi.org/10.1021/acs.biomac.5b00941] [PMID: 26302089]
(b)Kesharwani, P.; Banerjee, S.; Padhye, S.; Sarkar, F.H.; Iyer, A.K. Parenterally administrable nano-micelles of 3,4-difluorobenzylidene curcumin for treating pancreatic cancer. Colloids Surf. B Biointerfaces, 2015, 132, 138-145.
[http://dx.doi.org/10.1016/j.colsurfb.2015.05.007] [PMID: 26037703]
(c)Kesharwani, P.; Xie, L.; Banerjee, S.; Mao, G.; Padhye, S.; Sarkar, F.H.; Iyer, A.K. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf. B Biointerfaces, 2015, 136, 413-423.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.043] [PMID: 26440757]
[http://dx.doi.org/10.1111/j.1432-1033.1994.01049.x] [PMID: 7813459]
(b)Carter, D.C.; He, X.M.; Munson, S.H.; Twigg, P.D.; Gernert, K.M.; Broom, M.B.; Miller, T.Y. Three-dimensional structure of human serum albumin. Science, 1989, 244(4909), 1195-1198.
[http://dx.doi.org/10.1126/science.2727704] [PMID: 2727704]
[http://dx.doi.org/10.1038/1869] [PMID: 9731778]
[http://dx.doi.org/10.1093/protein/12.6.439] [PMID: 10388840]
[PMID: 1207674]
(b)Sudlow, G.; Birkett, D.J.; Wade, D.N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol., 1976, 12(6), 1052-1061.
[PMID: 1004490]
[http://dx.doi.org/10.1016/0006-2952(88)90072-X] [PMID: 3190737]
[http://dx.doi.org/10.1016/j.jmb.2006.06.028] [PMID: 16844140]
[http://dx.doi.org/10.1126/science.2649979] [PMID: 2649979]
[http://dx.doi.org/10.1111/j.1365-2125.1974.tb00220.x] [PMID: 22454898]
(b)Sjöholm, I.; Stjerna, B. Binding of drugs to human serum albumin XVII: Irreversible binding of mercaptopurine to human serum proteins. J. Pharm. Sci., 1981, 70(11), 1290-1291.
[http://dx.doi.org/10.1002/jps.2600701130] [PMID: 7197718]
(b)Hu, Y.J.; Liu, Y.; Xiao, X.H. Investigation of the interaction between berberine and human serum albumin. Biomacromolecules, 2009, 10(3), 517-521.
[http://dx.doi.org/10.1021/bm801120k] [PMID: 19173654]
[http://dx.doi.org/10.1002/bio.712] [PMID: 12687629]
[PMID: 8443813]
[http://dx.doi.org/10.1016/j.jpba.2006.01.028] [PMID: 16549318]
[http://dx.doi.org/10.1248/cpb.c21-00316] [PMID: 34334522]
[http://dx.doi.org/10.1634/theoncologist.10-2-150] [PMID: 15709217]
[http://dx.doi.org/10.1039/C4RA09892G]
(b)Lupidi, G.; Scire, A.; Camaioni, E.; Khalife, K.H.; De Sanctis, G.; Tanfani, F.; Damiani, E. Thymoquinone, a potential therapeutic agent of Nigella sativa, binds to site I of human serum albumin. Phytomedicine, 2010, 17(10), 714-720.
[http://dx.doi.org/10.1016/j.phymed.2010.01.011] [PMID: 20171066]
(c)Yasseen, Z.J.; Hammad, J.H. ALTalla, H.A. Thermodynamic analysis of thymoquinone binding to human serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 124, 677-681.
[http://dx.doi.org/10.1016/j.saa.2013.12.112] [PMID: 24582953]
[http://dx.doi.org/10.1016/j.phymed.2010.07.001] [PMID: 20739162]
[http://dx.doi.org/10.1371/journal.pone.0076067] [PMID: 24116089]
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.002] [PMID: 15019968]
[http://dx.doi.org/10.1002/1097-0134(20010501)43:2<75::AID-PROT1019>3.0.CO;2-7] [PMID: 11276077]
[http://dx.doi.org/10.1073/pnas.93.23.12959] [PMID: 8917526]
[http://dx.doi.org/10.1016/j.bmcl.2016.02.088] [PMID: 26965862]
(b)Salem, M.A.; Marzouk, M.I.; El-Kazak, A.M. Synthesis and characterization of some new coumarins with in vitro antitumor and antioxidant activity and high protective effects against DNA damage. Molecules, 2016, 21(2), 249.
[http://dx.doi.org/10.3390/molecules21020249] [PMID: 26907244]
(c)VenkataSairam, K.; Gurupadayya, B.M.; Chandan, R.S.; Nagesha, D.K.; Vishwanathan, B. A review on chemical profile of coumarins and their therapeutic role in the treatment of cancer. Curr. Drug Deliv., 2016, 13(2), 186-201.
[PMID: 26135671]
(d)Wen, Y.C.; Lee, W.J.; Tan, P.; Yang, S.F.; Hsiao, M.; Lee, L.M.; Chien, M.H. By inhibiting snail signaling and miR-23a-3p, osthole suppresses the EMT-mediated metastatic ability in prostate cancer. Oncotarget, 2015, 6(25), 21120-21136.
[http://dx.doi.org/10.18632/oncotarget.4229] [PMID: 26110567]
[http://dx.doi.org/10.3892/or.2016.4654] [PMID: 26986967]
(b)Shi, M.; Lu, X.J.; Zhang, J.; Diao, H.; Li, G.; Xu, L.; Wang, T.; Wei, J.; Meng, W.; Ma, J.L.; Yu, H.; Wang, Y.G. Oridonin, a novel lysine acetyltransferases inhibitor, inhibits proliferation and induces apoptosis in gastric cancer cells through p53- and caspase-3-mediated mechanisms. Oncotarget, 2016, 7(16), 22623-22631.
[http://dx.doi.org/10.18632/oncotarget.8033] [PMID: 26980707]
(c)Xia, R.; Chen, S.X.; Qin, Q.; Chen, Y.; Zhang, W.W.; Zhu, R.R.; Deng, A.M. Oridonin suppresses proliferation of human ovarian cancer cells via blockage of mTOR signaling. Asian Pac. J. Cancer Prev., 2016, 17(2), 667-671.
[http://dx.doi.org/10.7314/APJCP.2016.17.2.667] [PMID: 26925661]
[http://dx.doi.org/10.1016/j.jad.2016.03.017] [PMID: 26985741]
(b)Duda, W.; Curzytek, K.; Kubera, M.; Iciek, M.; Kowalczyk-Pachel, D.; Bilska-Wilkosz, A.; Lorenc-Koci, E.; Leśkiewicz, M.; Basta-Kaim, A.; Budziszewska, B.; Regulska, M.; Ślusarczyk, J.; Gruca, P.; Papp, M.; Maes, M.; Lasoń, W.; Antkiewicz-Michaluk, L. The effect of chronic mild stress and imipramine on the markers of oxidative stress and antioxidant system in rat liver. Neurotox. Res., 2016, 30(2), 173-184.
[http://dx.doi.org/10.1007/s12640-016-9614-8] [PMID: 26961706]
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2535] [PMID: 26927663]
[http://dx.doi.org/10.1016/j.jchromb.2009.02.070] [PMID: 19328747]
[http://dx.doi.org/10.1002/mnfr.201500847] [PMID: 26751721]
[http://dx.doi.org/10.1016/j.ejmech.2013.09.033] [PMID: 24140914]
(b)Fanali, G.; Fasano, M.; Ascenzi, P.; Zingg, J.M.; Azzi, A. α-tocopherol binding to human serum albumin. Biofactors, 2013, 39(3), 294-303.
[http://dx.doi.org/10.1002/biof.1070] [PMID: 23355326]
[http://dx.doi.org/10.1371/journal.pone.0074881] [PMID: 24098354]
(b)Zemanova, L.; Hofman, J.; Novotna, E.; Musilek, K.; Lundova, T.; Havrankova, J.; Hostalkova, A.; Chlebek, J.; Cahlikova, L.; Wsol, V. Flavones inhibit the activity of AKR1B10, a promising therapeutic target for cancer treatment. J. Nat. Prod., 2015, 78(11), 2666-2674.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00616] [PMID: 26529431]
(c)Zhang, T.; Du, J.; Liu, L.; Chen, X.; Yang, F.; Jin, Q. Inhibitory effects and underlying mechanism of 7-hydroxyflavone phosphate ester in HeLa cells. PLoS One, 2012, 7(5), e36652.
[http://dx.doi.org/10.1371/journal.pone.0036652] [PMID: 22574207]
[http://dx.doi.org/10.1016/j.jpba.2007.10.016] [PMID: 18178358]
[PMID: 22560122]