Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Advances in Synthesis and Anticancer Potential of Triazole-Containing Scaffolds

Author(s): Devidas S. Bhagat*, Gurvinder S. Bumbrah, Pooja A. Chawla*, Wasudeo B. Gurnule and Sampada K. Shejul

Volume 22, Issue 16, 2022

Published on: 13 May, 2022

Page: [2852 - 2875] Pages: 24

DOI: 10.2174/1871520622666220217161346

Price: $65

Abstract

Cancer is the most lethal disease that may be found anywhere globally. Approximately 10% of individuals die due to cancer of various types, with 19.3 million new cancer cases and 10 million deaths reported in 2020. More than 100 medications are commercially available for the treatment of cancer, but only a few candidates have high specificity, resulting in several side effects. The scientific community has spent the past decades focusing on drug discovery. Natural resources are used to isolate pharmaceutically active candidates, which are then synthesized in laboratories. More than 60% of all prescribed drugs are made from natural ingredients. Unique five-membered heteroaromatic center motifs with sulfur, oxygen and nitrogen atoms are found in heterocyclic compounds, such as indazole, thiazole, triazole, triazole, and oxazole, and are used as a core scaffold in many medicinally important therapies. Triazole possesses a wide range of pharmacological activities, including anticancer, antibacterial, antifungal, antibiotic, antiviral, analgesic, anti-inflammatory, anti-HIV, antidiabetic, and antiprotozoal activities. Novel triazole motifs with a variety of biological characteristics have been successfully synthesized using versatile synthetic methods. We intend here to facilitate the rational design and development of innovative triazole-based anti-cancer medicines with increased selectivity for various cancer cell lines by providing insight into various ligand-receptor interactions.

Keywords: 1, 2, 3-triazole, 1, 4-triazole, anticancer activity, drug discovery, synthesis, pharmacological activities.

Graphical Abstract

[1]
Rajabi-Moghaddam, H.; Naimi-Jamal, M.R.; Tajbakhsh, M. Fabrication of copper(II)-coated magnetic core-shell nanoparticles Fe3O4@SiO2-2-aminobenzohydrazide and investigation of its catalytic application in the synthesis of 1,2,3-triazole compounds. Sci. Rep., 2021, 11(1), 2073.
[http://dx.doi.org/10.1038/s41598-021-81632-7] [PMID: 33483570]
[2]
Rodrigues, L.D.; Sunil, D.; Chaithra, D.; Bhagavath, P. 1,2,3/1,2,4-triazole containing liquid crystalline materials: an up-to-date review of their synthetic design and mesomorphic behavior. J. Mol. Liq., 2020, 297, 111909.
[http://dx.doi.org/10.1016/j.molliq.2019.111909]
[3]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[4]
Markos, A.; Janecký, L.; Chvojka, T.; Martinek, T.; Martinez-Seara, H.; Klepetářová, B.; Beier, P. Haloalkenyl imidoyl halides as multifacial substrates in the stereoselective synthesis of N-alkenyl compounds. Adv. Synth. & Catal., 2021, 363(13), 3258-3266.
[5]
Shi, W.; Nacev, B.A.; Bhat, S.; Liu, J.O. Impact of absolute stereochemistry on the antiangiogenic and antifungal activities of itraconazole. ACS Med. Chem. Lett., 2010, 1(4), 155-159.
[http://dx.doi.org/10.1021/ml1000068] [PMID: 21892383]
[6]
Butters, M.; Ebbs, J.; Green, S.P.; MacRae, J.; Morland, M.C.; Murtiashaw, C.W.; Pettman, A.J. Process development of voriconazole: A novel broad-spectrum triazole antifungal agent. Org. Process Res. Dev., 2001, 5(1), 28-36.
[http://dx.doi.org/10.1021/op0000879]
[7]
Baccelli, I.; Gareau, Y.; Lehnertz, B.; Gingras, S.; Spinella, J-F.; Corneau, S.; Mayotte, N.; Girard, S.; Frechette, M.; Blouin-Chagnon, V.; Leveillé, K.; Boivin, I.; MacRae, T.; Krosl, J.; Thiollier, C.; Lavallée, V-P.; Kanshin, E.; Bertomeu, T.; Coulombe-Huntington, J.; St-Denis, C.; Bordeleau, M-E.; Boucher, G.; Roux, P.P.; Lemieux, S.; Tyers, M.; Thibault, P.; Hébert, J.; Marinier, A.; Sauvageau, G. Mubritinib targets the electron transport chain complex I and reveals the landscape of OXPHOS dependency in acute myeloid leukemia. Cancer Cell, 2019, 36(1), 84-99.e8.
[http://dx.doi.org/10.1016/j.ccell.2019.06.003] [PMID: 31287994]
[8]
Perry, C.M.; Markham, A. Piperacillin/tazobactam: an updated review of its use in the treatment of bacterial infections. Drugs, 1999, 57(5), 805-843.
[http://dx.doi.org/10.2165/00003495-199957050-00017] [PMID: 10353303]
[9]
Wei, Z.; Zhang, Q.; Tang, M.; Zhang, S.; Zhang, Q. Diversity-oriented synthesis of 1,2,4-triazols, 1,3,4-thiadiazols, and 1,3,4-selenadiazoles from N-tosylhydrazones. Org. Lett., 2021, 23(11), 4436-4440.
[http://dx.doi.org/10.1021/acs.orglett.1c01379] [PMID: 33988376]
[10]
Zhang, X.; Gong, X. Theoretical studies on the energetic salts of substituted 3,3′-amino-n,n′-azo-1,2,4-triazoles: The role of functional groups. J. Chem. Eng. Data, 2015, 60(10), 2869-2878.
[http://dx.doi.org/10.1021/acs.jced.5b00257]
[11]
Lässig, D.; Lincke, J.; Krautscheid, H. Highly functionalised 3,4,5-trisubstituted 1,2,4-triazoles for future use as ligands in coordination polymers. Tetrahedron Lett., 2010, 51(4), 653-656.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.098]
[12]
El Ashry, E.S.H. EL-Rafey, E.; Rezki, N.; Abou-Elnaga, H. H.; Bakry, W. M. A.; Boghdadi, Y. M Evaluation of some functionalized imidazoles and 1,2,4-triazoles as antioxidant additives for industrial lubricating oils and correlating the results with the structures of additives using empirical AM1 calculations. J. Saudi Chem. Soc., 2014, 18(5), 443-449.
[http://dx.doi.org/10.1016/j.jscs.2011.09.010]
[13]
Boechat, N.; Pinheiro, L.C.S.; Santos-Filho, O.A.; Silva, I.C. Design and synthesis of new N-(5-trifluoromethyl)-1H-1,2,4-triazol-3-yl benzenesulfonamides as possible antimalarial prototypes. Molecules, 2011, 16(9), 8083-8097.
[http://dx.doi.org/10.3390/molecules16098083] [PMID: 21934646]
[14]
Aly, A.A.; A Hassan, A.; Makhlouf, M.M.; Bräse, S. Chemistry and biological activities of 1,2,4-triazolethiones-antiviral and anti-infective drugs. Molecules, 2020, 25(13), E3036.
[http://dx.doi.org/10.3390/molecules25133036] [PMID: 32635156]
[15]
Ainsworth, C.; Easton, N.R.; Livezey, M.; Morrison, D.E.; Gibson, W.R. The anticonvulsant activity of 1,2,4-triazoles. J. Med. Pharm. Chem., 1962, 5(2), 383-389.
[http://dx.doi.org/10.1021/jm01237a016] [PMID: 14051914]
[16]
Hernandez-Folgado, L.; Goya, P.; Frigola, J.; Cuberes, M.R.; Dordal, A.; Holenz, J.; Jagerovic, N. Novel derivatives of 3-alkyl-1,5-diaryl-1h-1,2,4-triazoles and their pharmacological evaluation as CB1 cannabinoid ligands. Monatshefte für Chemie - Chem. Mon., 2008, 139(9), 1073-1082.
[http://dx.doi.org/10.1007/s00706-008-0890-8]
[17]
Yadav, K.L. Recent advancements in 1,4-disubstituted 1h-1,2,3-triazoles as potential anticancer agents. Anti-Cancer Agents Med. Chem., 2018, 21-37.
[http://dx.doi.org/10.2174/1871520616666160811113531] [PMID: 27528183]
[18]
Gao, F.; Wang, T.; Xiao, J.; Huang, G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2019, 173, 274-281.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.043] [PMID: 31009913]
[19]
Zoumpoulakis, P.; Camoutsis, Ch.; Pairas, G.; Soković, M.; Glamočlija, J.; Potamitis, C.; Pitsas, A. Synthesis of novel sulfonamide-1,2,4-triazoles, 1,3,4-thiadiazoles and 1,3,4-oxadiazoles, as potential antibacterial and antifungal agents. Biological evaluation and conformational analysis studies. Bioorg. Med. Chem., 2012, 20(4), 1569-1583.
[http://dx.doi.org/10.1016/j.bmc.2011.12.031] [PMID: 22264752]
[20]
Endo, E.H.; Cortez, D.A.; Ueda-Nakamura, T.; Nakamura, C.V.; Dias Filho, B.P. Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans. Res. Microbiol., 2010, 161(7), 534-540.
[http://dx.doi.org/10.1016/j.resmic.2010.05.002] [PMID: 20541606]
[21]
Kloezen, W.; Meis, J.F.; Curfs-Breuker, I.; Fahal, A.H.; van de Sande, W.W.J. In vitro antifungal activity of isavuconazole against Madurella mycetomatis. Antimicrob. Agents Chemother., 2012, 56(11), 6054-6056.
[http://dx.doi.org/10.1128/AAC.01170-12] [PMID: 22964246]
[22]
Pokhodylo, N.; Shyyka, O.; Matiychuk, V. Synthesis and anticancer activity evaluation of new 1,2,3-triazole-4-carboxamide derivatives. Med. Chem. Res., 2014, 23(5), 2426-2438.
[http://dx.doi.org/10.1007/s00044-013-0841-8]
[23]
Hua, Y.; Flood, A.H. Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. Chem. Soc. Rev., 2010, 39(4), 1262-1271.
[http://dx.doi.org/10.1039/b818033b] [PMID: 20349532]
[24]
Sobolewski, A.L.; Domcke, W.; Hättig, C. Photophysics of organic photostabilizers. Ab initio study of the excited-state deactivation mechanisms of 2-(2′-hydroxyphenyl)benzotriazole. J. Phys. Chem. A, 2006, 110(19), 6301-6306.
[http://dx.doi.org/10.1021/jp0574798] [PMID: 16686466]
[25]
Srividhya, D.; Manjunathan, S.; Thirumaran, S.; Saravanan, C.; Senthil, S. Synthesis and characterization of [1,2,3]-triazole containing liquid crystals through click reaction. J. Mol. Struct., 2009, 927(1), 7-13.
[http://dx.doi.org/10.1016/j.molstruc.2009.01.035]
[26]
WALKER, R. Benzotriazole and naphthotriazole as corrosion inhibitors for copper. Corrosion, 2013, 31(3), 97-100.
[http://dx.doi.org/10.5006/0010-9312-31.3.97]
[27]
Wang, G.; Cheng, A.H-D.; Ostoja-Starzewski, M.; Al-Ostaz, A.; Radziszewski, P. Hybrid lattice particle modelling approach for polymeric materials subject to high strain rate loads. Polymers (Basel), 2010, 2(1), 3-30.
[http://dx.doi.org/10.3390/polym2010003]
[28]
Yan, W.; Wang, X.; Li, K.; Li, T-X.; Wang, J-J.; Yao, K-C.; Cao, L-L.; Zhao, S-S.; Ye, Y-H. Design, synthesis, and antifungal activity of carboxamide derivatives possessing 1,2,3-triazole as potential succinate dehydrogenase inhibitors. Pestic. Biochem. Physiol., 2019, 156, 160-169.
[http://dx.doi.org/10.1016/j.pestbp.2019.02.017] [PMID: 31027576]
[29]
Mukherjee, N.; Ahammed, S.; Bhadra, S.; Ranu, B.C. Solvent-free one-pot synthesis of 1{,}2{,}3-triazole derivatives by the ‘click’ reaction of alkyl halides or aryl boronic acids{,} sodium azide and terminal alkynes over a Cu/Al2O3 surface under ball-milling. Green Chem., 2013, 15(2), 389-397.
[http://dx.doi.org/10.1039/C2GC36521A]
[30]
Bratsos, I.; Urankar, D.; Zangrando, E.; Genova-Kalou, P.; Košmrlj, J.; Alessio, E.; Turel, I. 1-(2-Picolyl)-substituted 1,2,3-triazole as novel chelating ligand for the preparation of ruthenium complexes with potential anticancer activity. Dalton Trans., 2011, 40(19), 5188-5199.
[http://dx.doi.org/10.1039/c0dt01807d] [PMID: 21465046]
[31]
Torres, H.A.; Hachem, R.Y.; Chemaly, R.F.; Kontoyiannis, D.P.; Raad, I.I. Posaconazole: a broad-spectrum triazole antifungal. Lancet Infect. Dis., 2005, 5(12), 775-785.
[http://dx.doi.org/10.1016/S1473-3099(05)70297-8] [PMID: 16310149]
[32]
Sarma, P.S.; Rao, C.N.; Surayanarayana, M.V.; Reddy, P.P.; Khalilluah, M.; Praveen, C. Synthesis and characterization of potential impurities of the antimigraine drug, rizatriptan benzoate. Synth. Commun., 2008, 38(4), 603-612.
[http://dx.doi.org/10.1080/00397910701798051]
[33]
Al-Otaibi, J.S.; Almuqrin, A.H.; Mary, Y.S.; Mary, Y.S. Comprehensive quantum mechanical studies on three bioactive anastrozole based triazole analogues and their SERS active graphene complex. J. Mol. Struct., 2020, 1217, 128388.
[http://dx.doi.org/10.1016/j.molstruc.2020.128388]
[34]
Marepu, N.; Yeturu, S.; Pal, M. 1,2,3-Triazole fused with pyridine/pyrimidine as new template for antimicrobial agents: Regioselective synthesis and identification of potent N-heteroarenes. Bioorg. Med. Chem. Lett., 2018, 28(20), 3302-3306.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.021] [PMID: 30243590]
[35]
Xue, B.G.; Friend, J.M.; Gee, K.W. Loreclezole modulates [35S]t-butylbicyclophosphorothionate and [3H]flunitrazepam binding via a distinct site on the GABAA receptor complex. Eur. J. Pharmacol., 1996, 300(1-2), 125-130.
[http://dx.doi.org/10.1016/0014-2999(95)00856-X] [PMID: 8741177]
[36]
Aggarwal, R.; Sumran, G. An insight on medicinal attributes of 1,2,4-triazoles. Eur. J. Med. Chem., 2020, 205, 112652.
[http://dx.doi.org/10.1016/j.ejmech.2020.112652] [PMID: 32771798]
[37]
Wu, Y.; Feng, D.; Gao, M.; Wang, Z.; Yan, P.; Gu, Z.; Guan, Q.; Zuo, D.; Bao, K.; Sun, J.; Wu, Y.; Zhang, W. Design and synthesis of 5-aryl-4-(4-arylpiperazine-1-carbonyl)-2H-1,2,3-triazole derivatives as colchicine binding site inhibitors. Sci. Rep., 2017, 7(1), 17120.
[http://dx.doi.org/10.1038/s41598-017-17449-0] [PMID: 29215079]
[38]
Guo, Y.; Liu, Y.; Wan, J-P. Amine-catalyzed synthesis of n2-sulfonyl 1,2,3-triazole in water and the tunable N2-H 1,2,3-triazole synthesis in DMSO via metal-free enamine annulation. Chinese Chem. Lett., 2021.
[39]
Silva, T.B.; Ji, K.N.K.; Petzold Pauli, F.; Galvão, R.M.S.; Faria, A.F.M.; Bello, M.L.; Resende, J.A.L.C.; Campos, V.R.; Forezi, L.D.S.M.; da Silva, F.C.; Faria, R.X.; Ferreira, V.F. Synthesis and in vitro and in silico studies of 1H- and 2H-1,2,3-triazoles as antichagasic agents. Bioorg. Chem., 2021, 116, 105250.
[http://dx.doi.org/10.1016/j.bioorg.2021.105250] [PMID: 34469833]
[40]
Okamoto, N.; Sueda, T.; Minami, H.; Yanada, R. One-pot synthesis of triazole-fused isoindoles from o-alkynylbenzaldehydes and trime-thylsilyl azide. Tetrahedron Lett., 2018, 59(15), 1461-1464.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.002]
[41]
Kiranmye, T.; Vadivelu, M.; Sampath, S.; Muthu, K.; Karthikeyan, K. Ultrasound-assisted catalyst free synthesis of 1,4-/1,5-disubstituted-1,2,3-triazoles in aqueous medium. Sustain. Chem. Pharm., 2021, 19, 100358.
[http://dx.doi.org/10.1016/j.scp.2020.100358]
[42]
Kumar, B.S.; Gadakh, S.; Sudalai, A. “Metal-free” synthesis of 1,2,3-triazoles via tandem azidation, intramolecular [3+2]-cycloaddition and aromatization of ethyl acrylate derivatives. Tetrahedron Lett., 2018, 59(24), 2365-2367.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.020]
[43]
Virk, N.A.; Rehman, A.; Abbasi, M.A.; Siddiqui, S.Z.; Iqbal, J.; Rasool, S.; Khan, S.U.; Htar, T.T.; Khalid, H.; Laulloo, S.J.; Ali Shah, S.A. Microwave-assisted synthesis of triazole derivatives conjugated with piperidine as new anti-enzymatic agents. J. Heterocycl. Chem., 2020, 57(3), 1387-1402.
[http://dx.doi.org/10.1002/jhet.3875]
[44]
Ghosh, S.; Das, S.; Kumar, C.; Kumar, N.R.; Agrawal, A.R.; Karmakar, H.S.; Ghosh, N.G.; Zade, S.S. Triazole-fused indolo[2,3-a]carbazoles: synthesis, structures, and properties. J. Heterocycl. Chem., 2020, 57(6), 2561-2569.
[http://dx.doi.org/10.1002/jhet.3974]
[45]
Dofe, V.S.; Sarkate, A.P.; Shaikh, Z.M.; Gill, C.H. Ultrasound-mediated synthesis of novel 1,2,3-triazole-based pyrazole and pyrimidine derivatives as antimicrobial agents. J. Heterocycl. Chem., 2017, 54(6), 3195-3201.
[http://dx.doi.org/10.1002/jhet.2935]
[46]
Asgari, M.S.; Azizian, H.; Nazari Montazer, M.; Mohammadi-Khanaposhtani, M.; Asadi, M.; Sepehri, S.; Ranjbar, P.R.; Rahimi, R.; Biglar, M.; Larijani, B.; Amanlou, M.; Mahdavi, M. New 1,2,3-triazole-(thio)barbituric acid hybrids as urease inhibitors: Design, synthesis, in vitro urease inhibition, docking study, and molecular dynamic simulation. Arch. Pharm. (Weinheim), 2020, 353(9), e2000023.
[http://dx.doi.org/10.1002/ardp.202000023] [PMID: 32596826]
[47]
Nalawade, J.; Shinde, A.; Chavan, A.; Patil, S.; Suryavanshi, M.; Modak, M.; Choudhari, P.; Bobade, V.D.; Mhaske, P.C. Synthesis of new thiazolyl-pyrazolyl-1,2,3-triazole derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2019, 179, 649-659.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.074] [PMID: 31279297]
[48]
Liu, Y.; Han, C.; Ma, X.; Yang, J.; Feng, X.; Jiang, Y. One-pot synthesis of 1-monosubstituted-1, 2, 3-triazoles from 2-methyl-3-butyn-2-Ol. Tetrahedron Lett., 2018, 59(7), 650-653.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.012]
[49]
Zhao, F.; Chen, Z.; Xie, K.; Yang, R.; Jiang, Y-B. One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from nitrobenzenes. Chin. Chem. Lett., 2016, 27(1), 109-113.
[http://dx.doi.org/10.1016/j.cclet.2015.09.021]
[50]
Asgari, M.S.; Bahadorikhalili, S.; Ghaempanah, A.; Rashidi Ranjbar, P.; Rahimi, R.; Abbasi, A.; Larijani, B.; Mahdavi, M. Copper-catalyzed one-pot synthesis of amide linked 1,2,3-triazoles bearing aryloxy skeletons. Tetrahedron Lett., 2021, 65, 152765.
[http://dx.doi.org/10.1016/j.tetlet.2020.152765]
[51]
Darroudi, M.; Hamzehloueian, M.; Sarrafi, Y. An experimental and mechanism study on the regioselective click reaction toward the synthesis of thiazolidinone-triazole. Heliyon, 2021, 7(2), e06113.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06113] [PMID: 33644441]
[52]
Maiuolo, L.; Russo, B.; Algieri, V.; Nardi, M.; Di Gioia, M.L.; Tallarida, M.A.; De Nino, A. Regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles by 1,3-dipolar cycloaddition: Role of Er(OTf)3, ionic liquid and water. Tetrahedron Lett., 2019, 60(9), 672-674.
[http://dx.doi.org/10.1016/j.tetlet.2019.01.053]
[53]
Sharma, G.V.M.; Kumar, K.S.; Reddy, S.V.; Nagalingam, A.; Cunningham, K.M.; Ummanni, R.; Hugel, H.; Malhotra, D.S. S, V. Synthesis and biological evaluation of triazole-vanillin molecular hybrids as anti-cancer agents. Curr. Bioact. Compd., 2017, 223-235.
[54]
Neeraja, P.; Srinivas, S.; Banothu, V.; Sridhar, B.; Mukkanti, K.; Dubey, P.K.; Pal, S. Assembly of benzothiazine and triazole in a single molecular entity: Synthesis of -oxicam derived novel molecules as potential antibacterial/anti-cancer agents. Mini Rev. Med. Chem., 2020, 20(10), 929-940.
[http://dx.doi.org/10.2174/1389557520666200124091315] [PMID: 31976832]
[55]
Jacq, J.; Pasau, P. Multistep flow synthesis of 5-amino-2-aryl-2H-[1,2,3]-triazole-4-carbonitriles. Chemistry, 2014, 20(38), 12223-12233.
[http://dx.doi.org/10.1002/chem.201402074] [PMID: 25077694]
[56]
Mahdavi, M.; Ashtari, A.; Khoshneviszadeh, M.; Ranjbar, S.; Dehghani, A.; Akbarzadeh, T.; Larijani, B.; Khoshneviszadeh, M.; Saeedi, M. Synthesis of new benzimidazole-1,2,3-triazole hybrids as tyrosinase inhibitors. Chem. Biodivers., 2018, 15(7), e1800120.
[http://dx.doi.org/10.1002/cbdv.201800120] [PMID: 29766648]
[57]
Bakherad, M.; Rezaeimanesh, F.; Nasr-Isfahani, H. Copper-catalyzed click synthesis of novel 1,2,3-triazole-linked pyrimidines. ChemistrySelect, 2018, 3(9), 2594-2598.
[http://dx.doi.org/10.1002/slct.201703088]
[58]
Sheng, L.; Shen, D.; Zhu, J.; Wu, G.; Fan, G.; Wu, X.; Du, K. Nano-CuO catalyzed one-pot C–H azidation/azide-alkyne cycloaddition for triazole-substituted 8-aminoquinolines. Tetrahedron, 2021, 85, 132033.
[http://dx.doi.org/10.1016/j.tet.2021.132033]
[59]
Hazarika, R.; Garg, A.; Chetia, S.; Phukan, P.; Kulshrestha, A.; Kumar, A.; Bordoloi, A.; Kalita, A.J.; Guha, A.K.; Sarma, D. Magnetically separable ZnFe2O4 nanoparticles: A low cost and sustainable catalyst for propargyl amine and NH-triazole synthesis. Appl. Catal. A Gen., 2021, 625, 118338.
[http://dx.doi.org/10.1016/j.apcata.2021.118338]
[60]
Darroudi, M.; Rouh, H.; Hasanzadeh, M.; Shadjou, N. Cu/SiO2-Pr-NH-Benz as a novel nanocatalyst for the efficient synthesis of 1,4-disubstituted triazoles and propargyl amine derivatives in an aqueous solution. Heliyon, 2021, 7(4), e06766.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06766] [PMID: 33948508]
[61]
Nasehi, N.; Mirza, B.; Soleimani-Amiri, S. Fe3O4@C@prNHSO3H: A novel magnetically recoverable heterogeneous catalyst in green synthesis of diverse triazoles. J. Chin. Chem. Soc. (Taipei), 2021, 1-14.
[62]
Ghadamyari, Z.; Khojastehnezhad, A.; Seyedi, S.M.; Taghavi, F.; Shiri, A. Graphene oxide functionalized Zn(II) salen complex: An efficient and new route for the synthesis of 1,2,3-triazole derivatives. ChemistrySelect, 2020, 5(33), 10233-10242.
[http://dx.doi.org/10.1002/slct.202002708]
[63]
Payra, S.; Saha, A.; Banerjee, S. On water Cu@g-C3N4 catalyzed synthesis of NH-1,2,3-Triazoles via [2+3] cycloadditions of nitroolefins/alkynes and sodium azide. ChemCatChem, 2018, 10(23), 5468-5474.
[http://dx.doi.org/10.1002/cctc.201801524]
[64]
Bhoomireddy, R.P.R.; Narla, L.G.B.; Peddiahgari, V.G.R. Green synthesis of 1,2,3-triazoles via Cu2O NPs on hydrogen trititanate nanotubes promoted 1,3-dipolar cycloadditions. Appl. Organomet. Chem., 2019, 33(3), e4752.
[http://dx.doi.org/10.1002/aoc.4752]
[65]
Esmaeilpour, M.; Javidi, J.; Davan, E.E. Click synthesis of 1-aryl-1,2,3-triazole derivatives catalyzed by recyclable ligand complex of copper(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles. Iran. J. Sci. Technol. Trans. A Sci., 2018, 42(2), 487-496.
[http://dx.doi.org/10.1007/s40995-016-0125-5]
[66]
Chacko, P.; Shivashankar, K. Nano structured Bi2O3 catalyzed synthesis of 3-phenyl-[1,2,4]triazolo[3,4-a]phthalazines and their cross-coupling reaction under aqueous conditions. Polycycl. Aromat. Compd., 2021, 41(2), 368-386.
[http://dx.doi.org/10.1080/10406638.2019.1585375]
[67]
Eftekhar, M.; Raoufi, F. Synthesis, characterization and first application of graphene oxide functionalized Cu(II) complex for the synthesis of 1,2,3-triazole derivatives.Polycycl. Aromat. Compd; , 2021, pp. 1-13.
[http://dx.doi.org/10.1080/10406638.2021.1913195]
[68]
Tavassoli, M.; Landarani-Isfahani, A.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I. Copper dithiol complex supported on silica nanoparticles: A sustainable, efficient, and eco-friendly catalyst for multicomponent click reaction. ACS Sustain. Chem. Eng., 2016, 4(3), 1454-1462.
[http://dx.doi.org/10.1021/acssuschemeng.5b01432]
[69]
Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 2019, 168, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.055] [PMID: 30826511]
[70]
Glaser, M.; Rajkumar, V.; Diocou, S.; Gendron, T.; Yan, R.; Sin, P.K.B.; Sander, K.; Carroll, L.; Pedley, R.B.; Aboagye, E.O.; Witney, T.H.; Årstad, E. One-pot radiosynthesis and biological evaluation of a caspase-3 selective 5-[123,125i]iodo-1,2,3-triazole derived isatin SPECT tracer. Sci. Rep., 2019, 9(1), 19299.
[http://dx.doi.org/10.1038/s41598-019-55992-0] [PMID: 31848442]
[71]
Shahinozzaman, M.; Ahmed, S.; Emran, R.; Tawata, S. Molecular modelling approaches predicted 1,2,3-triazolyl ester of ketorolac (15K) to be a novel allosteric modulator of the oncogenic kinase PAK1. Sci. Rep., 2021, 11(1), 17471.
[http://dx.doi.org/10.1038/s41598-021-96817-3] [PMID: 34471161]
[72]
Romagnoli, R.; Baraldi, P.G.; Prencipe, F.; Oliva, P.; Baraldi, S.; Tabrizi, M.A.; Lopez-Cara, L.C.; Ferla, S.; Brancale, A.; Hamel, E.; Ronca, R.; Bortolozzi, R.; Mariotto, E.; Basso, G.; Viola, G. Design and synthesis of potent in vitro and in vivo anticancer agents based on 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1h-imidazole. Sci. Rep., 2016, 6(1), 26602.
[http://dx.doi.org/10.1038/srep26602] [PMID: 27216165]
[73]
Shahinshavali, S.; Poojith, N.; Guttikonda, V.R.; Rao, R.S.; Design, M.V.B. Synthesis and anticancer evaluation of acetamides comprising 1,2,3-triazole, 1,3,4-thiadiazole and isothiazolo[4,3-b]pyridine rings. Lett. Org. Chem., 2020, 864-871.
[http://dx.doi.org/10.2174/1570178617666200225102939]
[74]
Yang, M.; Liu, H.; Zhang, Y.; Xu, X.W. Z, Moxifloxacin-isatin hybrids tethered by 1,2,3-triazole and their anticancer activities. Curr. Top Med. Chem., 2020, 20(16), 1461-1467.
[http://dx.doi.org/10.2174/1568026620666200128144825]
[75]
Vadla, B.; Betala, S. Novel 1,2,3-triazole-functionalized pyrido[3’,2’:4,5]furo[3,2-d]pyrimidin- 4(3H)-one derivatives: Synthesis, anti-cancer activity, CoMFA and CoMSIA studies. Lett. Organic Chem., 2020, 17(12), 969-978.
[http://dx.doi.org/10.2174/1570178617666200319124017]
[76]
Abu-Hashem, A.A.; Abu-Zied, K.M.; Zaki, M.E.A.; El-Shehry, M.F.; Khedr, H.M.A. M,A. Design, synthesis, and anticancer potential of the enzyme (PARP-1) inhibitor with computational studies of new triazole, thiazolidinone, - thieno [2, 3-d] pyrimidinones. Lett. Drug Des. Discov., 2020, 17(6), 799-817.
[http://dx.doi.org/10.2174/1570180817666200117114716]
[77]
Arulnathan, S.B.; Leong, K.H.; Ariffin, A.; Kareem, H.S.; Cheah, K.K.H. Activation of intrinsic apoptosis and g1 cell cycle arrest by a triazole precursor, N-(4-chlorophenyl)-2-(4-(3,4,5-trimethoxybenzyloxy)benzoyl)-hydrazinecarbothioamide in breast cancer cell line. Antican. Agents Med. Chem., 2020, 20(9), 1072-1086.
[http://dx.doi.org/10.2174/1871520620666200318100051] [PMID: 32188392]
[78]
Hari, S.; Swaroop, T.R.; Preetham, H.D.; Mohan, C.D.; Muddegowda, U.; Basappa, S.; Vlodavsky, I.; Sethi, G.; Rangappa, K.S. Synthesis, cytotoxic and heparanase inhibition studies of 5-oxo-1-arylpyrrolidine-3- carboxamides of hydrazides and 4-amino-5-aryl-4h-1,2,4-triazole-3-thiol. Curr. Org. Synth., 2020, 17(3), 243-250.
[http://dx.doi.org/10.2174/1570179417666200225123329] [PMID: 32096746]
[79]
Almashal, F.A.K.; Al-Hujaj, H.H.; Jassem, A.M.; Al-Masoudi, N.A. A click synthesis, molecular docking, cytotoxicity on breast cancer (MDA-MB 231) and anti-HIV activities of new 1,4-disubstituted-1,2,3-triazole thymine derivatives. Russ. J. Bioorganic Chem., 2020, 46(3), 360-370.
[http://dx.doi.org/10.1134/S1068162020030024]
[80]
Sowjanya, T.; Jayaprakash Rao, Y.; Murthy, N.Y.S. Synthesis and antiproliferative activity of new 1,2,3-triazole/flavone hybrid heterocycles against human cancer cell lines. Russ. J. Gen. Chem., 2017, 87(8), 1864-1871.
[http://dx.doi.org/10.1134/S1070363217080357]
[81]
Li, W-T.; Wu, W-H.; Tang, C-H.; Tai, R.; Chen, S-T. One-pot tandem copper-catalyzed library synthesis of 1-thiazolyl-1,2,3-triazoles as anticancer agents. ACS Comb. Sci., 2011, 13(1), 72-78.
[http://dx.doi.org/10.1021/co1000234] [PMID: 21247128]
[82]
Lin, R.; Connolly, P.J.; Huang, S.; Wetter, S.K.; Lu, Y.; Murray, W.V.; Emanuel, S.L.; Gruninger, R.H.; Fuentes-Pesquera, A.R.; Rugg, C.A.; Middleton, S.A.; Jolliffe, L.K. 1-acyl-1H-[1,2,4]triazole-3,5-diamine analogues as novel and potent anticancer cyclin-dependent kinase inhibitors: synthesis and evaluation of biological activities. J. Med. Chem., 2005, 48(13), 4208-4211.
[http://dx.doi.org/10.1021/jm050267e] [PMID: 15974571]
[83]
Banerji, B.; Chandrasekhar, K.; Sreenath, K.; Roy, S.; Nag, S.; Saha, K.D. Synthesis of triazole-substituted quinazoline hybrids for anti-cancer activity and a lead compound as the EGFR blocker and ROS inducer agent. ACS Omega, 2018, 3(11), 16134-16142.
[http://dx.doi.org/10.1021/acsomega.8b01960] [PMID: 30556027]
[84]
Banerjee, M.; Ghosh, M.; Pradhan, S.; Sanmartín Matalobos, J.; Rej, A.; Hira, S.K.; Das, D. Azouracil and its Cu(II)-catalyzed cyclization to an anticancer active triazole derivative: Symmetrical and asymmetrical reductive cleavage, DNA interaction, and molecular docking studies. ACS Appl. Bio Mater., 2019, 2(3), 1184-1196.
[http://dx.doi.org/10.1021/acsabm.8b00775]
[85]
Xia, Y.; Liu, Y.; Wan, J.; Wang, M.; Rocchi, P.; Qu, F.; Iovanna, J.L.; Peng, L. Novel triazole ribonucleoside down-regulates heat shock protein 27 and induces potent anticancer activity on drug-resistant pancreatic cancer. J. Med. Chem., 2009, 52(19), 6083-6096.
[http://dx.doi.org/10.1021/jm900960v] [PMID: 19754200]
[86]
Tsai, Y.H.; Borini Etichetti, C.M.; Di Benedetto, C.; Girardini, J.E.; Martins, F.T.; Spanevello, R.A.; Suárez, A.G.; Sarotti, A.M. Synthesis of triazole derivatives of levoglucosenone as promising anticancer agents: Effective exploration of the chemical space through retro-aza-michael//aza-michael isomerizations. J. Org. Chem., 2018, 83(7), 3516-3528.
[http://dx.doi.org/10.1021/acs.joc.7b03141] [PMID: 29481076]
[87]
Al Sheikh Ali, A.; Khan, D.; Naqvi, A.; Al-Blewi, F.F.; Rezki, N.; Aouad, M.R.; Hagar, M. Design, synthesis, molecular modeling, anti-cancer studies, and density functional theory calculations of 4-(1,2,4-triazol-3-ylsulfanylmethyl)-1,2,3-triazole derivatives. ACS Omega, 2020, 6(1), 301-316.
[http://dx.doi.org/10.1021/acsomega.0c04595] [PMID: 33458482]
[88]
Lakkakula, R.; Roy, A.; Mukkanti, K.; Sridhar, G. Synthesis and anticancer activity of 1,2,3-triazole fused n-arylpyrazole derivatives. Russ. J. Gen. Chem., 2019, 89(4), 831-835.
[http://dx.doi.org/10.1134/S1070363219040315]
[89]
Pace, J.R.; DeBerardinis, A.M.; Sail, V.; Tacheva-Grigorova, S.K.; Chan, K.A.; Tran, R.; Raccuia, D.S.; Wechsler-Reya, R.J.; Hadden, M.K. Repurposing the clinically efficacious antifungal agent itraconazole as an anticancer chemotherapeutic. J. Med. Chem., 2016, 59(8), 3635-3649.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01718] [PMID: 27014922]
[90]
Mahanti, S.; Sunkara, S.; Bhavani, R. Synthesis, biological evaluation and computational studies of fused acridine containing 1,2,4-triazole derivatives as anticancer agents. Synth. Commun., 2019, 49(13), 1729-1740.
[http://dx.doi.org/10.1080/00397911.2019.1608450]
[91]
Hadiyal, S.D.; Lalpara, J.N.; Parmar, N.D.; Joshi, H.S. Microwave irradiated targeted synthesis of pyrrolobenzodiazepine embrace 1,2,3-triazole by click chemistry synthetic aspect and evaluation of anticancer and antimicrobial activity.Polycycl. Aromat. Compd; , 2021, pp. 1-17.
[http://dx.doi.org/10.1080/10406638.2021.1913425]
[92]
Halay, E.; Ay, E.; Şalva, E.; Ay, K.; Karayıldırım, T. Syntheses of 1,2,3-triazole-bridged pyranose sugars with purine and pyrimidine nucleobases and evaluation of their anticancer potential. Nucleosides, Nucleotides & Nucleic Acids, 2017, 36(9), 598-619.
[PMID: 29087802]
[93]
Dong, H-R.; Wu, J-G.; Gao, Z-L. Design, synthesis, and anticancer activity evaluation of novel aziridine-1,2,3-triazole hybrid derivatives. Synth. Commun., 2017, 47(19), 1783-1796.
[http://dx.doi.org/10.1080/00397911.2017.1353632]
[94]
Turky, A.; Sherbiny, F.F.; Bayoumi, A.H.; Ahmed, H.E.A.; Abulkhair, H.S. Novel 1,2,4-triazole derivatives: Design, synthesis, anticancer evaluation, molecular docking, and pharmacokinetic profiling studies. Arch. Pharm. (Weinheim), 2020, 353(12), e2000170.
[http://dx.doi.org/10.1002/ardp.202000170] [PMID: 32893368]
[95]
Xie, L.; Huang, J.; Chen, X.; Yu, H.; Li, K.; Yang, D.; Chen, X.; Ying, J.; Pan, F.; Lv, Y.; Cheng, Y. Synthesis of rapamycin derivatives containing the triazole moiety used as potential mTOR-targeted anticancer agents. Arch. Pharm. (Weinheim), 2016, 349(6), 428-441.
[http://dx.doi.org/10.1002/ardp.201500457] [PMID: 27150260]
[96]
Battula, K.S.; Narsimha, S.; Thatipamula, R.K.; Reddy, Y.N.; Nagavelli, V.R. Synthesis and biological evaluation of novel thiomorpholine 1,1-dioxide derived 1,2,3-triazole hybrids as potential anticancer agents. ChemistrySelect, 2017, 2(14), 4001-4005.
[http://dx.doi.org/10.1002/slct.201700524]
[97]
Zi, C-T.; Yang, L.; Gao, W.; Li, Y.; Zhou, J.; Ding, Z-T.; Hu, J-M.; Jiang, Z-H. Click glycosylation for the synthesis of 1,2,3-triazole-linked picropodophyllotoxin glycoconjugates and their anticancer activity. ChemistrySelect, 2017, 2(18), 5038-5044.
[http://dx.doi.org/10.1002/slct.201700347]
[98]
Shamsi, F.; Aneja, B.; Hasan, P.; Zeya, B.; Zafaryab, M.; Mehdi, S.H.; Rizvi, M.M.A.; Patel, R.; Rana, S.; Abid, M. Synthesis, anticancer evaluation and dna-binding spectroscopic insights of quinoline-based 1,3,4-oxadiazole-1,2,3-triazole conjugates. ChemistrySelect, 2019, 4(41), 12176-12182.
[http://dx.doi.org/10.1002/slct.201902797]
[99]
Jiang, D.; Zhang, G. Ciprofloxacin/gatifloxacin-1,2,3-triazole-isatin hybrids and their in vitro anticancer activity. J. Heterocycl. Chem., 2019, 56(10), 2966-2969.
[http://dx.doi.org/10.1002/jhet.3684]
[100]
Maddali, N.K.; Ivaturi, V.K.V.; Murthy Yellajyosula, L.N.; Malkhed, V.; Brahman, P.K.; Pindiprolu, S.K.S.S.; Kondaparthi, V.; Nethinti, S.R. New 1,2,4-triazole scaffolds as anticancer agents: Synthesis, biological evaluation and docking studies. ChemistrySelect, 2021, 6(26), 6788-6796.
[http://dx.doi.org/10.1002/slct.202101387]
[101]
Chen, R.; Zhang, H.; Ma, T.; Xue, H.; Miao, Z.; Chen, L.; Shi, X. Moxifloxacin/gatifloxacin-1,2,3-triazole-isatin hybrids with hydrogen-bond donor and their in vitro anticancer activity. J. Heterocycl. Chem., 2019, 56(9), 2691-2694.
[http://dx.doi.org/10.1002/jhet.3670]
[102]
Diao, Q-P.; Guo, H.; Wang, G-Q. Design, synthesis, and in vitro anticancer activities of diethylene glycol tethered isatin-1,2,3-triazole-coumarin hybrids. J. Heterocycl. Chem., 2019, 56(5), 1667-1671.
[http://dx.doi.org/10.1002/jhet.3538]
[103]
Huang, Q.; Xie, L.; Chen, X.; Yu, H.; Lv, Y.; Ying, J.; Zheng, C.; Cheng, Y.; Huang, J. Synthesis and anticancer activity of novel rapamycin C-28 containing triazole moiety compounds. Arch. Pharm. (Weinheim), 2018, 351(11), 1800123.
[http://dx.doi.org/10.1002/ardp.201800123]
[104]
Nipate, A.S.; Jadhav, C.K.; Chate, A.V.; Deshmukh, T.R.; Sarkate, A.P.; Gill, C.H. Synthesis and in vitro anticancer activities of new 1,4-disubstituted-1,2,3-triazoles derivatives through click approach. ChemistrySelect, 2021, 6(21), 5173-5179.
[http://dx.doi.org/10.1002/slct.202101035]
[105]
Han, M.İ.; Bekçi, H.; Uba, A.I; Yıldırım, Y.; Karasulu, E.; Cumaoğlu, A.; Karasulu, H.Y.; Yelekçi, K.; Yılmaz, Ö.; Küçükgüzel, Ş.G. Synthesis, molecular modeling, in vivo study, and anticancer activity of 1,2,4-triazole containing hydrazide-hydrazones derived from (S)-naproxen. Arch. Pharm. (Weinheim), 2019, 352(6), e1800365.
[http://dx.doi.org/10.1002/ardp.201800365] [PMID: 31115928]
[106]
Das, M.; Das, B.; Samanta, A. Antioxidant and anticancer activity of synthesized 4-amino-5-((aryl substituted)-4H-1,2,4-triazole-3-yl)thio-linked hydroxamic acid derivatives. J. Pharm. Pharmacol., 2019, 71(9), 1400-1411.
[http://dx.doi.org/10.1111/jphp.13131] [PMID: 31218685]
[107]
Deswal, N.; Shrivastava, A.; Summon Hossain, M.; Gahlyan, P.; Bawa, R.; Gupta, R.D.; Kumar, R. Design, synthesis, evaluation and molecular docking studies of novel triazole linked 1,4-dihydropyridine-isatin scaffolds as potent anticancer agents. ChemistrySelect, 2021, 6(4), 717-725.
[http://dx.doi.org/10.1002/slct.202003948]
[108]
Safavi, M.; Ashtari, A.; Khalili, F.; Mirfazli, S.S.; Saeedi, M.; Ardestani, S.K.; Rashidi Ranjbar, P.; Barazandeh Tehrani, M.; Larijani, B.; Mahdavi, M. Novel quinazolin-4(3H)-one linked to 1,2,3-triazoles: Synthesis and anticancer activity. Chem. Biol. Drug Des., 2018, 92(1), 1373-1381.
[http://dx.doi.org/10.1111/cbdd.13203] [PMID: 29637699]
[109]
Zych, D.; Slodek, A.; Krompiec, S.; Malarz, K.; Mrozek-Wilczkiewicz, A.; Musiol, R. 4′-Phenyl-2,2′:6′,2′′-terpyridine derivatives containing 1-substituted-2,3-triazole ring: Synthesis, characterization and anticancer activity. ChemistrySelect, 2018, 3(24), 7009-7017.
[http://dx.doi.org/10.1002/slct.201801204]
[110]
Ismail, M.M.F.; Abdulwahab, H.G.; Elnagdi, M.H. Design, synthesis, and in vitro anticancer screening of novel pyrazolinyl-pyrazole/1, 2, 3-triazole hybrids. J. Heterocycl. Chem., 2020, 57(10), 3584-3596.
[http://dx.doi.org/10.1002/jhet.4076]
[111]
Gaber, M.; Fathalla, S.K.; El-Ghamry, H.A. 2,4-dihydroxy-5-[(5-mercapto-1h-1,2,4-triazole-3-yl)diazenyl]benzaldehyde acetato, chloro and nitrato Cu(II) complexes: Synthesis, structural characterization, DNA binding and anticancer and antimicrobial activity. Appl. Organomet. Chem., 2019, 33(4), e4707.
[http://dx.doi.org/10.1002/aoc.4707]
[112]
Aissa, I.; Abdelkafi-Koubaa, Z.; Chouaïb, K.; Jalouli, M.; Assel, A.; Romdhane, A.; Harrath, A.H.; Marrakchi, N.; Ben Jannet, H. Glioblastoma-specific anticancer activity of newly synthetized 3,5-disubstituted isoxazole and 1,4-disubstituted triazole-linked tyrosol conjugates. Bioorg. Chem., 2021, 114, 105071.
[http://dx.doi.org/10.1016/j.bioorg.2021.105071] [PMID: 34130108]
[113]
Osmaniye, D.; Sağlık, B.N.; Levent, S.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A. Design, synthesis, in vitro and in silico studies of some novel triazoles as anticancer agents for breast cancer. J. Mol. Struct., 2021, 1246, 131198.
[http://dx.doi.org/10.1016/j.molstruc.2021.131198]
[114]
G, M.; Sridhar, G.; Laxminarayana, E.; Chary, M. T. Synthesis and biological evaluation of 1,2,4-oxadiazole incorporated 1,2,3-triazole-pyrazole derivatives as anticancer agents. Chem. Data Collect., 2021, 34, 100735.
[http://dx.doi.org/10.1016/j.cdc.2021.100735]
[115]
Mustafa, M.; Abd El-Hafeez, A.A.; Abdelhamid, D.; Katkar, G.D.; Mostafa, Y.A.; Ghosh, P.; Hayallah, A.M.; Abuo-Rahma, G.E.A. A first-in-class anticancer dual HDAC2/FAK inhibitors bearing hydroxamates/benzamides capped by pyridinyl-1,2,4-triazoles. Eur. J. Med. Chem., 2021, 222, 113569.
[http://dx.doi.org/10.1016/j.ejmech.2021.113569] [PMID: 34111829]
[116]
Legigan, T.; Migianu-Griffoni, E.; Redouane, M.A.; Descamps, A.; Deschamp, J.; Gager, O.; Monteil, M.; Barbault, F.; Lecouvey, M. Synthesis and preliminary anticancer evaluation of new triazole bisphosphonate-based isoprenoid biosynthesis inhibitors. Eur. J. Med. Chem., 2021, 214, 113241.
[http://dx.doi.org/10.1016/j.ejmech.2021.113241] [PMID: 33571830]
[117]
Patel, K.R.; Brahmbhatt, J.G.; Pandya, P.A.; Daraji, D.G.; Patel, H.D.; Rawal, R.M.; Baran, S.K. Design, synthesis and biological evaluation of novel 5-(4-chlorophenyl)-4-phenyl-4h-1,2,4-triazole-3-thiols as an anticancer agent. J. Mol. Struct., 2021, 1231, 130000.
[http://dx.doi.org/10.1016/j.molstruc.2021.130000]
[118]
Djemoui, A.; Naouri, A.; Ouahrani, M.R.; Djemoui, D.; Lahcene, S.; Lahrech, M.B.; Boukenna, L.; Albuquerque, H.M.T.; Saher, L.; Rocha, D.H.A.; Monteiro, F.L.; Helguero, L.A.; Bachari, K.; Talhi, O.; Silva, A.M.S. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: anticancer activity in human cells+. J. Mol. Struct., 2020, 1204, 127487.
[http://dx.doi.org/10.1016/j.molstruc.2019.127487]
[119]
Elzahhar, P.A.; Abd El Wahab, S.M.; Elagawany, M.; Daabees, H.; Belal, A.S.F.; El-Yazbi, A.F.; Eid, A.H.; Alaaeddine, R.; Hegazy, R.R.; Allam, R.M.; Helmy, M.W.; Bahaa, Elgendy; Angeli, A.; El-Hawash, S.A.; Supuran, C.T. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur. J. Med. Chem., 2020, 200, 112439.
[http://dx.doi.org/10.1016/j.ejmech.2020.112439] [PMID: 32485532]
[120]
Allam, M.; Bhavani, A.K.D.; Mudiraj, A.; Ranjan, N.; Thippana, M.; Babu, P.P. Synthesis of pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered to 1,2,3-triazoles and their evaluation as potential anticancer agents. Eur. J. Med. Chem., 2018, 156, 43-52.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.055] [PMID: 30006173]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy