Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

An Insight into Pyrazole-containing Compounds: Synthesis and Pharmacological Activities

Author(s): Harish Kumar, Kushal Kumar Bansal and Anju Goyal*

Volume 20, Issue 5, 2022

Published on: 18 August, 2022

Article ID: e070322201799 Pages: 26

DOI: 10.2174/2211352520666220307102523

Price: $65

Abstract

Background: Heterocyclic scaffolds have gained exceptional devotion in recent years due to their marked utility in the bio-organic field. Among these, pyrazole remains a privileged scaffold as a broad array of medicinally active agents encompass this heterocycle as a core nucleus. Pyrazole is a five-membered, aromatic ring containing two nitrogen atoms at adjacent positions that are readily able to show interactions with numerous receptor(s) and enzymes located on the target cells in the biological system. Pyrazole-containing compounds are acknowledged with anticyclooxygenases (anti-inflammatory), carbonic anhydrase inhibitor, α- glycosidase inhibitor, cholinesterase enzymes inhibitor, and anti-DNA gyrases activities. Noticeably, rimonabant, phenylbutazone, fipronil, difenamizole, celecoxib, antipyrine, fezolamide, and betazole are a few representatives of pyrazole-containing drugs.

Objectives: The manuscript aims to review the detailed synthetic approaches applied to the synthesis of pyrazole derivatives. In particular, we examine recent scientific findings on antimicrobial, anti-tubercular, antiviral, anticancer, and anti-inflammatory perspectives of pyrazolecontaining analogues.

Methods: Pyrazole analogues have been widely explored by the scientific community as many papers have been published in this regard. Numerous pyrazole-containing analogues have been designed, synthesized, and screened for their in vitro and in vivo bio-efficacy, and many of them are endowed with commendable pharmacological activities. Pyrazole analogues with improved antiviral, anticancer, and anti-inflammatory efficacy have also been well documented in patents granted to this heterocyclic nucleus.

Results: This review outlines the recent advances in medicinal chemistry of pyrazole analogues with a special emphasis on structure-activity relationships to afford ideas for rational drug design and discovery and their impact on desired pharmacological applications.

Conclusion: The information provided in this manuscript may help medicinal chemists to generate robust pyrazole analogues with high efficacy.

Keywords: Pyrazole, antimicrobial, anti-tubercular, antiviral, anticancer, anti-inflammatory activities

Graphical Abstract

[1]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48(1), 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[2]
Ray, P.C.; Kiczun, M.; Huggett, M.; Lim, A.; Prati, F.; Gilbert, I.H.; Wyatt, P.G. Fragment library design, synthesis and expansion: Nurturing a synthesis and training platform. Drug Discov. Today, 2017, 22(1), 43-56.
[http://dx.doi.org/10.1016/j.drudis.2016.10.005] [PMID: 27793744]
[3]
Kumar, H.; Bansal, K.K.; Goyal, A. Synthetic methods and antimicrobial perspective of pyrazole derivatives: An insight. Antiinfect. Agents, 2020, 18(3), 207-223.
[http://dx.doi.org/10.2174/2211352517666191022103831]
[4]
Li, J.J. Knorr pyrazole synthesis. Name reactions: A collection of detailed mechanisms and synthetic applications. In: Organic Chemistry, 5th ed; Springer, 2014, pp. 347-348.
[http://dx.doi.org/10.1007/978-3-319-03979-4_148]
[5]
Noe, F.F.; Fowden, L.; Richmond, P.T. alpha-Amino-beta-(pyrazolyl-N) propionic acid: A new amino-acid from Citrullus vulgaris (water melon). Nature, 1959, 184(4688), 69-70.
[http://dx.doi.org/10.1038/184069a0b] [PMID: 13848707]
[6]
Gong, L.; Thorn, C.F.; Bertagnolli, M.M.; Grosser, T.; Altman, R.B.; Klein, T.E. Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet. Genomics, 2012, 22(4), 310-318.
[http://dx.doi.org/10.1097/FPC.0b013e32834f94cb] [PMID: 22336956]
[7]
Placheta, P.; Singer, E.; Kriwanek, W.; Hertting, G. Mepiprazole, a new psychotropic drug: effects on uptake and retention of monoamines in rat brain synaptosomes. Psychopharmacology (Berl.), 1976, 48(3), 295-301.
[http://dx.doi.org/10.1007/BF00496865] [PMID: 9660]
[8]
Christopoulou, F.D.; Kiortsis, D.N. An overview of the metabolic effects of rimonabant in randomized controlled trials: Potential for other cannabinoid 1 receptor blockers in obesity. J. Clin. Pharm. Ther., 2011, 36(1), 10-18.
[http://dx.doi.org/10.1111/j.1365-2710.2010.01164.x] [PMID: 21198716]
[9]
Becker, H.; Engelhardt, M.; von Bubnoff, N.; Wäsch, R. Ruxolitinib. Recent Results Cancer Res., 2014, 201, 249-257.
[http://dx.doi.org/10.1007/978-3-642-54490-3_16] [PMID: 24756798]
[10]
Karinen, R.; Høiseth, G.; Svendsen, K.O.; Rogde, S.; Vindenes, V. A fatal intoxication with phenazone (antipyrine). Forensic Sci. Int., 2015, 248, e13-e15.
[http://dx.doi.org/10.1016/j.forsciint.2015.01.001] [PMID: 25631541]
[11]
Davis, J.L.; Marshall, J.F.; Papich, M.G.; Blikslager, A.T.; Campbell, N.B. The pharmacokinetics and in vitro cyclooxygenase selectivity of deracoxib in horses. J. Vet. Pharmacol. Ther., 2011, 34(1), 12-16.
[http://dx.doi.org/10.1111/j.1365-2885.2010.01185.x] [PMID: 21219338]
[12]
Jasiecka, A. Maślanka, T.; Jaroszewski, J.J. Pharmacological characteristics of metamizole. Pol. J. Vet. Sci., 2014, 17(1), 207-214.
[http://dx.doi.org/10.2478/pjvs-2014-0030] [PMID: 24724493]
[13]
Elkady, M.; Nieß, R.; Schaible, A.M.; Bauer, J.; Luderer, S.; Ambrosi, G.; Werz, O.; Laufer, S.A. Modified acidic nonsteroidal anti-inflammatory drugs as dual inhibitors of mPGES-1 and 5-LOX. J. Med. Chem., 2012, 55(20), 8958-8962.
[http://dx.doi.org/10.1021/jm3010543] [PMID: 22992107]
[14]
Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; Dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 2017, 25(21), 5891-5903.
[http://dx.doi.org/10.1016/j.bmc.2017.09.035] [PMID: 28988624]
[15]
Naim, M.J.; Alam, O.; Nawaz, F.; Alam, M.J.; Alam, P. Current status of pyrazole and its biological activities. J. Pharm. Bioallied Sci., 2016, 8(1), 2-17.
[http://dx.doi.org/10.4103/0975-7406.171694] [PMID: 26957862]
[16]
Mert, S.; Kasimogullari, R.; Ok, S. A short review on pyrazole derivatives and their applications. J. Postdoc. Res., 2014, 2(4), 64-72.
[17]
Ravichandran, S.; Karthikeyan, E. Microwave synthesis: A potential tool for green chemistry. Int. J. Chemtech Res., 2011, 3(1), 466-470.
[18]
Grewal, A.S.; Kumar, K.; Redhu, S.; Bhardwaj, S. Microwave assisted synthesis: A green chemistry approach. Int. Res. J. Pharm. Appl. Sci., 2013, 3(5), 278-285.
[19]
Sharma, P.C.; Bansal, K.K.; Deep, A.; Pathak, M. Benzothiazole derivatives as potential anti-infective agents. Curr. Top. Med. Chem., 2017, 17(2), 208-237.
[http://dx.doi.org/10.2174/1568026616666160530152546] [PMID: 27237334]
[20]
Wadhal, S.A. Microwave assisted improved method for the synthesis, characterization of n- aroyl -3,5-disubstituted pyrazoles. J. Chem. Pharm. Res., 2016, 8(12), 19-21.
[21]
Corradi, A.; Leonelli, C.; Rizzuti, A.; Rosa, R.; Veronesi, P.; Grandi, R.; Baldassari, S.; Villa, C. New “green” approaches to the synthesis of pyrazole derivatives. Molecules, 2007, 12(7), 1482-1495.
[http://dx.doi.org/10.3390/12071482] [PMID: 17909503]
[22]
Sharma, H.K.; Sharma, M. Microwave assisted one pot synthesis of pharmaceutical pyrazole derivatives. A. J. Biomed. Pharm. Sci., 2012, 2(9), 20-24.
[23]
Bhagat, P.R. Microwave assisted synthesis of 1-(3-chlorophenyl)-3, 5- diarylpyrazoles. Int. J. Chem. Sci., 2008, 6(1), 68-72.
[24]
Mistry, B.D.; Desai, K.R.; Patel, J.A.; Patel, N.I. Conventional and microwave-assisted synthesis of pyrazole derivatives and screening of their antibacterial and antifungal activities. ChemInform, 2012, 51B(38), 746-751.
[http://dx.doi.org/10.1002/chin.201238141]
[25]
Al-Zaydi, K.M. A simplified green chemistry approaches to synthesis of 2-substituted 1,2,3-triazoles and 4-amino-5-cyanopyrazole derivatives conventional heating versus microwave and ultrasound as ecofriendly energy sources. Ultrason. Sonochem., 2009, 16(6), 805-809.
[http://dx.doi.org/10.1016/j.ultsonch.2009.02.007] [PMID: 19345637]
[26]
Lee, B.; Kang, P.; Lee, K.H.; Cho, J.; Nam, W.; Lee, W.K.; Hur, N.H. Solid-state and solvent-free synthesis of azines, pyrazoles, and pyridazinones using solid hydrazine. Tetrahedron Lett., 2013, 54(11), 1384-1388.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.106]
[27]
Bamoniri, A.; Mirjalili, B.B.F.; Jafarib, A.A.; Abasaltian, F. Synthesis of 1,3,5-tri-substituted pyrazoles promoted by P2O5.SiO2. Iran. J. Catal., 2012, 2(2), 75-78.
[28]
Khandebharad, A.; Sarda, S.; Soni, M.; Gill, C.; Kulkarnia, P.; Agrawala, B. NaCl: a facile, environmentally benign catalyst for the synthesis of pyrazole 4-carbonitrile in aqueous media. Curr. Chem. Lett., 2018, 7, 57-64.
[29]
Soltanzadeh, Z. Imanzadeh, G.; Noroozi-Pesyan, N.; Şahin, E. Green synthesis of pyrazole systems under solvent-free conditions. Green Chem. Lett. Rev., 2017, 10(3), 148-153.
[http://dx.doi.org/10.1080/17518253.2017.1330428]
[30]
Ismail, A.H.; Abdula, A.M.; Taha, M.M.; Al-Bayati, R.I. 1,3,5-trisubstituted-1h-pyrazole derivatives as new antimicrobial agents: Synthesis, characterization and docking study. Int. J. Chem. Sci., 2017, 15(2), 126.
[31]
Rajalakshmi, R.; Elakkiya, T. Synthesis and characterization of pyrazoline derivatives under three different catalytic conditions. J. Chem. Pharm. Res., 2018, 10(3), 80-84.
[32]
Abraham, J.D. Burger’s Medicinal chemistry and drug discovery, 6th ed; John Wiley & Sons, Inc.: Hoboken, 2003.
[http://dx.doi.org/10.1002/0471266949]
[33]
Page, M.I. The Chemistry of β-Lactams, Springer Dordretch, 1st ed; Chapman & Hall, 1992.
[34]
Williamson, G.M.; Morrison, J.K.; Stevens, K.J. A new synthetic penicillin PA-248. Lancet, 1961, 1(7182), 847-850.
[http://dx.doi.org/10.1016/S0140-6736(61)90174-X] [PMID: 13785541]
[35]
Parker, M.T.; Hewitt, J.H. Methicillin resistance in Staphylococcus aureus. Lancet, 1970, 1(7651), 800-804.
[http://dx.doi.org/10.1016/S0140-6736(70)92408-6] [PMID: 4191434]
[36]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[37]
Chen, D.K.; McGeer, A.; de Azavedo, J.C.; Low, D.E. Canadian Bacterial Surveillance Network. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. N. Engl. J. Med., 1999, 341(4), 233-239.
[http://dx.doi.org/10.1056/NEJM199907223410403] [PMID: 10413735]
[38]
World Health Organization. Available from: http://www.who.int/mediacentre/news/releases/2018/antibiotic-resistance-found/en/ (Accessed on: 23.04.2018)
[39]
Sun, J.; Lv, P.C.; Yin, Y.; Yuan, R.J.; Ma, J.; Zhu, H.L. Synthesis, structure and antibacterial activity of potent DNA gyrase inhibitors: N′-benzoyl-3-(4-bromophenyl)-1H-pyrazole-5-carbohy-drazide derivatives. PLoS One, 2013, 8(7), e69751.
[http://dx.doi.org/10.1371/journal.pone.0069751] [PMID: 23922790]
[40]
Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Suzuki, K.; Ito, H.; Terauchi, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi, J. Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives. J. Med. Chem., 2004, 47(14), 3693-3696.
[http://dx.doi.org/10.1021/jm030394f] [PMID: 15214796]
[41]
Surendra Kumar, R.; Arif, I.A.; Ahamed, A.; Idhayadhulla, A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci., 2016, 23(5), 614-620.
[http://dx.doi.org/10.1016/j.sjbs.2015.07.005] [PMID: 27579011]
[42]
Brahmbhatt, H.; Molnar, M.; Pavic, V. Pyrazole nucleus fused tri-substituted imidazole derivatives as antioxidant and antibacterial agents. Karb. I. J. Mod. Sci, 2018, 4(2), 200-206.
[http://dx.doi.org/10.1016/j.kijoms.2018.01.006]
[43]
Sowmya, D.V.; Lakshmi Teja, G.; Padmaja, A.; Kamala Prasad, V.; Padmavathi, V. Green approach for the synthesis of thiophenyl pyrazoles and isoxazoles by adopting 1,3-dipolar cycloaddition methodology and their antimicrobial activity. Eur. J. Med. Chem., 2018, 143, 891-898.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.093] [PMID: 29227929]
[44]
Vijesh, A.M.; Isloor, A.M.; Telkar, S.; Peethambar, S.K.; Rai, S.; Isloor, N. Synthesis, characterization and antimicrobial studies of some new pyrazole incorporated imidazole derivatives. Eur. J. Med. Chem., 2011, 46(8), 3531-3536.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.005] [PMID: 21620535]
[45]
Malladi, S.; Isloor, A.M.; Isloor, S.; Akhila, D.S.; Fun, H.K. Synthesis, characterization and antibacterial activity of some new pyrazole basedSchiff bases. Arab. J. Chem., 2013, 6(3), 335-340.
[http://dx.doi.org/10.1016/j.arabjc.2011.10.009]
[46]
Malladi, S.; Isloor, A.M.; Peethambar, S.K.; Fun, H.K. Synthesis and biological evaluation of newer analogues of 2,5-disubstituted 1,3,4-oxadiazole containing pyrazole moiety as antimicrobial agents. Arab. J. Chem., 2014, 7(6), 1185-1191.
[http://dx.doi.org/10.1016/j.arabjc.2013.12.020]
[47]
Gurunanjappa, P.; Kameshwar, V.H.; Kariyappa, A.J. Bioactive formylpyrazole analogues: synthesis, antimicrobial, antioxidant and molecular docking studies. Asian J. Chem., 2017, 29(7), 1549-1554.
[http://dx.doi.org/10.14233/ajchem.2017.20562]
[48]
Rai, N.S.; Kalluraya, B.; Lingappa, B.; Shenoy, S.; Puranic, V.G. Convenient access to 1,3,4-trisubstituted pyrazoles carrying 5-nitrothiophene moiety via 1,3-dipolar cycloaddition of sydnones with acetylenic ketones and their antimicrobial evaluation. Eur. J. Med. Chem., 2008, 43(8), 1715-1720.
[http://dx.doi.org/10.1016/j.ejmech.2007.08.002] [PMID: 17923171]
[49]
Padmaja, A.; Payani, T.; Reddy, G.D.; Padmavathi, V. Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives. Eur. J. Med. Chem., 2009, 44(11), 4557-4566.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.024] [PMID: 19631423]
[50]
Zhang, T.Y.; Zheng, C.J.; Wu, J.; Sun, L.P.; Piao, H.R. Synthesis of novel dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties as potential antibacterial agents. Bioorg. Med. Chem. Lett., 2019, 29(9), 1079-1084.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.033] [PMID: 30842033]
[51]
Ebenezer, O.; Pilay, A.S.; Koorbanally, N.A.; Singh, P. Antibacterial evaluation and molecular docking studies of pyrazole-thiosemicarbazones and their pyrazole-thiazolidinone conjugates. Mol. Divers., 2020, 25, 1-14.
[http://dx.doi.org/10.1007/s11030-020-10046-w]
[52]
Sharma, T.; Sakshi, V.; Bawa, S.; Kumar, V.; Singh, J.; Kataria, R.; Singh, B.; Kumar, V. Synthesis, characterization, antibacterial and DNA photocleavage study of 1-(2-Arenethyl)-3, 5-dimethyl-1H-pyrazoles. Chem. Data Collec, 2020, 28, 100408.
[http://dx.doi.org/10.1016/j.cdc.2020.100408]
[53]
Shaik, A.; Bhandare, R.R.; Palleapati, K.; Nissankararao, S.; Kancharlapalli, V.; Shaik, S. Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives. Molecules, 2020, 25(5), 1047.
[http://dx.doi.org/10.3390/molecules25051047] [PMID: 32110945]
[54]
Mekky, A.E.M.; Sanad, S.M.H. Novel bis(pyrazole-benzofuran) hybrids possessing piperazine linker: Synthesis of potent bacterial biofilm and MurB inhibitors. Bioorg. Chem., 2020, 102, 104094.
[http://dx.doi.org/10.1016/j.bioorg.2020.104094] [PMID: 32711085]
[55]
Mansour, E.; Aboelnaga, A.; Nassar, E.M.; Elewa, S.I. A new series of thiazolyl pyrazoline derivatives linked to benzo[1,3]dioxole moiety: Synthesis and evaluation of antimicrobial and anti-proliferative activities. Synth. Commun., 2019, 50(3), 368-379.
[http://dx.doi.org/10.1080/00397911.2019.1695839]
[56]
Moustafa, A.H.; Ahmed, D.H.; El-Wassimy, M.T.M.; Mohamed, M.F.A. Synthesis, antimicrobial studies, and molecular docking of some new dihydro-1,3,4-thiadiazole and pyrazole derivatives derived from dithiocarbazates. Synth. Commun., 2021, 51(4), 570-584.
[http://dx.doi.org/10.1080/00397911.2020.1843179]
[57]
Punia, S.; Verma, V.; Kumar, D.; Kumar, A.; Deswal, L. Facile synthesis, antimicrobial evaluation and molecular docking studies of pyrazole-imidazole-triazole hybrids. J. Mol. Struct., 2021, 1223, 129216.
[http://dx.doi.org/10.1016/j.molstruc.2020.129216]
[58]
World Health Organization. Global Tuberculosos report. Available from: http://www.who.int/tb/publications/global_report/en/.pdf
[59]
Di Perri, G.; Bonora, S. Which agents should we use for the treatment of multidrug-resistant Mycobacterium tuberculosis? J. Antimicrob. Chemother., 2004, 54(3), 593-602.
[http://dx.doi.org/10.1093/jac/dkh377] [PMID: 15282233]
[60]
Xu, Z.; Gao, C.; Ren, Q.C.; Song, X.F.; Feng, L.S.; Lv, Z.S. Recent advances of pyrazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2017, 139, 429-440.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.059] [PMID: 28818767]
[61]
Khunt, R.C.; Khedkar, V.M.; Chawda, R.S.; Chauhan, N.A.; Parikh, A.R.; Coutinho, E.C. Synthesis, antitubercular evaluation and 3D-QSAR study of N-phenyl-3-(4-fluorophenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Lett., 2012, 22(1), 666-678.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.059] [PMID: 22104148]
[62]
Maurya, H.K.; Verma, R.; Alam, S.; Pandey, S.; Pathak, V.; Sharma, S.; Srivastava, K.K.; Negi, A.S.; Gupta, A.; Gupta, A. Studies on substituted benzo[h]quinazolines, benzo[g]indazoles, pyrazoles, 2,6-diarylpyridines as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2013, 23(21), 5844-5849.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.101] [PMID: 24074842]
[63]
Pathak, R.B.; Chovatia, P.T.; Parekh, H.H. Synthesis, antitubercular and antimicrobial evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Lett., 2012, 22(15), 5129-5133.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.063] [PMID: 22695129]
[64]
Pathak, V.; Maurya, H.K.; Sharma, S.; Srivastava, K.K.; Gupta, A. Synthesis and biological evaluation of substituted 4,6-diarylpyrimidines and 3,5-diphenyl-4,5-dihydro-1H-pyrazoles as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(13), 2892-2896.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.094] [PMID: 24835631]
[65]
Nayak, N.; Ramprasad, J.; Dalimba, U. New INH-pyrazole analogs: Design, synthesis and evaluation of antitubercular and antibacterial activity. Bioorg. Med. Chem. Lett., 2015, 25(23), 5540-5545.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.057] [PMID: 26520663]
[66]
Palleapati, K.; Kancharlapalli, V.R.; Shaik, A.B. Synthesis, characterization and antitubercular evaluation of some new isoxazole appended 1-carboxamido-4,5-dihydro-1H-pyrazoles. J. Res. Pharm., 2019, 23(2), 156-163.
[http://dx.doi.org/10.12991/jrp.2019.120]
[67]
Bhatt, J.D.; Chudasama, C.J.; Patel, K.D. Pyrazole clubbed triazolo[1,5-a]pyrimidine hybrids as an anti-tubercular agents: Synthesis, in vitro screening and molecular docking study. Bioorg. Med. Chem., 2015, 23(24), 7711-7716.
[http://dx.doi.org/10.1016/j.bmc.2015.11.018] [PMID: 26631439]
[68]
Ahmad, A.; Husain, A.; Khan, S.A.; Mujeeb, M.; Bhandari, A. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. J. Saudi Chem. Soc., 2016, 20, 577-584.
[69]
Angelova, V.T.; Valcheva, V.; Pencheva, T.; Voynikov, Y.; Vassilev, N.; Mihaylova, R.; Momekov, G.; Shivachev, B. Synthesis, antimycobacterial activity and docking study of 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives and related hydrazide-hydrazones. Bioorg. Med. Chem. Lett., 2017, 27(13), 2996-3002.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.011] [PMID: 28512022]
[70]
Yadlapalli, R.K.; Chourasia, O.P.; Vemuri, K.; Sritharan, M.; Perali, R.S. Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group. Bioorg. Med. Chem. Lett., 2012, 22(8), 2708-2711.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.101] [PMID: 22437116]
[71]
Chhatbar, P.; Pambhar, K.; Khedkar, V.; Shah, A.; Khunt, R. In silico (3D-QSAR) design, study, synthesis and anti-tubercular evaluation of pyrazolo-pyrimidine derivatives. Antiinfect. Agents, 2020, 18(2), 135-143.
[http://dx.doi.org/10.2174/2211352517666190225143923]
[72]
Kumar, G.; Siva Krishna, V.; Sriram, D.; Jachak, S.M. Pyrazole-coumarin and pyrazole-quinoline chalcones as potential antitubercular agents. Arch. Pharm. (Weinheim), 2020, 353(8), e2000077.
[http://dx.doi.org/10.1002/ardp.202000077] [PMID: 32484273]
[73]
Nayak, S.G.; Poojary, B.; Kamat, V. Novel pyrazole-clubbed thiophene derivatives via Gewald synthesis as antibacterial and anti-inflammatory agents. Arch. Pharm. (Weinheim), 2020, 353(12), e2000103.
[http://dx.doi.org/10.1002/ardp.202000103] [PMID: 32893908]
[74]
Pola, S.; Banoth, K.K.; Sankaranarayanan, M.; Ummani, R.; Garlapati, A. Design, synthesis, In silico studies, and evaluation of novel chalcones and their pyrazoline derivatives for antibacterial and antitubercular activities. Med. Chem. Res., 2020, 29(10), 1819-1835.
[http://dx.doi.org/10.1007/s00044-020-02602-8]
[75]
Bhirud, J.D.; Patil, R.D.; Narkhede, H.P. Sulfamic acid catalyzed synthesis of new 3,5-[(sub)phenyl]-1H-pyrazole bearing N1-isonicotinoyl: And their pharmacological activity evaluation. Bioorg. Med. Chem. Lett., 2020, 30(23), 127558.
[http://dx.doi.org/10.1016/j.bmcl.2020.127558] [PMID: 32961321]
[76]
Kharb, R.; Shahar Yar, M.; Sharma, P.C. Recent advances and future perspectives of triazole analogs as promising antiviral agents. Mini Rev. Med. Chem., 2011, 11(1), 84-96.
[http://dx.doi.org/10.2174/138955711793564051] [PMID: 21034403]
[77]
Jones, J.; Sullivan, P.S.; Curran, J.W. Progress in the HIV epidemic: Identifying goals and measuring success. PLoS Med., 2019, 16(1), e1002729.
[http://dx.doi.org/10.1371/journal.pmed.1002729] [PMID: 30657770]
[78]
Desideri, N.; Fioravanti, R.; Proietti Monaco, L.; Atzori, E.M.; Carta, A.; Delogu, I.; Collu, G.; Loddo, R. Design, synthesis, antiviral evaluation, and SAR studies of new 1-(phenylsulfonyl)-1H-pyrazol−4-ylmethylaniline derivatives. Front Chem., 2019, 7, 214.
[http://dx.doi.org/10.3389/fchem.2019.00214] [PMID: 31024899]
[79]
el-Sabbagh, O.I.; Baraka, M.M.; Ibrahim, S.M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad, A.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem., 2009, 44(9), 3746-3753.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.038] [PMID: 19419804]
[80]
Jia, H.; Bai, F.; Liu, N.; Liang, X.; Zhan, P.; Ma, C.; Jiang, X.; Liu, X. Design, synthesis and evaluation of pyrazole derivatives as non-nucleoside hepatitis B virus inhibitors. Eur. J. Med. Chem., 2016, 123, 202-210.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.048] [PMID: 27484509]
[81]
Liu, G.N.; Luo, R.H.; Zhou, Y.; Zhang, X.J.; Li, J.; Yang, L.M.; Zheng, Y.T.; Liu, H. Synthesis and anti-HIV-1 activity evaluation for novel 3a,6a-dihydro-1H-pyrrolo[3,4-c]pyrazole-4,6-dione derivatives. Molecules, 2016, 21(9), 1198.
[http://dx.doi.org/10.3390/molecules21091198] [PMID: 27617994]
[82]
Corona, A.; Onnis, V.; Deplano, A.; Bianco, G.; Demurtas, M.; Distinto, S.; Tramontano, E. Design, synthesis and antiviral evaluation of novel heteroarylcarbothioamide derivatives as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and RDDP functions. Patho. Dis, 2017, 75(6), ftx078.
[83]
Yang, Z.; Li, P.; Gan, X. Novel pyrazole-hydrazone derivatives containing an isoxazole moiety: Design, synthesis, and antiviral activity. Molecules, 2018, 23(7), 1798.
[http://dx.doi.org/10.3390/molecules23071798] [PMID: 30037021]
[84]
Meng, F.J.; Sun, T.; Dong, W.Z.; Li, M.H.; Tuo, Z.Z. Discovery of novel pyrazole derivatives as potent neuraminidase inhibitors against Influenza H1N1 virus. Arch. Pharm. (Weinheim), 2016, 349(3), 168-174.
[http://dx.doi.org/10.1002/ardp.201500342] [PMID: 26797880]
[85]
Liao, J.B. Viruses and human cancer. Yale J. Biol. Med., 2006, 79(3-4), 115-122.
[PMID: 17940621]
[86]
Parsonnet, J. Bacterial infection as a cause of cancer. Environ. Health Perspect., 1995, 103(8)(Suppl. 8), 263-268.
[PMID: 8741796]
[87]
Zahreddine, H.; Borden, K.L.B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol., 2013, 4, 28.
[http://dx.doi.org/10.3389/fphar.2013.00028] [PMID: 23504227]
[88]
Olivier, M.; Hollstein, M.; Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol., 2010, 2(1), a001008.
[http://dx.doi.org/10.1101/cshperspect.a001008] [PMID: 20182602]
[89]
Farooq, M.; Sharma, A.; Almarhoon, Z.; Al-Dhfyan, A.; El-Faham, A.; Taha, N.A.; Wadaan, M.A.M.; Torre, B.G.D.L.; Albericio, F. Design and synthesis of mono-and di-pyrazolyl-s-triazine derivatives, their anticancer profile in human cancer cell lines, and in vivo toxicity in zebrafish embryos. Bioorg. Chem., 2019, 87, 457-464.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.063] [PMID: 30927586]
[90]
Omran, D.M.; Ghaly, M.A.; El-Messery, S.M.; Badria, F.A.; Abdel-Latif, E.; Shehata, I.A. Targeting hepatocellular carcinoma: Synthesis of new pyrazole-based derivatives, biological evaluation, DNA binding, and molecular modeling studies. Bioorg. Chem., 2019, 88, 102917.
[http://dx.doi.org/10.1016/j.bioorg.2019.04.011] [PMID: 30981111]
[91]
Abdellatif, K.R.A.; Fadaly, W.A.A.; Mostafa, Y.A.; Zaher, D.M.; Omar, H.A. Thiohydantoin derivatives incorporating a pyrazole core: Design, synthesis and biological evaluation as dual inhibitors of topoisomerase-I and cycloxygenase-2 with anti-cancer and anti-inflammatory activities. Bioorg. Chem., 2019, 91, 103132.
[http://dx.doi.org/10.1016/j.bioorg.2019.103132] [PMID: 31374529]
[92]
Abdelgawad, M.A.; Bakr, R.B.; Omar, H.A. Design, synthesis and biological evaluation of some novel benzothiazole/benzoxazole and/or benzimidazole derivatives incorporating a pyrazole scaffold as antiproliferative agents. Bioorg. Chem., 2017, 74, 82-90.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.007] [PMID: 28772160]
[93]
Abd El-Karim, S.S.; Anwar, M.M.; Mohamed, N.A.; Nasr, T.; Elseginy, S.A. Design, synthesis, biological evaluation and molecular docking studies of novel benzofuran-pyrazole derivatives as anticancer agents. Bioorg. Chem., 2015, 63, 1-12.
[http://dx.doi.org/10.1016/j.bioorg.2015.08.006] [PMID: 26368040]
[94]
Akhtar, M.J.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Rafi, M.; Hassan, M.Q.; Akhtar, M.S.; Siddiqui, A.A.; Partap, S.; Pasha, S.; Yar, M.S. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Bioorg. Chem., 2018, 78, 158-169.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.002] [PMID: 29571113]
[95]
Salama, S.K.; Mohamed, M.F.; Darweesh, A.F.; Elwahy, A.H.M.; Abdelhamid, I.A. Molecular docking simulation and anticancer assessment on human breast carcinoma cell line using novel bis(1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile) and bis(1,4-dihydropyrazolo[4′3′5,6]pyrano[2,3-b]pyridine-6-carbonitrile) derivatives. Bioorg. Chem., 2017, 71, 19-29.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.009] [PMID: 28143658]
[96]
Verma, G.; Chashoo, G.; Ali, A.; Khan, M.F.; Akhtar, W.; Ali, I.; Akhtar, M.; Alam, M.M.; Shaquiquzzaman, M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg. Chem., 2018, 77, 106-124.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.007] [PMID: 29353728]
[97]
Raffa, D.; D’Anneo, A.; Plescia, F.; Daidone, G.; Lauricella, M.; Maggio, B. Novel 4-(3-phenylpropionamido), 4-(2-phenoxyacetamido) and 4-(cinnamamido) substituted benzamides bearing the pyrazole or indazole nucleus: synthesis, biological evaluation and mechanism of action. Bioorg. Chem., 2019, 83, 367-379.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.055] [PMID: 30408649]
[98]
Shamsuzzaman; Siddiqui, T.; Alam, M.G.; Dar, A.M. Synthesis, characterization and anticancer studies of new steroidal oxadiazole, pyrrole and pyrazole derivatives. J. Saudi Chem. Soc., 2015, 19(4), 387-391.
[http://dx.doi.org/10.1016/j.jscs.2012.04.009]
[99]
Sankappa, R.U.; Isloor, A.M.; Shetty, P.; Pai, K.S.R.; Fun, H.K. Synthesis and in vitro biological evaluation of new pyrazole chalcones and heterocyclic diamides as potential anticancer agents. Arab. J. Chem., 2015, 8(3), 317-321.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.018]
[100]
Nagaraju, B.; Kovvuri, J.; Kumar, C.G.; Routhu, S.R.; Shareef, M.A.; Kadagathur, M.; Adiyala, P.R.; Alavala, S.; Nagesh, N.; Kamal, A. Synthesis and biological evaluation of pyrazole linked benzothiazole-β-naphthol derivatives as topoisomerase I inhibitors with DNA binding ability. Bioorg. Med. Chem., 2019, 27(5), 708-720.
[http://dx.doi.org/10.1016/j.bmc.2019.01.011] [PMID: 30679134]
[101]
Sayed, A.R.; Gomha, S.M.; Abdelrazek, F.M.; Farghaly, M.S.; Hassan, S.A.; Metz, P. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chem., 2019, 13(1), 116.
[http://dx.doi.org/10.1186/s13065-019-0632-5] [PMID: 31572983]
[102]
Wang, G.; Liu, W.; Peng, Z.; Huang, Y.; Gong, Z.; Li, Y. Design, synthesis, molecular modeling, and biological evaluation of pyrazole-naphthalene derivatives as potential anticancer agents on MCF-7 breast cancer cells by inhibiting tubulin polymerization. Bioorg. Chem., 2020, 103, 104141.
[http://dx.doi.org/10.1016/j.bioorg.2020.104141] [PMID: 32750611]
[103]
Min, Z.; Zhu, Y.; Hong, X.; Yu, Z.; Ye, M.; Yuan, Q.; Hu, X. Synthesis and biological evaluation of monocarbonyl curcumin inspired pyrazole analogues as potential anti-colon cancer agent. Drug Des. Devel. Ther., 2020, 14, 2517-2534.
[http://dx.doi.org/10.2147/DDDT.S244865] [PMID: 32636614]
[104]
Dawood, D.H.; Nossier, E.S.; Ali, M.M.; Mahmoud, A.E. Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase. Bioorg. Chem., 2020, 101, 103916.
[http://dx.doi.org/10.1016/j.bioorg.2020.103916] [PMID: 32559576]
[105]
Tok, F. İrem Abas, B.; Çevik, Ö.; Koçyiğit-Kaymakçıoğlu, B. Design, synthesis and biological evaluation of some new 2- Pyrazoline derivatives as potential anticancer agents. Bioorg. Chem., 2020, 102, 104063.
[http://dx.doi.org/10.1016/j.bioorg.2020.104063] [PMID: 32663669]
[106]
Kumar, A.D.; Vagish, C.B.; Lokeshwari, D.M.; Sowmya, R.; Kumar, K.A. Design, synthesis, characterization, evaluation for anticancer and cytotoxic properties of new pyrazole carbothioamides. Asi. J. Org. Med. Chem., 2021, 6(1), 53-58.
[http://dx.doi.org/10.14233/ajomc.2021.AJOMC-P291]
[107]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[108]
Tsai, D.H.; Riediker, M.; Berchet, A.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Bochud, M. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ. Sci. Pollut. Res. Int., 2019, 26(19), 19697-19704.
[http://dx.doi.org/10.1007/s11356-019-05194-y] [PMID: 31079306]
[109]
Abdellatif, K.R.A.; Abdelgawad, M.A.; Labib, M.B.; Zidan, T.H. Syntheis and biological evaluation of new diarylpyrazole and triarylimidazoline derivatives as selective COX-2 inhibitors. Arch. Pharm. (Weinheim), 2017, 350(8), e1600386.
[http://dx.doi.org/10.1002/ardp.201600386]
[110]
Abdelgawad, M.A.; Labib, M.B.; Abdel-Latif, M. Pyrazole-hydrazone derivatives as anti-inflammatory agents: Design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study. Bioorg. Chem., 2017, 74, 212-220.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.014] [PMID: 28865292]
[111]
El-Kashef, H.; El-Emary, T.; Verhaeghe, P.; Vanelle, P.; Samy, M. Anticancer and anti-inflammatory activities of some newpyrazolo[3,4]pyrizines. Molecules, 2018, 23(10), 2657.
[http://dx.doi.org/10.3390/molecules23102657] [PMID: 30332801]
[112]
Hussain, S.; Kaushik, D. Noval 1-substituted-3,5-dimethyl-4-[(substituted phenyl)diazenyl] pyrazole derivatives: Synthesis and pharmacological activity. J. Saudi Chem. Soc., 2015, 19(3), 274-281.
[http://dx.doi.org/10.1016/j.jscs.2012.04.002]
[113]
Kamble, R.D.; Meshram, R.J.; Hese, S.V.; More, R.A.; Kamble, S.S.; Gacche, R.N.; Dawane, B.S. Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents. Comput. Biol. Chem., 2016, 61, 86-96.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.01.007] [PMID: 26844536]
[114]
Nossier, E.S.; Fahmy, H.H.; Khalifa, N.M.; El-Eraky, W.I.; Baset, M.A. Design and synthesis of novel pyrazole-substituted different nitrogenous heterocyclic ring systems as potential anti-inflammatory agents. Molecules, 2017, 22(4), 512.
[http://dx.doi.org/10.3390/molecules22040512] [PMID: 28338602]
[115]
Thore, S.N.; Gupta, S.V.; Baheti, K.G. Novel ethyl-5-amino-3-methylthio-1H-pyrazole-4-carboxylates: Synthesis and pharmacological activity. J. Saudi Chem. Soc., 2016, 20(3), 259-264.
[http://dx.doi.org/10.1016/j.jscs.2012.06.011]
[116]
Abdellatif, K.R.A.; Fadaly, W.A.A.; Kamel, G.M.; Elshaier, Y.A.M.M.; El-Magd, M.A. Design, synthesis, modeling studies and biological evaluation of thiazolidine derivatives containing pyrazole core as potential anti-diabetic PPAR-γ agonists and anti-inflammatory COX-2 selective inhibitors. Bioorg. Chem., 2019, 82, 86-99.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.034] [PMID: 30278282]
[117]
Taher, A.T.; Mostafa Sarg, M.T.; El-Sayed Ali, N.R.; Hilmy Elnagdi, N. Design, synthesis, modeling studies and biological screening of novel pyrazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg. Chem., 2019, 89, 103023.
[http://dx.doi.org/10.1016/j.bioorg.2019.103023] [PMID: 31185391]
[118]
Abdelall, E.K.A.; Lamie, P.F.; Ahmed, A.K.M.; El-Nahass, E.S. COX-1/COX-2 inhibition assays and histopathological study of the new designed anti-inflammatory agent with a pyrazolopyrimidine core. Bioorg. Chem., 2019, 86, 235-253.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.031] [PMID: 30716621]
[119]
Khan, M.F.; Anwer, T.; Bakht, A.; Verma, G.; Akhtar, W.; Alam, M.M.; Rizvi, M.A.; Akhter, M.; Shaquiquzzaman, M. Unveiling novel diphenyl-1H-pyrazole based acrylates tethered to 1,2,3-triazole as promising apoptosis inducing cytotoxic and anti-inflammatory agents. Bioorg. Chem., 2019, 87, 667-678.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.071] [PMID: 30953886]
[120]
El-Shoukrofy, M.S.; Abd El Razik, H.A. AboulWafa, O.M.; Bayad, A.E.; El-Ashmawy, I.M. Pyrazoles containing thiophene, thienopyrimidine and thienotriazolopyrimidine as COX-2 selective inhibitors: Design, synthesis, in vivo anti-inflammatory activity, docking and in silico chemo-informatic studies. Bioorg. Chem., 2019, 85, 541-557.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.036] [PMID: 30807897]
[121]
Hassan, G.S.; Abdel Rahman, D.E.; Abdelmajeed, E.A.; Refaey, R.H.; Alaraby Salem, M.; Nissan, Y.M. New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES. Eur. J. Med. Chem., 2019, 171, 332-342.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.052] [PMID: 30928706]
[122]
Atatreh, N.; Youssef, A.M.; Ghattas, M.A.; Al Sorkhy, M.; Alrawashdeh, S.; Al-Harbi, K.B.; El-Ashmawy, I.M.; Almundarij, T.I.; Abdelghani, A.A.; Abd-El-Aziz, A.S. Anti-inflammatory drug approach: Synthesis and biological evaluation of novel pyrazolo[3,4-d]pyrimidine compounds. Bioorg. Chem., 2019, 86, 393-400.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.014] [PMID: 30763886]
[123]
Mohamed, L.W.; Shaaban, M.A.; Zaher, A.F.; Alhamaky, S.M.; Elsahar, A.M. Synthesis of new pyrazoles and pyrozolo [3,4-b] pyridines as anti-inflammatory agents by inhibition of COX-2 enzyme. Bioorg. Chem., 2019, 83, 47-54.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.014] [PMID: 30342385]
[124]
Abdelgawad, M.A.; Labib, M.B.; Ali, W.A.M.; Kamel, G.; Azouz, A.A.; El-Nahass, E.S. Design, synthesis, analgesic, anti-inflammatory activity of novel pyrazolones possessing aminosulfonyl pharmacophore as inhibitors of COX-2/5-LOX enzymes: Histopathological and docking studies. Bioorg. Chem., 2018, 78, 103-114.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.011] [PMID: 29550530]
[125]
Ibrahim, T.S.; Salem, I.M.; Mostafa, S.M.; El-Sabbagh, O.I.; ElKhamisi, M.K.M.; Hegazy, L.; Elgendy, B. Design, synthesis, and pharmacological evaluation of novel and selective COX-2 inhibitors based on bumetanide scaffold. Bioorg. Chem., 2020, 100, 103878.
[http://dx.doi.org/10.1016/j.bioorg.2020.103878] [PMID: 32361486]
[126]
Kenchappa, R.; Yadav, D.B. Synthesis, analgesic and anti-inflammatory activity of benzofuran pyrazole heterocycles. Chem. D. Collect., 2020, 28, 100454.
[127]
Sivaramakarthikeyan, R.; Iniyaval, S.; Saravanan, V.; Lim, W.M.; Mai, C.W.; Ramalingan, C. Molecular hybrids integrated with benzimidazole and pyrazole structural motifs: Design, synthesis, biological evaluation, and molecular docking studies. ACS Omega, 2020, 5(17), 10089-10098.
[http://dx.doi.org/10.1021/acsomega.0c00630] [PMID: 32391496]
[128]
Assali, M.; Abualhasan, M.; Sawaftah, H.; Hawash, M.; Mousa, A. Synthesis, biological activity, and molecular modelling studies of pyrazole and triazole derivatives as selective COX-2 inhibitors. J. Chem., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/6393428]
[129]
Fadaly, W.A.A.; Elshaier, Y.A.M.M.; Hassanein, E.H.M.; Abdellatif, K.R.A. New 1,2,4-triazole/pyrazole hybrids linked to oxime moiety as nitric oxide donor celecoxib analogs: Synthesis, cyclooxygenase inhibition anti-inflammatory, ulcerogenicity, anti-proliferative activities, apoptosis, molecular modeling and nitric oxide release studies. Bioorg. Chem., 2020, 98, 103752.
[http://dx.doi.org/10.1016/j.bioorg.2020.103752] [PMID: 32197148]
[130]
Zhang, B.; Hu, X.T.; Zhou, K.M.; Yang, Y.S.; Zhu, H.L. Discovery of novel aminophosphonate derivatives containing pyrazole moiety as potential selective COX-2 inhibitors. Bioorg. Chem., 2020, 102, 104096.
[http://dx.doi.org/10.1016/j.bioorg.2020.104096] [PMID: 32707279]
[131]
Jadhav, S.Y.; Peerzade, N.A.; Gawali, R.G.; Bhosale, R.B.; Kulkarni, A.A.; Varpe, B.D. Green synthesis and biological screening of some fluorinated pyrazole chalcones in search of potent anti-inflammatory and analgesic agents. Egypt. Pharm. J., 2020, 19(2), 172-181.
[http://dx.doi.org/10.4103/epj.epj_64_19]
[132]
Abdellatif, K.R.A.; Abdelall, E.K.A.; Labib, M.B.; Fadaly, W.A.A.; Zidan, T.H. Synthesis of novel halogenated triarylpyrazoles as selective COX-2 inhibitors: Anti-inflammatory activity, histopatholgical profile and in-silico studies. Bioorg. Chem., 2020, 105, 104418.
[http://dx.doi.org/10.1016/j.bioorg.2020.104418] [PMID: 33166844]
[133]
Diana, G.D.; Carabateas, P.M. Antiviral aryloxyalkylpyrazoles. U.S. Patent 4,171,365, 1979.
[134]
Cooper, A.B.; Zhu, H.Y.; Wang, J.J.S.; Desai, J.A.; Jr Shipps, G.W.; Curran, P.J.; Annis, D.A.; Nash, H.M.; Girijavallabhan, V.M. Substituted 5-carboxyamide pyrazoles and [1,2,4] triazoles as antiviral agents. U.S. Patent 7,425,640 B2, 2008.
[135]
Bravi, G.; Cheasty, A.G.; Corfield, J.A.; Grimes, R.M.; Harrison, D.; Hartley, C.D.; Howes, P.D.; Medhurst, K.J.; Meeson, M.L.; Mordaunt, J.E.; Shah, P.; Slater, M.J.; White, G.V. 4-carboxy pyrazole derivatives as anti-viral agents. W.O. Patent 2007039146A1, 2007.
[136]
Paolo, P.; Paolo, O.; Gabriella, T.; Maria, G.B.; Raffaella, A.; Manuela, V.; Claudia, P.; Marip, V.; Antonio, L. Phenylacetamidopyrazole derivatives their use as antitumor agents and preparation process thereof. NZ525892A, 2004.
[137]
Chen, B.C.; Das, J.; Dyckman, A.; Leftheris, K.; Liu, C.; Wrobleski, S.T.; Zhao, R. Pyrazole compounds useful amide substituted aryl as kinase inhibitors. E.S. Patent 2, 350, 837 T3, 2006.
[138]
Dalessio, R.; Alberto, B.; Gabriella, M.B.; Antonella, E.; Paolo, P.; Marcellino, T. Tricyclic pyrazole derivatives, process for their preparation and their use as antitumor agents. EP 1,478,357 B1, 2007.
[139]
Thompson, K.M.; Cary, J.E.; Lions, J.F.; Thompson, N.T.; Wyatt, P.G. J.P. Patent 2008528469A 2008.
[140]
Jr Askew, B.C.; Adams, J.; Brooker, S.; Chen, G.; Dipietro, L.V.; Elbaum, D.; Germain, J.; Geunus-Meyer, S.D.; Habgood, M.J.; Handley, M. Huang, Qi.; Kim, T.S.; Li, A.; Nishimura, N.; Bogazici, R.; Patel, V.F.; Riahi, B.; Kim, J.L.; Xi, N.; Yuan, C.C. Substituted 2-alkylamine nicotinic amide derivatives and use thereof. E.P. Patent 1537084B1, 2013.
[141]
Bhushan, L.V.; Singh, S.K.; Venkateshwarlu, A.; Bhushan, L.B.; Reddy, P.G.; Rajagopalan, R. Pyrazoles having anti-inflammatory activity. W.O. Patent 00/66562, 2000.
[142]
Matsuo, M.; Tsuji, K.; Ogino, T.; Konishi, N. Pyrazole derivatives with anti-inflammatory, analgesic and antithrombolic activity. E.P. Patent 0,554,29 A2, 1993.
[143]
Lee, L.E.; Penning, T.D.; Kramer, S.W. Substituted pyrazoles for the Treatment of inflammation. U.S. Patent 5,580,985, 1996.
[144]
Matsuo, M.; Tsuji, K.; Konishi, N.; Nakamura, K. Pyrazole derivatives, and pharmaceutical composition comprising the same. U.S. Patent 5,134,142, 1992.
[145]
Betageri, R.; Cywin, C.; Hargrave, K.; Hoermann, M.A.; Kirrane, T.M.; Parks, T.M.; Patel, U.R.; Proudfoot, J.R.; Sharma, S.; Sun, S.; Wang, X.J. Substituted 1-(4-aminophenyl) pyrazoles and their use as anti-inflammatory agents. U.S. Patent 6,506,747 B, 2003.
[146]
Len, L.F.; Stephen, B.R. 1,5-diphenylpyrazole compounds for treatment of inflammation. W.O. Patent 95/15315, 1995.
[147]
David, W.F.; Jose, M.L.; Jenny, W.W.; Hussi, K.J.; William, C.C. Compounds act at multiple prostaglandin receptors giving a general anti-inflammatory response. W.O. Patent 2012/003414 Al, 2012.
[148]
Woodward, D.F.; Carling, W.R.; Martos, J.L.; Wang, J.W.; Kangasmetsa, J.J. Compounds act at multiple prostaglandin receptors giving a general anti-inflammatory response. U.S. Patent 8,859,606 B2, 2014.
[149]
Carling, W.R.; Martos, J.L.; Kangasmetsa, J.J.; Wang, J.W.; Woodward, D.F. Compounds act at multiple prostaglandin receptors giving a general anti-inflammatory response. U.S. Patent 9,522,890 B2, 2016.
[150]
Xu, X.; Clare, N.; Lennon, P.; Metz, S.; Vazquez, M.; Weier, R.M.; Wolfson, S.G. Tricyclic pyrazole derivatives for the treatment of inflammation. WO 03/070706 A1, 2003.
[151]
Kazuo, A.; Kawamura, K.; Tomoki, K.; Lou, M.M.; Marie, L.K.; Hengmiao, C.; Jin, L.; Scott, B.B.; Man, S.S. Heteroaryl phenyl pyrazole compounds as anti-inflammatory/analgesic agents. E.P. Patent 1 104 759 A1, 2001.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy