Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

新化合物ND-17调节JAK/STAT, PI3K/AKT和MAPK通路并抑制人T淋巴细胞白血病的发展

卷 22, 期 5, 2022

发表于: 12 April, 2022

页: [404 - 413] 页: 10

弟呕挨: 10.2174/1568009622666220304202116

价格: $65

摘要

背景:T细胞急性淋巴细胞白血病(T-ALL)是一种T细胞祖细胞的侵袭性血液恶性疾病。Janus激酶-转录信号转导与激活(JAK-STAT)信号通路在T-ALL的发展和抑制关键分子JAK2中起着重要作用,可以抑制T-ALL细胞的增殖。 目的:研究新型尼洛替尼衍生物ND-17通过与JAK2的相互作用对癌细胞的体外抗肿瘤作用。 方法:采用四氮唑试验和流式细胞仪分别评估了ND-17对细胞增殖、细胞周期和细胞凋亡的影响。此外,利用表面等离子体共振和蛋白质印迹法分析评估ND-17/JAK2的结合作用。 结果:在所有血液肿瘤细胞系中,ND-17对T-ALL细胞抑制作用最强。流式细胞仪分析显示ND-17将T-ALL细胞的细胞周期阻断在S期。尼洛替尼没有明显抑制T-ALL细胞生长或调节细胞周期。初步研究表明,细胞周期蛋白依赖的激酶/细胞周期蛋白的调控是ND-17诱导的细胞周期阻滞的原因。此外,ND-17与JAK2的结合具有很强的亲和力,更重要的是,ND-17与JAK2的ATP口袋结合的方式与强效抑制剂类似。由此可见,ND-17处理对T-ALL细胞中JAK2的磷酸化具有显著的抑制作用。在白细胞介素-6-刺激的Jurkat细胞中观察到JAK2磷酸化的增加,这被ND-17处理逆转。同时,TG- 101348与ND-17结合,对JAK2磷酸化的抑制作用进一步增强。此外,转染和敲除JAK2会改变ND-17对Jurkat细胞活力的抑制作用。此外,ND-17处理抑制了JAK/STAT、磷脂酰肌醇-3-激酶/蛋白激酶B/雷帕霉素机制性靶标、丝裂原活化蛋白激酶/细胞外信号调节蛋白激酶1和2信号通路。 结论:ND-17可能是治疗T-ALL的一种有前景的JAK2抑制剂。

关键词: ND-17, T细胞急性淋巴细胞白血病,JAK2,细胞生长,细胞周期,MAPK通路。

图形摘要

[1]
Belver, L.; Ferrando, A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer, 2016, 16(8), 494-507.
[http://dx.doi.org/10.1038/nrc.2016.63] [PMID: 27451956]
[2]
Terwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J., 2017, 7(6), e577.
[http://dx.doi.org/10.1038/bcj.2017.53] [PMID: 28665419]
[3]
Vadillo, E.; Dorantes-Acosta, E.; Pelayo, R.; Schnoor, M. T cell acute lymphoblastic leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. Blood Rev., 2018, 32(1), 36-51.
[http://dx.doi.org/10.1016/j.blre.2017.08.006] [PMID: 28830639]
[4]
Gong, X.; Wang, B.; Yan, L.; Lu, X.; Zhao, X. Linalool inhibits the growth of human T cell acute lymphoblastic leukemia cells with involvement of the MAPK signaling pathway. Oncol. Lett., 2020, 20(5), 181.
[http://dx.doi.org/10.3892/ol.2020.12042] [PMID: 32934748]
[5]
Bongiovanni, D.; Tosello, V.; Saccomani, V.; Dalla Santa, S.; Amadori, A.; Zanovello, P.; Piovan, E. Crosstalk between Hedgehog pathway and the glucocorticoid receptor pathway as a basis for combination therapy in T-cell acute lymphoblastic leukemia. Oncogene, 2020, 39(42), 6544-6555.
[http://dx.doi.org/10.1038/s41388-020-01453-2] [PMID: 32917954]
[6]
Yuan, Y.; Lu, X.; Chen, X.; Shao, H.; Huang, S. Jagged1 contributes to the drug resistance of Jurkat cells in contact with human umbilical cord-derived mesenchymal stem cells. Oncol. Lett., 2013, 6(4), 1000-1006.
[http://dx.doi.org/10.3892/ol.2013.1523] [PMID: 24137453]
[7]
Sharma, N.D.; Nickl, C.K.; Kang, H.; Ornatowski, W.; Brown, R.; Ness, S.A.; Loh, M.L.; Mullighan, C.G.; Winter, S.S.; Hunger, S.P.; Cannon, J.L.; Matlawska-Wasowska, K. Epigenetic silencing of SOCS5 potentiates JAK-STAT signaling and progression of T-cell acute lymphoblastic leukemia. Cancer Sci., 2019, 110(6), 1931-1946.
[http://dx.doi.org/10.1111/cas.14021] [PMID: 30974024]
[8]
Maude, S.L.; Dolai, S.; Delgado-Martin, C.; Vincent, T.; Robbins, A.; Selvanathan, A.; Ryan, T.; Hall, J.; Wood, A.C.; Tasian, S.K.; Hunger, S.P.; Loh, M.L.; Mullighan, C.G.; Wood, B.L.; Hermiston, M.L.; Grupp, S.A.; Lock, R.B.; Teachey, D.T. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of Early T-cell Precursor (ETP) acute lymphoblastic leukemia. Blood, 2015, 125(11), 1759-1767.
[http://dx.doi.org/10.1182/blood-2014-06-580480] [PMID: 25645356]
[9]
La Starza, R.; Messina, M.; Gianfelici, V.; Pierini, V.; Matteucci, C.; Pierini, T.; Limongi, M.Z.; Vitale, A.; Roti, G.; Chiaretti, S.; Foà, R.; Mecucci, C. High PIM1 expression is a biomarker of T-cell acute lymphoblastic leukemia with JAK/STAT activation or t(6;7)(p21;q34)/TRB@-PIM1 rearrangement. Leukemia, 2018, 32(8), 1807-1810.
[http://dx.doi.org/10.1038/s41375-018-0031-2] [PMID: 29479063]
[10]
Cheng, Z.; Yi, Y.; Xie, S.; Yu, H.; Peng, H.; Zhang, G. The effect of the JAK2 inhibitor TG101209 against T cell acute lymphoblastic leukemia (T-ALL) is mediated by inhibition of JAK-STAT signaling and activation of the crosstalk between apoptosis and autophagy signaling. Oncotarget, 2017, 8(63), 106753-106763.
[http://dx.doi.org/10.18632/oncotarget.22053] [PMID: 29290986]
[11]
Onnebo, S.M.; Rasighaemi, P.; Kumar, J.; Liongue, C.; Ward, A.C. Alternative TEL-JAK2 fusions associated with T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia dissected in zebrafish. Haematologica, 2012, 97(12), 1895-1903.
[http://dx.doi.org/10.3324/haematol.2012.064659] [PMID: 22733019]
[12]
Sacha, T.; Saglio, G. Nilotinib in the treatment of chronic myeloid leukemia. Future Oncol., 2019, 15(9), 953-965.
[http://dx.doi.org/10.2217/fon-2018-0468] [PMID: 30547682]
[13]
Pan, X.; Wang, F.; Zhang, Y.; Gao, H.; Hu, Z.; Wang, S.; Zhang, J. Design, synthesis and biological activities of Nilotinib derivates as antitumor agents. Bioorg. Med. Chem., 2013, 21(9), 2527-2534.
[http://dx.doi.org/10.1016/j.bmc.2013.02.036] [PMID: 23538233]
[14]
Pan, X.; Dong, J.; Shi, Y.; Shao, R.; Wei, F.; Wang, J.; Zhang, J.; Zhang, J. Discovery of novel Bcr-Abl inhibitors with diacylated piperazine as the flexible linker. Org. Biomol. Chem., 2015, 13(25), 7050-7066.
[http://dx.doi.org/10.1039/C5OB00430F] [PMID: 26052668]
[15]
Wang, N.; Wang, J.; Zhang, Y.; Zeng, Y.; Hu, S.; Bai, H.; Hou, Y.; Wang, C.; He, H.; He, L. Imperatorin ameliorates mast cell-mediated allergic airway inflammation by inhibiting MRGPRX2 and CamKII/ERK signaling pathway. Biochem. Pharmacol., 2021, 184, 114401.
[http://dx.doi.org/10.1016/j.bcp.2020.114401] [PMID: 33387483]
[16]
Baffert, F.; Régnier, C.H.; De Pover, A.; Pissot-Soldermann, C.; Tavares, G.A.; Blasco, F.; Brueggen, J.; Chène, P.; Drueckes, P.; Erdmann, D.; Furet, P.; Gerspacher, M.; Lang, M.; Ledieu, D.; Nolan, L.; Ruetz, S.; Trappe, J.; Vangrevelinghe, E.; Wartmann, M.; Wyder, L.; Hofmann, F.; Radimerski, T. Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805. Mol. Cancer Ther., 2010, 9(7), 1945-1955.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0053] [PMID: 20587663]
[17]
Teachey, D.T.; O’Connor, D. How I treat newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma in children. Blood, 2020, 135(3), 159-166.
[http://dx.doi.org/10.1182/blood.2019001557] [PMID: 31738819]
[18]
Vainchenker, W.; Constantinescu, S.N. JAK/STAT signaling in hematological malignancies. Oncogene, 2013, 32(21), 2601-2613.
[http://dx.doi.org/10.1038/onc.2012.347] [PMID: 22869151]
[19]
Xiao, T. Ling, M.; Xu, H.; Luo, F.; Xue, J.; Chen, C.; Bai, J.; Zhang, Q.; Wang, Y.; Bian, Q.; Liu, Q. NF-κB-regulation of miR-155, via SOCS1/STAT3, is involved in the PM2.5-accelerated cell cycle and proliferation of human bronchial epithelial cells. Toxicol. Appl. Pharmacol., 2019, 377, 114616.
[http://dx.doi.org/10.1016/j.taap.2019.114616] [PMID: 31185220]
[20]
Liu, Y.; Song, X.; Wu, M.; Wu, J.; Liu, J. Synergistic effects of resveratrol and temozolomide against glioblastoma cells: Underlying mechanism and therapeutic implications. Cancer Manag. Res., 2020, 12, 8341-8354.
[http://dx.doi.org/10.2147/CMAR.S258584] [PMID: 32982428]
[21]
Bertacchini, J.; Heidari, N.; Mediani, L.; Capitani, S.; Shahjahani, M.; Ahmadzadeh, A.; Saki, N. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell. Mol. Life Sci., 2015, 72(12), 2337-2347.
[http://dx.doi.org/10.1007/s00018-015-1867-5] [PMID: 25712020]
[22]
Cai, J.; Wang, J.; Huang, Y.; Wu, H.; Xia, T.; Xiao, J.; Chen, X.; Li, H.; Qiu, Y.; Wang, Y.; Wang, T.; Xia, H.; Zhang, Q.; Xiang, A.P. ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells. Cell Death Dis., 2016, 7(11), e2459.
[http://dx.doi.org/10.1038/cddis.2016.370] [PMID: 27831567]
[23]
Wang, X.; Simpson, E.R.; Brown, K.A. p53: Protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer Res., 2015, 75(23), 5001-5007.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0563] [PMID: 26573797]
[24]
Zhou, Y.; Geng, Y.; Zhang, Y.; Zhou, Y.; Chu, C.; Sharma, S.; Fassl, A.; Butter, D.; Sicinski, P. The requirement for cyclin E in c-Myc overexpressing breast cancers. Cell Cycle, 2020, 19(20), 2589-2599.
[http://dx.doi.org/10.1080/15384101.2020.1804720] [PMID: 32975478]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy