Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

The Potential of Natural Products in the Treatment of Triple-negative Breast Cancer

Author(s): Danny Yu Jia Ke, Sara El-Sahli* and Lisheng Wang*

Volume 22, Issue 5, 2022

Published on: 14 April, 2022

Page: [388 - 403] Pages: 16

DOI: 10.2174/1568009622666211231140623

Price: $65

Abstract

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks receptors for targeted therapy. Consequently, chemotherapy is currently the mainstay of systemic treatment options. However, the enrichment of cancer stem cells (CSC, a subpopulation with stem-cell characteristics and tumor-initiating propensity) promotes chemo-resistance and tumorigenesis, resulting in cancer recurrence and relapse. Furthermore, toxic side effects of chemotherapeutics reduce patient wellbeing. Natural products specifically compounds derived from plants, have the potential to treat TNBC and target CSCs by inhibiting CSC signaling pathways. Literature evidence from six promising compounds was reviewed, including sulforaphane, curcumin, genistein, resveratrol, lycopene, and epigallocatechin-3-gallate. These compounds have been shown to promote cell cycle arrest and apoptosis in TNBC cells. They also could inhibit the epithelial-mesenchymal transition (EMT) that plays an important role in metastasis. In addition, those natural compounds have been found to inhibit pathways important for CSCs, such as NF-κB, PI3K/Akt/mTOR, Notch 1, Wnt/β- catenin, and YAP. Clinical trials conducted on these compounds have shown varying degrees of effectiveness. Epidemiological case-control studies for the compounds commonly consumed in certain human populations have also been summarized. While in vivo and in vitro data are promising, further basic and clinical investigations are required. Likely, natural products in combination with other drugs may hold great potential to improve TNBC treatment efficacy and patient outcomes.

Keywords: Breast cancer, triple-negative breast cancer, cancer stem cell, metastasis, apoptosis, natural compounds.

Graphical Abstract

[1]
Badve, S.; Dabbs, D.J.; Schnitt, S.J.; Baehner, F.L.; Decker, T.; Eusebi, V.; Fox, S.B.; Ichihara, S.; Jacquemier, J.; Lakhani, S.R.; Palacios, J.; Rakha, E.A.; Richardson, A.L.; Schmitt, F.C.; Tan, P.H.; Tse, G.M.; Weigelt, B.; Ellis, I.O.; Reis-Filho, J.S. Basal- like and triple-negative breast cancers: A critical review with an emphasis on the implications for pathologists and oncologists. Mod. Pathol., 2011, 24(2), 157-167.
[http://dx.doi.org/10.1038/modpathol.2010.200] [PMID: 21076464]
[2]
Hubalek, M.; Czech, T.; Müller, H. Biological subtypes of triple-negative breast cancer. Breast Care (Basel), 2017, 12(1), 8-14.
[http://dx.doi.org/10.1159/000455820] [PMID: 28611535]
[3]
Jhan, J.R.; Andrechek, E.R. Triple-negative breast cancer and the potential for targeted therapy. Pharmacogenomics, 2017, 18(17), 1595-1609.
[http://dx.doi.org/10.2217/pgs-2017-0117] [PMID: 29095114]
[4]
Berrada, N.; Delaloge, S.; André, F. Treatment of triple-negative metastatic breast cancer: Toward individualized targeted treatments or chemosensitization? Ann. Oncol., 2010, 21(Suppl-7), vii30-35.
[http://dx.doi.org/10.1093/annonc/mdq279]
[5]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(7), pp. 3983-3988.
[http://dx.doi.org/10.1073/pnas.0530291100]
[6]
Phi, L.T.H.; Sari, I.N.; Yang, Y.G.; Lee, S.H.; Jun, N.; Kim, K.S.; Lee, Y.K.; Kwon, H.Y. Cancer Stem Cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int., 2018, 2018, 5416923.
[http://dx.doi.org/10.1155/2018/5416923] [PMID: 29681949]
[7]
Fletcher, J.I.; Williams, R.T.; Henderson, M.J.; Norris, M.D.; Haber, M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat., 2016, 26, 1-9.
[http://dx.doi.org/10.1016/j.drup.2016.03.001] [PMID: 27180306]
[8]
Rinkenbaugh, A.L.; Baldwin, A.S. The NF-κB pathway and cancer stem cells. Cells, 2016, 5(2), E16.
[http://dx.doi.org/10.3390/cells5020016] [PMID: 27058560]
[9]
Xia, P.; Xu, X.Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am. J. Cancer Res., 2015, 5(5), 1602-1609.
[PMID: 26175931]
[10]
Valkenburg, K.C.; Graveel, C.R.; Zylstra-Diegel, C.R.; Zhong, Z.; Williams, B.O. Wnt/β-catenin signaling in normal and cancer stem cells. Cancers (Basel), 2011, 3(2), 2050-2079.
[http://dx.doi.org/10.3390/cancers3022050] [PMID: 24212796]
[11]
Sulaiman, A.; McGarry, S.; Li, L.; Jia, D.; Ooi, S.; Addison, C.; Dimitroulakos, J.; Arnaout, A.; Nessim, C.; Yao, Z.; Ji, G.; Song, H.; Gadde, S.; Li, X.; Wang, L. Dual inhibition of Wnt and Yes-associated protein signaling retards the growth of triple-negative breast cancer in both mesenchymal and epithelial states. Mol. Oncol., 2018, 12(4), 423-440.
[http://dx.doi.org/10.1002/1878-0261.12167] [PMID: 29316250]
[12]
Park, J.H.; Shin, J.E.; Park, H.W. The role of hippo pathway in cancer stem cell biology. Mol. Cells, 2018, 41(2), 83-92.
[http://dx.doi.org/10.14348/molcells.2018.2242] [PMID: 29429151]
[13]
Meisel, C.T.; Porcheri, C.; Mitsiadis, T.A. Cancer stem cells, Quo Vadis? The notch signaling pathway in tumor initiation and progression. Cells, 2020, 9(8), E1879.
[http://dx.doi.org/10.3390/cells9081879] [PMID: 32796631]
[14]
Sheridan, C.; Kishimoto, H.; Fuchs, R.K.; Mehrotra, S.; Bhat-Nakshatri, P.; Turner, C.H.; Goulet, R., Jr; Badve, S.; Nakshatri, H. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: An early step necessary for metastasis. Breast Cancer Res., 2006, 8(5), R59.
[http://dx.doi.org/10.1186/bcr1610] [PMID: 17062128]
[15]
Tomita, H.; Tanaka, K.; Tanaka, T.; Hara, A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget, 2016, 7(10), 11018-11032.
[http://dx.doi.org/10.18632/oncotarget.6920] [PMID: 26783961]
[16]
Zhao, W.; Li, Y.; Zhang, X. Stemness-related markers in cancer. Cancer Transl. Med., 2017, 3(3), 87-95.
[http://dx.doi.org/10.4103/ctm.ctm_69_16] [PMID: 29276782]
[17]
Scully, O.J.; Bay, B.H.; Yip, G.; Yu, Y. Breast cancer metastasis. Cancer Genomics Proteomics, 2012, 9(5), 311-320.
[http://dx.doi.org/10.1016/j.ajpath.2013.06.012] [PMID: 22990110]
[18]
Medeiros, B.; Allan, A.L. Molecular mechanisms of breast cancer metastasis to the lung: Clinical and experimental perspectives. Int. J. Mol. Sci., 2019, 20(9), E2272.
[http://dx.doi.org/10.3390/ijms20092272] [PMID: 31071959]
[19]
Medikonda, R.; Srivastava, S.; Kim, T.; Xia, Y.; Kim, J.; Jackson, C.; Weingart, J.; Mukherjee, D.; Bettegowda, C.; Gallia, G.; Brem, H.; Redmond, K.; Stearns, V.; Kleinberg, L.; Lim, M. Development of new brain metastases in triple negative breast cancer. J. Neurooncol., 2021, 152(2), 333-338.
[http://dx.doi.org/10.1007/s11060-021-03702-0] [PMID: 33512631]
[20]
Brosnan, E.M.; Anders, C.K. Understanding patterns of brain metastasis in breast cancer and designing rational therapeutic strategies. Ann. Transl. Med., 2018, 6(9), 163.
[http://dx.doi.org/10.21037/atm.2018.04.35] [PMID: 29911111]
[21]
Skobe, M.; Hawighorst, T.; Jackson, D.G.; Prevo, R.; Janes, L.; Velasco, P.; Riccardi, L.; Alitalo, K.; Claffey, K.; Detmar, M. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med., 2001, 7(2), 192-198.
[http://dx.doi.org/10.1038/84643] [PMID: 11175850]
[22]
Kim, L.S.; Huang, S.; Lu, W.; Lev, D.C.; Price, J.E. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin. Exp. Metastasis, 2004, 21(2), 107-118.
[http://dx.doi.org/10.1023/B:CLIN.0000024761.00373.55] [PMID: 15168728]
[23]
Rajesh, E.; Sankari, L.S.; Malathi, L.; Krupaa, J.R. Naturally occurring products in cancer therapy. J. Pharm. Bioallied Sci., 2015, 7(Suppl. 1), S181-S183.
[http://dx.doi.org/10.4103/0975-7406.155895] [PMID: 26015704]
[24]
Tan, G.; Gyllenhaal, C.; Soejarto, D.D. Biodiversity as a source of anticancer drugs. Curr. Drug Targets, 2006, 7(3), 265-277.
[http://dx.doi.org/10.2174/138945006776054942] [PMID: 16515527]
[25]
Mitra, S.; Dash, R. Natural products for the management and prevention of breast cancer. Evid. Based Complement. Alternat. Med., 2018, 2018, 8324696.
[http://dx.doi.org/10.1155/2018/8324696] [PMID: 29681985]
[26]
Yagishita, Y.; Fahey, J.W.; Dinkova-Kostova, A.T.; Kensler, T.W. Broccoli or sulforaphane: Is it the source or dose that matters? Molecules, 2019, 24(19), E3593.
[http://dx.doi.org/10.3390/molecules24193593] [PMID: 31590459]
[27]
Zhang, Y.; Tang, L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol. Sin., 2007, 28(9), 1343-1354.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00679.x] [PMID: 17723168]
[28]
Zhang, Y.; Kensler, T.W.; Cho, C.G.; Posner, G.H.; Talalay, P. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc. Natl. Acad. Sci. USA, 1994, 91(8), pp. 3147-3150.
[http://dx.doi.org/10.1073/pnas.91.8.3147]
[29]
Jabbarzadeh Kaboli, P.; Afzalipour Khoshkbejari, M.; Mohammadi, M.; Abiri, A.; Mokhtarian, R.; Vazifemand, R.; Amanollahi, S.; Yazdi Sani, S.; Li, M.; Zhao, Y.; Wu, X.; Shen, J.; Cho, C.H.; Xiao, Z. Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives. Biomed. Pharmacother., 2020, 121, 109635.
[http://dx.doi.org/10.1016/j.biopha.2019.109635] [PMID: 31739165]
[30]
Pledgie-Tracy, A.; Sobolewski, M.D.; Davidson, N.E. Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol. Cancer Ther., 2007, 6(3), 1013-1021.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0494] [PMID: 17339367]
[31]
Sulaiman, A.; McGarry, S.; Lam, K.M.; El-Sahli, S.; Chambers, J.; Kaczmarek, S.; Li, L.; Addison, C.; Dimitroulakos, J.; Arnaout, A.; Nessim, C.; Yao, Z.; Ji, G.; Song, H.; Liu, S.; Xie, Y.; Gadde, S.; Li, X.; Wang, L. Co-inhibition of mTORC1, HDAC and ESR1α retards the growth of triple-negative breast cancer and suppresses cancer stem cells. Cell Death Dis., 2018, 9(8), 815.
[http://dx.doi.org/10.1038/s41419-018-0811-7] [PMID: 30050079]
[32]
Kaliszczak, M.; Trousil, S.; Ali, T.; Aboagye, E.O. AKT activation controls cell survival in response to HDAC6 inhibition. Cell Death Dis., 2016, 7(6), e2286.
[http://dx.doi.org/10.1038/cddis.2016.180] [PMID: 27362804]
[33]
Meng, Z.; Jia, L.F.; Gan, Y.H. PTEN activation through K163 acetylation by inhibiting HDAC6 contributes to tumour inhibition. Oncogene, 2016, 35(18), 2333-2344.
[http://dx.doi.org/10.1038/onc.2015.293] [PMID: 26279303]
[34]
Yang, F.; Wang, F.; Liu, Y.; Wang, S.; Li, X.; Huang, Y.; Xia, Y.; Cao, C. Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells. Life Sci., 2018, 213, 149-157.
[http://dx.doi.org/10.1016/j.lfs.2018.10.034] [PMID: 30352240]
[35]
Lubecka-Pietruszewska, K.; Kaufman-Szymczyk, A.; Stefanska, B.; Cebula-Obrzut, B.; Smolewski, P.; Fabianowska-Majewska, K. Sulforaphane alone and in combination with clofarabine epigenetically regulates the expression of DNA methylation-silenced tumour suppressor genes in human breast cancer cells. J. Nutrigenet. Nutrigenomics, 2015, 8(2), 91-101.
[http://dx.doi.org/10.1159/000439111] [PMID: 26372775]
[36]
Pawlik, A.; Wiczk, A.; Kaczyńska, A.; Antosiewicz, J.; Herman-Antosiewicz, A. Sulforaphane inhibits growth of phenotypically different breast cancer cells. Eur. J. Nutr., 2013, 52(8), 1949-1958.
[http://dx.doi.org/10.1007/s00394-013-0499-5] [PMID: 23389114]
[37]
Sarkar, R.; Mukherjee, S.; Biswas, J.; Roy, M. Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins. Biochem. Biophys. Res. Commun., 2012, 427(1), 80-85.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.006] [PMID: 22975350]
[38]
Kanematsu, S.; Uehara, N.; Miki, H.; Yoshizawa, K.; Kawanaka, A.; Yuri, T.; Tsubura, A. Autophagy inhibition enhances sulforaphane-induced apoptosis in human breast cancer cells. Anticancer Res., 2010, 30(9), 3381-3390.
[PMID: 20944112]
[39]
Lewinska, A.; Adamczyk-Grochala, J.; Deregowska, A.; Wnuk, M. Sulforaphane-induced cell cycle arrest and senescence are accompanied by DNA hypomethylation and changes in microRNA profile in breast cancer cells. Theranostics, 2017, 7(14), 3461-3477.
[http://dx.doi.org/10.7150/thno.20657] [PMID: 28912888]
[40]
Sakao, K.; Singh, S.V.D. D,L-sulforaphane-induced apoptosis in human breast cancer cells is regulated by the adapter protein p66Shc. J. Cell. Biochem., 2012, 113(2), 599-610.
[http://dx.doi.org/10.1002/jcb.23386] [PMID: 21956685]
[41]
Castro, N.P.; Rangel, M.C.; Merchant, A.S.; MacKinnon, G.; Cuttitta, F.; Salomon, D.S.; Kim, Y.S. Sulforaphane suppresses the growth of triple-negative breast cancer stem-like cells in vitro and in vivo. Cancer Prev. Res. (Phila.), 2019, 12(3), 147-158.
[http://dx.doi.org/10.1158/1940-6207.CAPR-18-0241] [PMID: 30679159]
[42]
Li, Y.; Zhang, T.; Korkaya, H.; Liu, S.; Lee, H.F.; Newman, B.; Yu, Y.; Clouthier, S.G.; Schwartz, S.J.; Wicha, M.S.; Sun, D. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin. Cancer Res., 2010, 16(9), 2580-2590.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2937] [PMID: 20388854]
[43]
Liu, X.; Lv, K. Cruciferous vegetables intake is inversely associated with risk of breast cancer: A meta-analysis. Breast, 2013, 22(3), 309-313.
[http://dx.doi.org/10.1016/j.breast.2012.07.013] [PMID: 22877795]
[44]
Atwell, L.L.; Zhang, Z.; Mori, M.; Farris, P.; Vetto, J.T.; Naik, A.M.; Oh, K.Y.; Thuillier, P.; Ho, E.; Shannon, J. Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy. Cancer Prev. Res. (Phila.), 2015, 8(12), 1184-1191.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0119] [PMID: 26511489]
[45]
Zhang, Z.; Atwell, L.L.; Farris, P.E.; Ho, E.; Shannon, J. Associations between cruciferous vegetable intake and selected biomarkers among women scheduled for breast biopsies. Public Health Nutr., 2016, 19(7), 1288-1295.
[http://dx.doi.org/10.1017/S136898001500244X] [PMID: 26329135]
[46]
Fahey, J.W.; Holtzclaw, W.D.; Wehage, S.L.; Wade, K.L.; Stephenson, K.K.; Talalay, P. Sulforaphane bioavailability from glucoraphanin-rich broccoli: Control by active endogenous myrosinase. PLoS One, 2015, 10(11), e0140963.
[http://dx.doi.org/10.1371/journal.pone.0140963] [PMID: 26524341]
[47]
Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), E92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[48]
Sinha, D.; Biswas, J.; Sung, B.; Aggarwal, B.B.; Bishayee, A. Chemopreventive and chemotherapeutic potential of curcumin in breast cancer. Curr. Drug Targets, 2012, 13(14), 1799-1819.
[http://dx.doi.org/10.2174/138945012804545632] [PMID: 23140290]
[49]
Fleenor, B.S.; Carlini, N.A.; Campbell, M.S. Curcumin and arterial function in health and disease: impact on oxidative stress and inflammation. Curr. Opin. Clin. Nutr. Metab. Care, 2019, 22(6), 459-464.
[http://dx.doi.org/10.1097/MCO.0000000000000598] [PMID: 31577640]
[50]
Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Simental- Mendía, L.E.; Majeed, M.; Sahebkar, A. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed. Pharmacother., 2016, 82, 578-582.
[http://dx.doi.org/10.1016/j.biopha.2016.05.037] [PMID: 27470399]
[51]
Daily, J. W.; Yang, M.; Park, S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials. J. Med. Food, 2016, 19(8), 717-729.
[http://dx.doi.org/10.1089/jmf.2016.3705]
[52]
Lopresti, A.L.; Maes, M.; Maker, G.L.; Hood, S.D.; Drummond, P.D. Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. J. Affect. Disord., 2014, 167, 368-375.
[http://dx.doi.org/10.1016/j.jad.2014.06.001] [PMID: 25046624]
[53]
Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), E1033.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[54]
Liu, Q.; Loo, W.T.Y.; Sze, S.C.W.; Tong, Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFkappaB, cyclinD and MMP-1 transcription. Phytomedicine, 2009, 16(10), 916-922.
[http://dx.doi.org/10.1016/j.phymed.2009.04.008] [PMID: 19524420]
[55]
Huang, T.; Chen, Z.; Fang, L. Curcumin inhibits LPS-induced EMT through downregulation of NF-κB-Snail signaling in breast cancer cells. Oncol. Rep., 2013, 29(1), 117-124.
[http://dx.doi.org/10.3892/or.2012.2080] [PMID: 23076367]
[56]
Aggarwal, B.B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R.A.; Bueso-Ramos, C.E.; Price, J.E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res., 2005, 11(20), 7490-7498.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1192] [PMID: 16243823]
[57]
Kang, H.J.; Lee, S.H.; Price, J.E.; Kim, L.S. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in a breast cancer nude mice model. Breast J., 2009, 15(3), 223-229.
[http://dx.doi.org/10.1111/j.1524-4741.2009.00709.x] [PMID: 19645775]
[58]
Bimonte, S.; Barbieri, A.; Palma, G.; Rea, D.; Luciano, A.; D’Aiuto, M.; Arra, C.; Izzo, F. Dissecting the role of curcumin in tumour growth and angiogenesis in mouse model of human breast cancer. BioMed Res. Int., 2015, 2015, 878134.
[http://dx.doi.org/10.1155/2015/878134] [PMID: 25879038]
[59]
Prasad, C.P.; Rath, G.; Mathur, S.; Bhatnagar, D.; Ralhan, R. Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/β-catenin signaling. Chem. Biol. Interact., 2009, 181(2), 263-271.
[http://dx.doi.org/10.1016/j.cbi.2009.06.012] [PMID: 19573523]
[60]
Li, X.; Wang, X.; Xie, C.; Zhu, J.; Meng, Y.; Chen, Y.; Li, Y.; Jiang, Y.; Yang, X.; Wang, S.; Chen, J.; Zhang, Q.; Geng, S.; Wu, J.; Zhong, C.; Zhao, Y. Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anticancer Drugs, 2018, 29(3), 208-215.
[http://dx.doi.org/10.1097/CAD.0000000000000584] [PMID: 29356693]
[61]
Cochrane, C.R.; Szczepny, A.; Watkins, D.N.; Cain, J.E. Hedgehog signaling in the maintenance of cancer stem cells. Cancers (Basel), 2015, 7(3), 1554-1585.
[http://dx.doi.org/10.3390/cancers7030851] [PMID: 26270676]
[62]
Pai, S.G.; Carneiro, B.A.; Mota, J.M.; Costa, R.; Leite, C.A.; Barroso-Sousa, R.; Kaplan, J.B.; Chae, Y.K.; Giles, F.J. Wnt/beta- catenin pathway: Modulating anticancer immune response. J. Hematol. Oncol., 2017, 10(1), 101.
[http://dx.doi.org/10.1186/s13045-017-0471-6] [PMID: 28476164]
[63]
Liu, L.; Fu, Y.; Zheng, Y.; Ma, M.; Wang, C. Curcumin inhibits proteasome activity in triple-negative breast cancer cells through regulating p300/miR-142-3p/PSMB5 axis. Phytomedicine, 2020, 78, 153312.
[http://dx.doi.org/10.1016/j.phymed.2020.153312] [PMID: 32866906]
[64]
Hu, T.; Phiwpan, K.; Guo, J.; Zhang, W.; Guo, J.; Zhang, Z.; Zou, M.; Zhang, X.; Zhang, J.; Zhou, X. MicroRNA-142-3p negatively regulates canonical WNT signaling pathway. PLoS One, 2016, 11(6), e0158432.
[http://dx.doi.org/10.1371/journal.pone.0158432] [PMID: 27348426]
[65]
Hu, C.; Li, M.; Guo, T.; Wang, S.; Huang, W.; Yang, K.; Liao, Z.; Wang, J.; Zhang, F.; Wang, H. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine, 2019, 58, 152740.
[http://dx.doi.org/10.1016/j.phymed.2018.11.001] [PMID: 31005718]
[66]
Chen, W.C.; Lai, Y.A.; Lin, Y.C.; Ma, J.W.; Huang, L.F.; Yang, N.S.; Ho, C.T.; Kuo, S.C.; Der Way, T. Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J. Agric. Food Chem., 2013, 61(48), 11817-11824.
[http://dx.doi.org/10.1021/jf404092f]
[67]
Lee, H.H.; Cho, H. Improved anti-cancer effect of curcumin on breast cancer cells by increasing the activity of natural killer cells. J. Microbiol. Biotechnol., 2018, 28(6), 874-882.
[http://dx.doi.org/10.4014/jmb.1801.01074] [PMID: 29642292]
[68]
Guan, F.; Ding, Y.; Zhang, Y.; Zhou, Y.; Li, M.; Wang, C. Curcumin suppresses proliferation and migration of mda-mb-231 breast cancer cells through autophagy-dependent Akt degradation. PLoS One, 2016, 11(1), e0146553.
[http://dx.doi.org/10.1371/journal.pone.0146553] [PMID: 26752181]
[69]
Fan, H.; Liang, Y.; Jiang, B.; Li, X.; Xun, H.; Sun, J.; He, W.; Lau, H.T.; Ma, X. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells. Oncol. Rep., 2016, 35(5), 2651-2656.
[http://dx.doi.org/10.3892/or.2016.4682] [PMID: 26985864]
[70]
Jia, T.; Zhang, L.; Duan, Y.; Zhang, M.; Wang, G.; Zhang, J.; Zhao, Z. The differential susceptibilities of MCF-7 and MDA-MB-231 cells to the cytotoxic effects of curcumin are associated with the PI3K/Akt-SKP2-Cip/Kips pathway. Cancer Cell Int., 2014, 14(1), 126.
[http://dx.doi.org/10.1186/s12935-014-0126-4] [PMID: 25530715]
[71]
Bae, Y.H.; Ryu, J.H.; Park, H.J.; Kim, K.R.; Wee, H.J.; Lee, O.H.; Jang, H.O.; Bae, M.K.; Kim, K.W.; Bae, S.K. Mutant p53-notch1 signaling axis is involved in curcumin-induced apoptosis of breast cancer cells. Korean J. Physiol. Pharmacol., 2013, 17(4), 291-297.
[http://dx.doi.org/10.4196/kjpp.2013.17.4.291] [PMID: 23946688]
[72]
Calaf, G.M.; Ponce-Cusi, R.; Abarca-Quinones, J. Effect of curcumin on the cell surface markers CD44 and CD24 in breast cancer. Oncol. Rep., 2018, 39(6), 2741-2748.
[http://dx.doi.org/10.3892/or.2018.6386] [PMID: 29693159]
[73]
Lv, Z.D.; Liu, X.P.; Zhao, W.J.; Dong, Q.; Li, F.N.; Wang, H.B.; Kong, B. Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. Int. J. Clin. Exp. Pathol., 2014, 7(6), 2818-2824.
[PMID: 25031701]
[74]
Zhou, X.; Jiao, D.; Dou, M.; Zhang, W.; Lv, L.; Chen, J.; Li, L.; Wang, L.; Han, X. Curcumin inhibits the growth of triple-negative breast cancer cells by silencing EZH2 and restoring DLC1 expression. J. Cell. Mol. Med., 2020, 24(18), 10648-10662.
[http://dx.doi.org/10.1111/jcmm.15683] [PMID: 32725802]
[75]
Sun, X.D.; Liu, X.E.; Huang, D.S. Curcumin induces apoptosis of triple-negative breast cancer cells by inhibition of EGFR expression. Mol. Med. Rep., 2012, 6(6), 1267-1270.
[http://dx.doi.org/10.3892/mmr.2012.1103] [PMID: 23023821]
[76]
Ferreira, L.C.; Arbab, A.S.; Jardim-Perassi, B.V.; Borin, T.F.; Varma, N.R.; Iskander, A.S.; Shankar, A.; Ali, M.M.; Zuccari, D.A. Effect of curcumin on pro-angiogenic factors in the xenograft model of breast cancer. Anticancer. Agents Med. Chem., 2015, 15(10), 1285-1296.
[http://dx.doi.org/10.2174/1871520615666150520093644] [PMID: 25991545]
[77]
Shao, Z.M.; Shen, Z.Z.; Liu, C.H.; Sartippour, M.R.; Go, V.L.; Heber, D.; Nguyen, M. Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int. J. Cancer, 2002, 98(2), 234-240.
[http://dx.doi.org/10.1002/ijc.10183] [PMID: 11857414]
[78]
El-Sahli, S.; Wang, L. Cancer stem cell-associated pathways in the metabolic reprogramming of breast cancer. Int. J. Mol. Sci., 2020, 21(23), E9125.
[http://dx.doi.org/10.3390/ijms21239125] [PMID: 33266219]
[79]
Palange, A.L.; Di Mascolo, D.; Singh, J.; De Franceschi, M.S.; Carallo, C.; Gnasso, A.; Decuzzi, P. Modulating the vascular behavior of metastatic breast cancer cells by curcumin treatment. Front. Oncol., 2012, 2, 161.
[http://dx.doi.org/10.3389/fonc.2012.00161] [PMID: 23162792]
[80]
Gallardo, M.; Kemmerling, U.; Aguayo, F.; Bleak, T.C.; Muñoz, J.P.; Calaf, G.M. Curcumin rescues breast cells from epithelial-mesenchymal transition and invasion induced by anti-miR-34a. Int. J. Oncol., 2020, 56(2), 480-493.
[http://dx.doi.org/10.3892/ijo.2019.4939] [PMID: 31894298]
[81]
Tan, B.L.; Norhaizan, M.E. Curcumin combination chemotherapy: The implication and efficacy in cancer. Molecules, 2019, 24(14), E2527.
[http://dx.doi.org/10.3390/molecules24142527] [PMID: 31295906]
[82]
Wei, Y.; Pu, X.; Zhao, L. Preclinical studies for the combination of paclitaxel and curcumin in cancer therapy (Review). Oncol. Rep., 2017, 37(6), 3159-3166.
[http://dx.doi.org/10.3892/or.2017.5593] [PMID: 28440434]
[83]
Saghatelyan, T.; Tananyan, A.; Janoyan, N.; Tadevosyan, A.; Petrosyan, H.; Hovhannisyan, A.; Hayrapetyan, L.; Arustamyan, M.; Arnhold, J.; Rotmann, A.R.; Hovhannisyan, A.; Panossian, A. Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine, 2020, 70, 153218.
[http://dx.doi.org/10.1016/j.phymed.2020.153218] [PMID: 32335356]
[84]
Marin, E.; Briceño, M.I.; Torres, A.; Caballero-George, C. New curcumin-loaded chitosan nanocapsules: In vivo evaluation. Planta Med., 2017, 83(10), 877-883.
[http://dx.doi.org/10.1055/s-0043-104633]
[85]
Amalraj, A.; Jude, S.; Varma, K.; Jacob, J.; Gopi, S.; Oluwafemi, O.S.; Thomas, S. Preparation of a novel bioavailable curcuminoid formulation (Cureit™) using Polar-Nonpolar-Sandwich (PNS) technology and its characterization and applications. Mater. Sci. Eng. C, 2017, 75, 359-367.
[http://dx.doi.org/10.1016/j.msec.2017.02.068] [PMID: 28415473]
[86]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[87]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S.S.R. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[88]
Sharma, R.A.; Euden, S.A.; Platton, S.L.; Cooke, D.N.; Shafayat, A.; Hewitt, H.R.; Marczylo, T.H.; Morgan, B.; Hemingway, D.; Plummer, S.M.; Pirmohamed, M.; Gescher, A.J.; Steward, W.P.; Phase, I. Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin. Cancer Res., 2004, 10(20), 6847-6854.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0744] [PMID: 15501961]
[89]
Stohs, S.J.; Chen, O.; Ray, S.D.; Ji, J.; Bucci, L.R.; Preuss, H.G. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review. Molecules, 2020, 25(6), E1397.
[http://dx.doi.org/10.3390/molecules25061397] [PMID: 32204372]
[90]
De Silva, L.; Goh, B-H.; Lee, L-H.; Chuah, L-H. Curcumin-loaded nanoparticles and their potential as anticancer agents in breast cancer. In: Natural Bio-active Compounds: Springer-verlog: London,, 2019, , 2, 147-178.
[http://dx.doi.org/10.1007/978-981-13-7205-6_7]
[91]
Bonaccorsi, P.M.; Labbozzetta, M.; Barattucci, A.; Salerno, T.M.G.; Poma, P.; Notarbartolo, M. Synthesis of curcumin derivatives and analysis of their antitumor effects in Triple Negative Breast Cancer (TNBC) cell lines. Pharmaceuticals (Basel), 2019, 12(4), E161.
[http://dx.doi.org/10.3390/ph12040161] [PMID: 31717764]
[92]
Shoji, M.; Qian, W.P.; Nagaraju, G.P.; Brat, D.J.; Pessolano, D.; Luzietti, R.; Chennamadhavuni, S.; Yamaguchi, M.; Yang, L.; Liotta, D.C. Inhibition of breast cancer metastasis to the lungs with UBS109. Oncotarget, 2018, 9(90), 36102-36109.
[http://dx.doi.org/10.18632/oncotarget.26302] [PMID: 30546830]
[93]
Shen, H.; Shen, J.; Pan, H.; Xu, L.; Sheng, H.; Liu, B.; Yao, M. Curcumin analog B14 has high bioavailability and enhances the effect of anti-breast cancer cells in vitro and in vivo. Cancer Sci., 2020, 112(2), 815-827.
[http://dx.doi.org/10.1111/cas.14770] [PMID: 33316116]
[94]
Nirgude, S.; Mahadeva, R.; Koroth, J.; Kumar, S.; Kumar, K.S.S.; Gopalakrishnan, V.; S Karki, S.S.; Choudhary, B. ST09, a novel curcumin derivative, blocks cell migration by inhibiting matrix metalloproteases in breast cancer cells and inhibits tumor progression in EAC mouse tumor models. Molecules, 2020, 25(19), E4499.
[http://dx.doi.org/10.3390/molecules25194499] [PMID: 33008036]
[95]
Koroth, J.; Nirgude, S.; Tiwari, S.; Gopalakrishnan, V.; Mahadeva, R.; Kumar, S.; Karki, S.S.; Choudhary, B. Investigation of anti-cancer and migrastatic properties of novel curcumin derivatives on breast and ovarian cancer cell lines. BMC Complement. Altern. Med., 2019, 19(1), 273.
[http://dx.doi.org/10.1186/s12906-019-2685-3] [PMID: 31638975]
[96]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419.
[http://dx.doi.org/10.3945/an.114.008052] [PMID: 26178025]
[97]
Yang, S.; Zhou, Q.; Yang, X. Caspase-3 status is a determinant of the differential responses to genistein between MDA-MB-231 and MCF-7 breast cancer cells. Biochim. Biophys. Acta, 2007, 1773(6), 903-911.
[http://dx.doi.org/10.1016/j.bbamcr.2007.03.021] [PMID: 17490757]
[98]
Pan, H.; Zhou, W.; He, W.; Liu, X.; Ding, Q.; Ling, L.; Zha, X.; Wang, S. Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway. Int. J. Mol. Med., 2012, 30(2), 337-343.
[http://dx.doi.org/10.3892/ijmm.2012.990] [PMID: 22580499]
[99]
Li, Z.; Li, J.; Mo, B.; Hu, C.; Liu, H.; Qi, H.; Wang, X.; Xu, J. Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway. Toxicol. In Vitro, 2008, 22(7), 1749-1753.
[http://dx.doi.org/10.1016/j.tiv.2008.08.001] [PMID: 18761399]
[100]
Gong, L.; Li, Y.; Nedeljkovic-Kurepa, A.; Sarkar, F.H. Inactivation of NF-kappaB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene, 2003, 22(30), 4702-4709.
[http://dx.doi.org/10.1038/sj.onc.1206583] [PMID: 12879015]
[101]
Liu, Y.; Zou, T.; Wang, S.; Chen, H.; Su, D.; Fu, X.; Zhang, Q.; Kang, X. Genistein-induced differentiation of breast cancer stem/progenitor cells through a paracrine mechanism. Int. J. Oncol., 2016, 48(3), 1063-1072.
[http://dx.doi.org/10.3892/ijo.2016.3351] [PMID: 26794366]
[102]
Dash, B.C.; El-Deiry, W.S. Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol. Cell. Biol., 2005, 25(8), 3364-3387.
[http://dx.doi.org/10.1128/MCB.25.8.3364-3387.2005] [PMID: 15798220]
[103]
Seo, H.S.; Ju, J.H.; Jang, K.; Shin, I. Induction of apoptotic cell death by phytoestrogens by up-regulating the levels of phospho-p53 and p21 in normal and malignant estrogen receptor α-negative breast cells. Nutr. Res., 2011, 31(2), 139-146.
[http://dx.doi.org/10.1016/j.nutres.2011.01.011] [PMID: 21419318]
[104]
Choi, Y.H.; Zhang, L.; Lee, W.H.; Park, K.Y. Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. Int. J. Oncol., 1998, 13(2), 391-396.
[http://dx.doi.org/10.3892/ijo.13.2.391] [PMID: 9664138]
[105]
Shao, Z.M.; Wu, J.; Shen, Z.Z.; Barsky, S.H. Genistein exerts multiple suppressive effects on human breast carcinoma cells. Cancer Res., 1998, 58(21), 4851-4857.
[PMID: 9809990]
[106]
Shon, Y.H.; Park, S.D.; Nam, K.S. Effective chemopreventive activity of genistein against human breast cancer cells. J. Biochem. Mol. Biol., 2006, 39(4), 448-451.
[http://dx.doi.org/10.5483/BMBRep.2006.39.4.448] [PMID: 16889690]
[107]
Li, Z.; Li, J.; Mo, B.; Hu, C.; Liu, H.; Qi, H.; Wang, X.; Xu, J. Genistein induces G2/M cell cycle arrest via stable activation of ERK1/2 pathway in MDA-MB-231 breast cancer cells. Cell Biol. Toxicol., 2008, 24(5), 401-409.
[http://dx.doi.org/10.1007/s10565-008-9054-1] [PMID: 18224451]
[108]
Wada, M.; Canals, D.; Adada, M.; Coant, N.; Salama, M.F.; Helke, K.L.; Arthur, J.S.; Shroyer, K.R.; Kitatani, K.; Obeid, L.M.; Hannun, Y.A. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment. Oncogene, 2017, 36(47), 6649-6657.
[http://dx.doi.org/10.1038/onc.2017.274] [PMID: 28783172]
[109]
Fang, Y.; Zhang, Q.; Wang, X.; Yang, X.; Wang, X.; Huang, Z.; Jiao, Y.; Wang, J. Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells. Int. J. Oncol., 2016, 48(3), 1016-1028.
[http://dx.doi.org/10.3892/ijo.2016.3327] [PMID: 26783066]
[110]
Li, Y.; Bhuiyan, M.; Sarkar, F.H. Induction of apoptosis and inhibition of c-erbB-2 in MDA-MB-435 cells by genistein. Int. J. Oncol., 1999, 15(3), 525-533.
[http://dx.doi.org/10.3892/ijo.15.3.525] [PMID: 10427135]
[111]
Kousidou, O.C.; Mitropoulou, T.N.; Roussidis, A.E.; Kletsas, D.; Theocharis, A.D.; Karamanos, N.K. Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. Int. J. Oncol., 2005, 26(4), 1101-1109.
[http://dx.doi.org/10.3892/ijo.26.4.1101] [PMID: 15754008]
[112]
Shao, Z.M.; Wu, J.; Shen, Z.Z.; Barsky, S.H. Genistein inhibits both constitutive and EGF-stimulated invasion in ER-negative human breast carcinoma cell lines. Anticancer Res., 1998, 18(3A), 1435-1439.
[PMID: 9673352]
[113]
Lee, S.A.; Shu, X.O.; Li, H.; Yang, G.; Cai, H.; Wen, W.; Ji, B.T.; Gao, J.; Gao, Y.T.; Zheng, W. Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai Women’s Health Study. Am. J. Clin. Nutr., 2009, 89(6), 1920-1926.
[http://dx.doi.org/10.3945/ajcn.2008.27361] [PMID: 19403632]
[114]
Thanos, J.; Cotterchio, M.; Boucher, B.A.; Kreiger, N.; Thompson, L.U. Adolescent dietary phytoestrogen intake and breast cancer risk (Canada). Cancer Causes Control, 2006, 17(10), 1253-1261.
[http://dx.doi.org/10.1007/s10552-006-0062-2] [PMID: 17111256]
[115]
Wu, A.H.; Wan, P.; Hankin, J.; Tseng, C.C.; Yu, M.C.; Pike, M.C. Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis, 2002, 23(9), 1491-1496.
[http://dx.doi.org/10.1093/carcin/23.9.1491] [PMID: 12189192]
[116]
Korde, L.A.; Wu, A.H.; Fears, T.; Nomura, A.M.Y.; West, D.W.; Kolonel, L.N.; Pike, M.C.; Hoover, R.N.; Ziegler, R.G. Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiol. Biomarkers Prev., 2009, 18(4), 1050-1059.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0405] [PMID: 19318430]
[117]
Khan, S.A.; Chatterton, R.T.; Michel, N.; Bryk, M.; Lee, O.; Ivancic, D.; Heinz, R.; Zalles, C.M.; Helenowski, I.B.; Jovanovic, B.D.; Franke, A.A.; Bosland, M.C.; Wang, J.; Hansen, N.M.; Bethke, K.P.; Dew, A.; Coomes, M.; Bergan, R.C. Soy isoflavone supplementation for breast cancer risk reduction: A randomized phase II trial. Cancer Prev. Res. (Phila.), 2012, 5(2), 309-319.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0251] [PMID: 22307566]
[118]
Maskarinec, G.; Williams, A.E.; Carlin, L. Mammographic densities in a one-year isoflavone intervention. Eur. J. Cancer Prev., 2003, 12(2), 165-169.
[http://dx.doi.org/10.1097/00008469-200304000-00011] [PMID: 12671541]
[119]
Maskarinec, G.; Takata, Y.; Franke, A.A.; Williams, A.E.; Murphy, S.P.A. A 2-year soy intervention in premenopausal women does not change mammographic densities. J. Nutr., 2004, 134(11), 3089-3094.
[http://dx.doi.org/10.1093/jn/134.11.3089] [PMID: 15514280]
[120]
Hargreaves, D.F.; Potten, C.S.; Harding, C.; Shaw, L.E.; Morton, M.S.; Roberts, S.A.; Howell, A.; Bundred, N.J. Two-week dietary soy supplementation has an estrogenic effect on normal premenopausal breast. J. Clin. Endocrinol. Metab., 1999, 84(11), 4017-4024.
[http://dx.doi.org/10.1210/jc.84.11.4017] [PMID: 10566643]
[121]
Coldham, N.G.; Zhang, A.Q.; Key, P.; Sauer, M.J. Absolute bioavailability of [14C] genistein in the rat; plasma pharmacokinetics of parent compound, genistein glucuronide and total radioactivity. Eur. J. Drug Metab. Pharmacokinet., 2002, 27(4), 249-258.
[http://dx.doi.org/10.1007/BF03192335] [PMID: 12587954]
[122]
Yang, Z.; Kulkarni, K.; Zhu, W.; Hu, M. Bioavailability and pharmacokinetics of genistein: Mechanistic studies on its ADME. Anticancer. Agents Med. Chem., 2012, 12(10), 1264-1280.
[http://dx.doi.org/10.2174/187152012803833107] [PMID: 22583407]
[123]
Zhang, Y.; Song, T.T.; Cunnick, J.E.; Murphy, P.A.; Hendrich, S. Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J. Nutr., 1999, 129(2), 399-405.
[http://dx.doi.org/10.1093/jn/129.2.399] [PMID: 10024618]
[124]
Rimbach, G.; Weinberg, P.D.; De Pascual-Teresa, S.; Alonso, M.G.; Ewins, B.A.; Turner, R.; Minihane, A.M.; Botting, N.; Fairley, B.; Matsugo, S.; Uchida, Y.; Cassidy, A. Sulfation of genistein alters its antioxidant properties and its effect on platelet aggregation and monocyte and endothelial function. Biochim. Biophys. Acta., 2004, 1670(3), 229-237.
[http://dx.doi.org/10.1016/j.bbagen.2003.12.008]
[125]
Marik, R.; Allu, M.; Anchoori, R.; Stearns, V.; Umbricht, C.B.; Khan, S. Potent genistein derivatives as inhibitors of estrogen receptor alpha-positive breast cancer. Cancer Biol. Ther., 2011, 11(10), 883-892.
[http://dx.doi.org/10.4161/cbt.11.10.15184] [PMID: 21389782]
[126]
Pool, H.; Campos-Vega, R.; Herrera-Hernández, M.G.; García-Solis, P.; García-Gasca, T.; Sánchez, I.C.; Luna-Bárcenas, G.; Vergara-Castañeda, H. Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am. J. Transl. Res., 2018, 10(8), 2306-2323.
[PMID: 30210672]
[127]
Biesalski, H.K. Polyphenols and inflammation: Basic interactions. Curr. Opin. Clin. Nutr. Metab. Care, 2007, 10(6), 724-728.
[http://dx.doi.org/10.1097/MCO.0b013e3282f0cef2] [PMID: 18089954]
[128]
Sinha, D.; Sarkar, N.; Biswas, J.; Bishayee, A. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin. Cancer Biol., 2016, 40-41, 209-232.
[http://dx.doi.org/10.1016/j.semcancer.2015.11.001] [PMID: 26774195]
[129]
Poschner, S.; Maier-Salamon, A.; Thalhammer, T.; Jäger, W. Resveratrol and other dietary polyphenols are inhibitors of estrogen metabolism in human breast cancer cells. J. Steroid Biochem. Mol. Biol., 2019, 190, 11-18.
[http://dx.doi.org/10.1016/j.jsbmb.2019.03.001] [PMID: 30851384]
[130]
Sun, Y.; Zhou, Q.M.; Lu, Y.Y.; Zhang, H.; Chen, Q.L.; Zhao, M.; Su, S.B. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition. Molecules, 2019, 24(6), E1131.
[http://dx.doi.org/10.3390/molecules24061131] [PMID: 30901941]
[131]
Chen, J.M.; Bai, J.Y.; Yang, K.X. Effect of resveratrol on doxorubicin resistance in breast neoplasm cells by modulating PI3K/Akt signaling pathway. IUBMB Life, 2018, 70(6), 491-500.
[http://dx.doi.org/10.1002/iub.1749] [PMID: 29637742]
[132]
Lucas, J.; Hsieh, T.C.; Halicka, H.D.; Darzynkiewicz, Z.; Wu, J.M. Upregulation of PD-L1 expression by resveratrol and piceatannol in breast and colorectal cancer cells occurs via HDAC3/p300-mediated NF-κB signaling. Int. J. Oncol., 2018, 53(4), 1469-1480.
[http://dx.doi.org/10.3892/ijo.2018.4512] [PMID: 30066852]
[133]
Park, S.A.; Na, H.K.; Surh, Y.J. Resveratrol suppresses 4-hydroxyestradiol-induced transformation of human breast epithelial cells by blocking IκB kinaseβ-NF-κB signalling. Free Radic. Res., 2012, 46(8), 1051-1057.
[http://dx.doi.org/10.3109/10715762.2012.671940] [PMID: 22571807]
[134]
Pozo-Guisado, E.; Merino, J.M.; Mulero-Navarro, S.; Lorenzo-Benayas, M.J.; Centeno, F.; Alvarez-Barrientos, A.; Fernandez-Salguero, P.M. Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-kappaB. Int. J. Cancer, 2005, 115(1), 74-84.
[http://dx.doi.org/10.1002/ijc.20856] [PMID: 15688415]
[135]
Kim, Y.N.; Choe, S.R.; Cho, K.H.; Cho, D.Y.; Kang, J.; Park, C.G.; Lee, H.Y. Resveratrol suppresses breast cancer cell invasion by inactivating a RhoA/YAP signaling axis. Exp. Mol. Med., 2017, 49(2), e296.
[http://dx.doi.org/10.1038/emm.2016.151] [PMID: 28232662]
[136]
Dong, J.; Yang, W.; Han, J.; Cheng, R.; Li, L. Effects of Notch signaling components from breast cancer cells treated in culture with resveratrol. Res. Vet. Sci., 2020, 132, 369-378.
[http://dx.doi.org/10.1016/j.rvsc.2020.07.017] [PMID: 32745729]
[137]
Izquierdo-Torres, E.; Hernández-Oliveras, A.; Meneses-Morales, I.; Rodríguez, G.; Fuentes-García, G.; Zarain-Herzberg, Á. Resveratrol up-regulates ATP2A3 gene expression in breast cancer cell lines through epigenetic mechanisms. Int. J. Biochem. Cell Biol., 2019, 113, 37-47.
[http://dx.doi.org/10.1016/j.biocel.2019.05.020] [PMID: 31173924]
[138]
Ferraz da Costa, D.C.; Campos, N.P.C.; Santos, R.A.; Guedes- da-Silva, F.H.; Martins-Dinis, M.M.D.C.; Zanphorlin, L.; Ramos, C.; Rangel, L.P.; Silva, J.L. Resveratrol prevents p53 aggregation in vitro and in breast cancer cells. Oncotarget, 2018, 9(49), 29112-29122.
[http://dx.doi.org/10.18632/oncotarget.25631] [PMID: 30018739]
[139]
Alkhalaf, M. Resveratrol-induced growth inhibition in MDA-MB-231 breast cancer cells is associated with mitogen-activated protein kinase signaling and protein translation. Eur. J. Cancer Prev., 2007, 16(4), 334-341.
[http://dx.doi.org/10.1097/01.cej.0000228413.06471.4c] [PMID: 17554206]
[140]
Dolfini, E.; Roncoroni, L.; Dogliotti, E.; Sala, G.; Erba, E.; Sacchi, N.; Ghidoni, R. Resveratrol impairs the formation of MDA-MB-231 multicellular tumor spheroids concomitant with ceramide accumulation. Cancer Lett., 2007, 249(2), 143-147.
[http://dx.doi.org/10.1016/j.canlet.2006.08.013] [PMID: 16996206]
[141]
Scarlatti, F.; Sala, G.; Somenzi, G.; Signorelli, P.; Sacchi, N.; Ghidoni, R. Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. FASEB J., 2003, 17(15), 2339-2341.
[http://dx.doi.org/10.1096/fj.03-0292fje] [PMID: 14563682]
[142]
Haimovitz-Friedman, A.; Kolesnick, R.N.; Fuks, Z. Ceramide signaling in apoptosis. Br. Med. Bull., 1997, 53(3), 539-553.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a011629] [PMID: 9374036]
[143]
Woodcock, J. Sphingosine and ceramide signalling in apoptosis. IUBMB Life, 2006, 58(8), 462-466.
[http://dx.doi.org/10.1080/15216540600871118] [PMID: 16916783]
[144]
Ávila-Gálvez, M.Á.; García-Villalba, R.; Martínez-Díaz, F.; Ocaña-Castillo, B.; Monedero-Saiz, T.; Torrecillas-Sánchez, A.; Abellán, B.; González-Sarrías, A.; Espín, J.C. Metabolic profiling of dietary polyphenols and methylxanthines in normal and malignant mammary tissues from breast cancer patients. Mol. Nutr. Food Res., 2019, 63(9), e1801239.
[http://dx.doi.org/10.1002/mnfr.201801239] [PMID: 30690879]
[145]
Sergides, C.; Chirilă, M.; Silvestro, L.; Pitta, D.; Pittas, A. Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Exp. Ther. Med., 2016, 11(1), 164-170.
[http://dx.doi.org/10.3892/etm.2015.2895] [PMID: 26889234]
[146]
Kuhnle, G.; Spencer, J.P.E.; Chowrimootoo, G.; Schroeter, H.; Debnam, E.S.; Srai, S.K.S.; Rice-Evans, C.; Hahn, U. Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochem. Biophys. Res. Commun., 2000, 272(1), 212-217.
[http://dx.doi.org/10.1006/bbrc.2000.2750] [PMID: 10872829]
[147]
Rotches-Ribalta, M.; Andres-Lacueva, C.; Estruch, R.; Escribano, E.; Urpi-Sarda, M. Pharmacokinetics of resveratrol metabolic profile in healthy humans after moderate consumption of red wine and grape extract tablets. Pharmacol. Res., 2012, 66(5), 375-382.
[http://dx.doi.org/10.1016/j.phrs.2012.08.001] [PMID: 22906730]
[148]
Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; Borras, C. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longe., 2015, 2015, 837042.
[http://dx.doi.org/10.1155/2015/837042]
[149]
Li, Q-S.; Li, Y.; Deora, G.S.; Ruan, B-F. Derivatives and analogues of resveratrol: Recent advances in structural modification. Mini Rev. Med. Chem., 2019, 19(10), 809-825.
[http://dx.doi.org/10.2174/1389557519666190128093840] [PMID: 30686253]
[150]
Horgan, X.J.; Tatum, H.; Brannan, E.; Paull, D.H.; Rhodes, L.V. Resveratrol analogues surprisingly effective against triple-negative breast cancer, independent of ERα. Oncol. Rep., 2019, 41(6), 3517-3526.
[http://dx.doi.org/10.3892/or.2019.7122] [PMID: 31002359]
[151]
Kim, D.H.; Sung, B.; Kim, J.A.; Kang, Y.J.; Hwang, S.Y.; Hwang, N.L.; Suh, H.; Choi, Y.H. HS-1793, a resveratrol analogue, downregulates the expression of hypoxia-induced HIF-1 and VEGF and inhibits tumor growth of human breast cancer cells in a nude mouse xenograft model. Int. J. Oncol., 2017, 51(2), 715-723.
[http://dx.doi.org/10.3892/ijo.2017.4058]
[152]
Grabowska, M.; Wawrzyniak, D.; Rolle, K.; Chomczyński, P.; Oziewicz, S.; Jurga, S.; Barciszewski, J. Let food be your medicine: Nutraceutical properties of lycopene. Food Funct., 2019, 10(6), 3090-3102.
[http://dx.doi.org/10.1039/C9FO00580C] [PMID: 31120074]
[153]
Heber, D.; Lu, Q.Y. Overview of Mechanisms of action of lycopene. Exp. Biol. Med., 2002, 227(1), 920-923.
[http://dx.doi.org/10.1177/153537020222701013]
[154]
Hirsch, K.; Atzmon, A.; Danilenko, M.; Levy, J.; Sharoni, Y. Lycopene and other carotenoids inhibit estrogenic activity of 17β-estradiol and genistein in cancer cells. Breast Cancer Res. Treat., 2007, 104(2), 221-230.
[http://dx.doi.org/10.1007/s10549-006-9405-7] [PMID: 17051425]
[155]
Story, E.N.; Kopec, R.E.; Schwartz, S.J.; Harris, G.K. An update on the health effects of tomato lycopene. Annu. Rev. Food Sci. Technol., 2010, 1, 189-210.
[http://dx.doi.org/10.1146/annurev.food.102308.124120] [PMID: 22129335]
[156]
Assar, E.A.; Vidalle, M.C.; Chopra, M.; Hafizi, S. Lycopene acts through inhibition of IκB kinase to suppress NF-κB signaling in human prostate and breast cancer cells. Tumour Biol., 2016, 37(7), 9375-9385.
[http://dx.doi.org/10.1007/s13277-016-4798-3] [PMID: 26779636]
[157]
Takeshima, M.; Ono, M.; Higuchi, T.; Chen, C.; Hara, T.; Nakano, S. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci., 2014, 105(3), 252-257.
[http://dx.doi.org/10.1111/cas.12349] [PMID: 24397737]
[158]
Gloria, N.F.; Soares, N.; Brand, C.; Oliveira, F.L.; Borojevic, R.; Teodoro, A.J. Lycopene and beta-carotene induce cell-cycle arrest and apoptosis in human breast cancer cell lines. Anticancer Res., 2014, 34(3), 1377-1386.
[PMID: 24596385]
[159]
Chalabi, N.; Delort, L.; Le Corre, L.; Satih, S.; Bignon, Y.J.; Bernard-Gallon, D. Gene signature of breast cancer cell lines treated with lycopene. Pharmacogenomics, 2006, 7(5), 663-672.
[http://dx.doi.org/10.2217/14622416.7.5.663] [PMID: 16886892]
[160]
King-Batoon, A.; Leszczynska, J.M.; Klein, C.B. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ. Mol. Mutagen., 2008, 49(1), 36-45.
[http://dx.doi.org/10.1002/em.20363] [PMID: 18181168]
[161]
Sahin, K.; Tuzcu, M.; Sahin, N.; Akdemir, F.; Ozercan, I.; Bayraktar, S.; Kucuk, O. Inhibitory effects of combination of lycopene and genistein on 7,12- dimethyl benz(a)anthracene-induced breast cancer in rats. Nutr. Cancer, 2011, 63(8), 1279-1286.
[http://dx.doi.org/10.1080/01635581.2011.606955] [PMID: 21958026]
[162]
Du, G.J.; Zhang, Z.; Wen, X.D.; Yu, C.; Calway, T.; Yuan, C.S.; Wang, C.Z. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients, 2012, 4(11), 1679-1691.
[http://dx.doi.org/10.3390/nu4111679] [PMID: 23201840]
[163]
Chu, C.; Deng, J.; Man, Y.; Qu, Y. Green tea extracts epigallocatechin-3-gallate for different treatments. BioMed Res. Int., 2017, 2017, 5615647.
[http://dx.doi.org/10.1155/2017/5615647] [PMID: 28884125]
[164]
Fujiki, H.; Sueoka, E.; Rawangkan, A.; Suganuma, M. Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate. J. Cancer Res. Clin. Oncol., 2017, 143(12), 2401-2412.
[http://dx.doi.org/10.1007/s00432-017-2515-2] [PMID: 28942499]
[165]
Kim, J.; Zhang, X.; Rieger-Christ, K.M.; Summerhayes, I.C.; Wazer, D.E.; Paulson, K.E.; Yee, A.S. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. J. Biol. Chem., 2006, 281(16), 10865-10875.
[http://dx.doi.org/10.1074/jbc.M513378200] [PMID: 16495219]
[166]
Hong, O.Y.; Noh, E.M.; Jang, H.Y.; Lee, Y.R.; Lee, B.K.; Jung, S.H.; Kim, J.S.; Youn, H.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway. Oncol. Lett., 2017, 14(1), 441-446.
[http://dx.doi.org/10.3892/ol.2017.6108] [PMID: 28693189]
[167]
Sen, T.; Dutta, A.; Chatterjee, A. Epigallocatechin-3-gallate (EGCG) downregulates gelatinase-B (MMP-9) by involvement of FAK/ERK/NFkappaB and AP-1 in the human breast cancer cell line MDA-MB-231. Anticancer Drugs, 2010, 21(6), 632-644.
[http://dx.doi.org/10.1097/CAD.0b013e32833a4385] [PMID: 20527725]
[168]
Xu, P.; Yan, F.; Zhao, Y.; Chen, X.; Sun, S.; Wang, Y.; Ying, L. Green tea polyphenol EGCG attenuates MDSCs-mediated immunosuppression through canonical and non-canonical pathways in a 4T1 murine breast cancer model. Nutrients, 2020, 12(4), E1042.
[http://dx.doi.org/10.3390/nu12041042] [PMID: 32290071]
[169]
Jang, J.Y.; Lee, J.K.; Jeon, Y.K.; Kim, C.W. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer, 2013, 13, 421.
[http://dx.doi.org/10.1186/1471-2407-13-421] [PMID: 24044575]
[170]
Chen, D.; Pamu, S.; Cui, Q.; Chan, T.H.; Dou, Q.P. Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells. Bioorg. Med. Chem., 2012, 20(9), 3031-3037.
[http://dx.doi.org/10.1016/j.bmc.2012.03.002] [PMID: 22459208]
[171]
Puig, T.; Vázquez-Martín, A.; Relat, J.; Pétriz, J.; Menéndez, J.A.; Porta, R.; Casals, G.; Marrero, P.F.; Haro, D.; Brunet, J.; Colomer, R. Fatty acid metabolism in breast cancer cells: Differential inhibitory effects of epigallocatechin gallate (EGCG) and C75. Breast Cancer Res. Treat., 2008, 109(3), 471-479.
[http://dx.doi.org/10.1007/s10549-007-9678-5] [PMID: 17902053]
[172]
Pouliot, M.C.; Labrie, Y.; Diorio, C.; Durocher, F. The role of methylation in breast cancer susceptibility and treatment. Anticancer Res., 2015, 35(9), 4569-4574.
[PMID: 26254344]
[173]
Sheng, J.; Shi, W.; Guo, H.; Long, W.; Wang, Y.; Qi, J.; Liu, J.; Xu, Y. The inhibitory effect of (-)-epigallocatechin-3-gallate on breast cancer progression via reducing SCUBE2 methylation and DNMT activity. Molecules, 2019, 24(16), E2899.
[http://dx.doi.org/10.3390/molecules24162899] [PMID: 31404982]
[174]
Yamashita, N.; Tokunaga, E.; Kitao, H.; Hisamatsu, Y.; Taketani, K.; Akiyoshi, S.; Okada, S.; Aishima, S.; Morita, M.; Maehara, Y. Vimentin as a poor prognostic factor for triple-negative breast cancer. J. Cancer Res. Clin. Oncol., 2013, 139(5), 739-746.
[http://dx.doi.org/10.1007/s00432-013-1376-6] [PMID: 23354842]
[175]
Mineva, N.D.; Paulson, K.E.; Naber, S.P.; Yee, A.S.; Sonenshein, G.E. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLoS One, 2013, 8(9), e73464.
[http://dx.doi.org/10.1371/journal.pone.0073464] [PMID: 24039951]
[176]
Sartippour, M.R.; Shao, Z.M.; Heber, D.; Beatty, P.; Zhang, L.; Liu, C.; Ellis, L.; Liu, W.; Go, V.L.; Brooks, M.N. Green tea inhibits Vascular Endothelial Growth Factor (VEGF) induction in human breast cancer cells. J. Nutr., 2002, 132(8), 2307-2311.
[http://dx.doi.org/10.1093/jn/132.8.2307] [PMID: 12163680]
[177]
Stacker, S.A.; Caesar, C.; Baldwin, M.E.; Thornton, G.E.; Williams, R.A.; Prevo, R.; Jackson, D.G.; Nishikawa, S.; Kubo, H.; Achen, M.G. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat. Med., 2001, 7(2), 186-191.
[http://dx.doi.org/10.1038/84635] [PMID: 11175849]
[178]
Mehner, C.; Hockla, A.; Miller, E.; Ran, S.; Radisky, D.C.; Radisky, E.S. Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal- like triple negative breast cancer. Oncotarget, 2014, 5(9), 2736-2749.
[http://dx.doi.org/10.18632/oncotarget.1932] [PMID: 24811362]
[179]
Samavat, H.; Ursin, G.; Emory, T.H.; Lee, E.; Wang, R.; Torkelson, C.J.; Dostal, A.M.; Swenson, K.; Le, C.T.; Yang, C.S.; Yu, M.C.; Yee, D.; Wu, A.H.; Yuan, J.M.; Kurzer, M.S. A randomized controlled trial of green tea extract supplementation and mammographic density in postmenopausal women at increased risk of breast cancer. Cancer Prev. Res. (Phila.), 2017, 10(12), 710-718.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0187] [PMID: 28904061]
[180]
Rauh, C.; Hack, C.C.; Häberle, L.; Hein, A.; Engel, A.; Schrauder, M.G.; Fasching, P.A.; Jud, S.M.; Ekici, A.B.; Loehberg, C.R.; Meier-Meitinger, M.; Ozan, S.; Schulz-Wendtland, R.; Uder, M.; Hartmann, A.; Wachter, D.L.; Beckmann, M.W.; Heusinger, K. Percent mammographic density and dense area as risk factors for breast cancer. Geburtshilfe Frauenheilkd., 2012, 72(8), 727-733.
[http://dx.doi.org/10.1055/s-0032-1315129] [PMID: 25258465]
[181]
Zhang, G.; Wang, Y.; Zhang, Y.; Wan, X.; Li, J.; Liu, K.; Wang, F.; Liu, K.; Liu, Q.; Yang, C.; Yu, P.; Huang, Y.; Wang, S.; Jiang, P.; Qu, Z.; Luan, J.; Duan, H.; Zhang, L.; Hou, A.; Jin, S.; Hsieh, T.C.; Wu, E. Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr. Mol. Med., 2012, 12(2), 163-176.
[http://dx.doi.org/10.2174/156652412798889063] [PMID: 22280355]
[182]
Wu, A.H.; Yu, M.C.; Tseng, C.C.; Hankin, J.; Pike, M.C. Green tea and risk of breast cancer in Asian Americans. Int. J. Cancer, 2003, 106(4), 574-579.
[http://dx.doi.org/10.1002/ijc.11259] [PMID: 12845655]
[183]
Li, M.; Tse, L.A.; Chan, W.C.; Kwok, C.H.; Leung, S.L.; Wu, C.; Yu, W.C.; Yu, I.T.; Yu, C.H.; Wang, F.; Sung, H.; Yang, X.R. Evaluation of breast cancer risk associated with tea consumption by menopausal and estrogen receptor status among Chinese women in Hong Kong. Cancer Epidemiol., 2016, 40, 73-78.
[http://dx.doi.org/10.1016/j.canep.2015.11.013] [PMID: 26680603]
[184]
Radhakrishnan, R.; Pooja, D.; Kulhari, H.; Gudem, S.; Ravuri, H.G.; Bhargava, S.; Ramakrishna, S. Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment. Chem. Phys. Lipids, 2019, 224, 104770.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.04.005] [PMID: 30965023]
[185]
Radhakrishnan, R.; Kulhari, H.; Pooja, D.; Gudem, S.; Bhargava, S.; Shukla, R.; Sistla, R. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chem. Phys. Lipids, 2016, 198, 51-60.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.05.006] [PMID: 27234272]
[186]
Kazi, J.; Sen, R.; Ganguly, S.; Jha, T.; Ganguly, S.; Chatterjee Debnath, M. Folate decorated epigallocatechin-3-gallate (EGCG) loaded PLGA nanoparticles; in-vitro and in-vivo targeting efficacy against MDA-MB-231 tumor xenograft. Int. J. Pharm., 2020, 585, 119449.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119449] [PMID: 32464231]
[187]
Shin, S.; Kim, M.K.; Jung, W.; Chong, Y. (-)-Epigallocatechin gallate derivatives reduce the expression of both urokinase plasminogen activator and plasminogen activator inhibitor-1 to inhibit migration, adhesion, and invasion of MDA-MB-231 cells. Phytother. Res., 2018, 32(10), 2086-2096.
[http://dx.doi.org/10.1002/ptr.6154] [PMID: 30009577]
[188]
Giró-Perafita, A.; Rabionet, M.; Planas, M.; Feliu, L.; Ciurana, J.; Ruiz-Martínez, S.; Puig, T. EGCG-derivative G28 shows high efficacy inhibiting the mammosphere-forming capacity of sensitive and resistant TNBC models. Molecules, 2019, 24(6), E1027.
[http://dx.doi.org/10.3390/molecules24061027] [PMID: 30875891]
[189]
Landis-Piwowar, K.R.; Huo, C.; Chen, D.; Milacic, V.; Shi, G.; Chan, T.H.; Dou, Q.P. A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res., 2007, 67(9), 4303-4310.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4699] [PMID: 17483343]
[190]
Mohapatra, P.; Satapathy, S.R.; Siddharth, S.; Das, D.; Nayak, A.; Kundu, C.N. Resveratrol and curcumin synergistically induces apoptosis in cigarette smoke condensate transformed breast epithelial cells through a p21(Waf1/Cip1) mediated inhibition of Hh-Gli signaling. Int. J. Biochem. Cell Biol., 2015, 66, 75-84.
[http://dx.doi.org/10.1016/j.biocel.2015.07.009] [PMID: 26212257]
[191]
Zhang, Y.; Li, H.; Zhang, J.; Zhao, C.; Lu, S.; Qiao, J.; Han, M. The combinatory effects of natural products and chemotherapy drugs and their mechanisms in breast cancer treatment. Phytochem. Rev., 2020, 19(6), 1179-1197.
[http://dx.doi.org/10.1007/s11101-019-09628-w]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy