Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

A Review on Potential Activities of Different Parts of Cassia sophera as Antidiabetic, Antimicrobial and Anticancer Agent

Author(s): Atyurmila Chakraborty, Sasmita Kumari Acharjya*, Bimala Tripathy and Dipthi Shree

Volume 20, Issue 3, 2022

Published on: 27 April, 2022

Article ID: e040322201763 Pages: 16

DOI: 10.2174/2211352520666220304185443

Price: $65

Abstract

Background: Herbal medicines are one of the giant creations of nature. Several medicinal agents developed from natural sources, which open a new era of health sciences. Cassia sophera is a prevalent medicinal plant that is locally known as “Kasondi”, belonging to the family Caesalpinaceae. Many secondary metabolites like alkaloids, tannins, anthraquinones, flavonoids are isolated from roots, stems, leaves, flowers, and seeds of C. sophera, which are very effective against several diseases.

Objective: Cassia sophera has an enormous potential in public health to protect from diabetes, microbes, and cancer. Hence, the aim of the present review is to collect the reported antidiabetic, antimicrobial, and anticancer activity of Cassia sophera along with a detailed discussion about mechanism of action of various phytoconstituents.

Discussion: Antidiabetic activity of Cassia sophera is due to the activation of β cell and stimulation of surviving pancreatic β-cells to release more insulin. Plasma membrane disruption, inhibition of cell wall formation, inhibition of cell division by the Cassia sophera is the prime causes of antimicrobial activity. The anticancer activity of the plant is mainly due to the prevention of reactive oxygen species formation, induction of cell cycle arrest, apoptosis, and angiogenesis.

Conclusions: The findings from this review article confirm the potential activities and mechanisms of various phytoconstituents responsible for preventing diabetes, cancer, and microbial infections. Further investigation regarding possible pharmaceutical side effects, contraindications, drug interactions involving drugs synthesized from C. sophera should be carried out by the researchers.

Keywords: Medicinal plant, Cassia sophera, antidiabetic activity, antimicrobial activity, anticancer activity, potential activites.

Graphical Abstract

[1]
Usha, V.; Bopaiah, A.K. Phytochemical investigation of the ethanol, methanol and ethyl acetate leaf extracts of six Cassia species. Int. J. Pharm. Biosci., 2012, 3(2), 260-270.
[2]
Maya, K.; Agrawal, R.C. Biological activity of medicinal plant Cassia fistula-A review. J. Sci. Res. Pharm., 2012, 1(3), 7-11.
[5]
Shoba, S.; Shylaja, G.; Sathiavelu, A.; Mythili, S. A phytopharmacological review on Cassia species. J. Pharm. Sci. Res., 2016, 8(5), 260-264.
[6]
Khare, C.P. Indian Medicinal Plants; Springer, 2007, p. 128.
[http://dx.doi.org/10.1007/978-0-387-70638-2]
[7]
Government of India. The Ayurvedic Pharmacopoeia of India, 1989, 1, 13. Available from: http://www.ayurveda.hu/api/API-Vol-1.pdf
[8]
Malhotra, S.; Mishra, K. A new anthraquinone from Cassia sophera Heartwood. Planta Med., 1982, 46(12), 247-249.
[http://dx.doi.org/10.1055/s-2007-971225] [PMID: 17396984]
[9]
Tiwari, R.D.; Bajpai, M. A new flavonol-8-C-glycoside from the leaves of Cassia sophera. Phytochemistry, 1980, 5, 437-438.
[10]
Joshi, T.; Dass, A.; Pandey, S.; Shukla, S. An anthraquinone 3-neohesperidoside from Cassia sophera root bark. Phytochemistry, 1985, 24(12), 3073-3074.
[http://dx.doi.org/10.1016/0031-9422(85)80066-2]
[11]
Dass, A.; Joshi, T.; Shukla, S. Anthraquinones from Cassia sophera root bark. Phytochemistry, 1984, 23(11), 2689-2691.
[http://dx.doi.org/10.1016/S0031-9422(00)84134-5]
[12]
Deshpande, S.R.; Naik, B.S. Cytotoxicity of stem extracts of selected Cassia species against hela and breast cancer cell lines in vitro. Asian J. Pharm. Clin. Res., 2017, 10(3), 80-82.
[13]
Singh, M.; Singh, J. Two flavonoid glycosides from Cassia occidentalis pods. Planta Med., 1985, 51(6), 525-526.
[http://dx.doi.org/10.1055/s-2007-969584] [PMID: 17345279]
[14]
Bilal, K.; Naeem, A.; Inamuddin, G. Pharmacological investigation of Cassia sophera Linn. Med. J. Islamic World Acad. Sci., 2005, 15, 105-109.
[15]
Alemayehu, G.; Abegaz, B.; Kraus, W.A. 1, 4-anthraquinone-dihydroanthracenone dimer from Senna sophera. Phytochemistry, 1998, 48(4), 699-702.
[http://dx.doi.org/10.1016/S0031-9422(98)00031-4]
[16]
Swadesh, M.; Krishna, M. Anthraquinones from Cassia sophera heartwood. Phytochemistry, 1982, 21(1), 197-199.
[http://dx.doi.org/10.1016/0031-9422(82)80042-3]
[17]
Priyadarsini, S.S.; Vadivu, R.; Jayshree, N. In vitro and in vivo antidiabetic activity of the leaves of Ravenala madagascariensis Sonn. on alloxan induced diabetic rats. J. Pharm. Sci. Technol., 2010, 2(9), 312-317.
[18]
Khan, A.M.; Khan, A.H.; Shoaib, M.; Ahmed, A.B. Pharmacological screening of Cassia sophera for hypoglycemic activity in normal and diabetic rabbits. Pak. J. Med. Sci., 2002, 16(1), 1-4.
[19]
Kumar, K.C. S.; Müller, K. Medicinal plants from Nepal; II. Evaluation as inhibitors of lipid peroxidation in biological membranes. J. Ethnopharmacol., 1999, 64(2), 135-139.
[http://dx.doi.org/10.1016/S0378-8741(98)00117-2 ] [PMID: 10197748]
[20]
Rizvi, S.J.H.; Mukerji, D.; Mathur, S.N. A new report on a possible source of natural herbicide. Indian J. Exp. Biol., 1980, 18(7), 777-778.
[21]
Kundu, M.; Rawani, A.; Chandra, G. Evaluation of mosquito larvicidal activities of seed coat extract of Cassia sophera L. J. Mosq. Res., 2013, 3(11), 76-81.
[http://dx.doi.org/10.5376/jmr.2013.03.0011]
[22]
Maji, M.D.; Chattopadhyay, S.; Kumar, P.; Saratchandra, B. In vitro screening of some plant extracts against fungal pathogens of mulberry (Morus sp.). Arch. Phytopathol. Pflanzenschutz, 2005, 38(3), 157-164.
[http://dx.doi.org/10.1080/03235400500094290]
[23]
Dave, S.; Jain, N.K.; Modi, H.A. Ethnomedicinal plants having anticancer potential: A review. European J. Biotechnol. Biosci., 2016, 4(12), 45-52.
[24]
Oyaizu, M. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosa-mine. Jpn. J. Nutr., 1986, 44(6), 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[25]
Nadakarni, K.M. Indian material medica. Ind. Med. Gaz., 1927, 62(9), 536.
[26]
Tripathi, K.D. Essentials of Medical Pharmacology, 7th ed; JP Medical Ltd.: London, 2013, pp. 258-259.
[27]
Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 2008, 51(2), 216-226.
[http://dx.doi.org/10.1007/s00125-007-0886-7] [PMID: 18087688]
[28]
Frayling, T.M.; Evans, J.C.; Bulman, M.P. Beta-cell genes and diabetes: Molecular and clinical characterization of mutations in transcrip-tion factors. Diabetes, 2001, 50(90001), S94-S100.
[http://dx.doi.org/10.2337/diabetes.50.2007.S94]
[29]
Katzung, B.G. Basic and Clinical Pharmacology; McGraw Hill: New York, 1993, pp. 586-598.
[30]
Larner, J.; Haynes, C. Insulin and hypoglycemic drugs, glucagon. Pharmacol. Basis Therapeut., 1990, 5, 1490-1516.
[31]
Vasant More, S.; Kim, I.S.; Choi, D.K. Recent update on the role of Chinese material medica and formulations in diabetic retinopathy. Molecules, 2017, 22(1), 76.
[http://dx.doi.org/10.3390/molecules22010076] [PMID: 28054988]
[32]
Sharma, S.B.; Nasir, A.; Prabhu, K.M.; Murthy, P.S. Antihyperglycemic effect of the fruit-pulp of Eugenia jambolana in experimental dia-betes mellitus. J. Ethnopharmacol., 2006, 104(3), 367-373.
[http://dx.doi.org/10.1016/j.jep.2005.10.033] [PMID: 16386863]
[33]
Choudhury, H.; Pandey, M.; Hua, C.K.; Mun, C.S.; Jing, J.K.; Kong, L.; Ern, L.Y.; Ashraf, N.A.; Kit, S.W.; Yee, T.S.; Pichika, M.R.; Go-rain, B.; Kesharwani, P. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Complement. Med., 2017, 8(3), 361-376.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.012] [PMID: 29992107]
[34]
Edwards, C.A.; Blackburn, N.A.; Craigen, L.; Davison, P.; Tomlin, J.; Sugden, K.; Johnson, I.T.; Read, N.W. Viscosity of food gums de-termined in vitro related to their hypoglycemic actions. Am. J. Clin. Nutr., 1987, 46(1), 7277.
[http://dx.doi.org/10.1093/ajcn/46.1.72]
[35]
Wickramaratne, M.N.; Punchihewa, J.C.; Wickramaratne, D.B. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement. Altern. Med., 2016, 16(1), 466.
[http://dx.doi.org/10.1186/s12906-016-1452-y] [PMID: 27846876]
[36]
Banerjee, A.; Maji, B.; Mukherjee, S.; Chaudhuri, K.; Seal, T. In vitro antidiabetic and anti-oxidant activities of methanol extract of Tinospora sinensis J. Appl. Biol. Biotechnol, 2017, 5(03), 061-067.
[37]
Shai, L.J.; Masoko, P.; Mokgotho, M.P.; Magano, S.R.; Mogale, M.A.; Boaduo, N.; Eloff, J.N. Yeast alpha glucosidase inhibitory and anti-oxidant activities of six medicinal plants collected in Phalaborwa. S. Afr. J. Bot., 2010, 76(3), 465-470.
[http://dx.doi.org/10.1016/j.sajb.2010.03.002]
[38]
Nandhini, S.; Geethalakshmi, S.; Selvam, S.; Radha, R.; Suresh, A.; Muthusamy, P. Preliminary phytochemical and anti-diabetic activity of Cassia sophera Linn. J. Pharmacogn. Phytochem., 2016, 5(1), 87-91.
[39]
Sharma, P.; Singh, R.; Bhardwaj, P. Antidiabetic activity of Cassia sophera in STZ induced diabetic rats and its effect on insulin secretion from isolated pancreatic islets. Int. J. Phytomed., 2013, 5, 314-321.
[40]
Sowmia, C.; Megha, P. Effect of Cassia sophera (Linn.) on blood glucose and lipid profile of serum and tissues in streptozotocin-induced diabetic rats. J. Pharm. Res., 2011, 4(11), 3922-3924.
[41]
Hussain, S.N.; Uzair, M.; Qaisar, M.N.; Abbas, K.; Ashfaq, K.; Chaudhari, B.A. Assessment of anti-diabetic activity of Cassia sophera (Caesalpiniaceae). Trop. J. Pharm. Res., 2018, 17(3), 443-449.
[http://dx.doi.org/10.4314/tjpr.v17i3.9]
[42]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[43]
Giamarellou, H. Multidrug-resistant Gram-negative bacteria: How to treat and for how long. Int. J. Antimicrob. Agents, 2010, 36(Suppl. 2), S50-S54.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.11.014 ] [PMID: 21129924]
[44]
Olusola, A.; Olajide, O.O.; Afolayan, M.; Khan, I.Z. Preliminary phytochemical and antimicrobial screening of the leaf extract of Cassia singueana Del. Afr. J. Pure Appl. Chem., 2011, 5(4), 65-68.
[45]
Zhao, J.; Shan, T.; Mou, Y.; Zhou, L. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem., 2011, 11(2), 159-168.
[http://dx.doi.org/10.2174/138955711794519492] [PMID: 21222580]
[46]
Morsy, N.M. Phytochemical analysis of biologically active constituents of medicinal plants. Main Group Chem., 2014, 13(1), 7-21.
[http://dx.doi.org/10.3233/MGC-130117]
[47]
Hood, J.R.; Wilkinson, J.M.; Cavanagh, H.M. Evaluation of common antibacterial screening methods utilized in essential oil. J. Essent. Oil Res., 2003, 15(6), 428-433.
[http://dx.doi.org/10.1080/10412905.2003.9698631]
[48]
CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. In: CLSI document M07-A9, 9th ed.; CLSI, Clinical and Laboratory Standards Institute: 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087; , 2012.
[49]
CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts In: NCCLS document M27-A2, 2nd ed CLSI 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087- 1898; , 2002.
[50]
CLSI. Methods for Antimicrobial Dilution and Disk Susceptibility Tests of Infrequently isolated or Fastidious Bacteria. In: CLSI document M45-A2, 2nd edition; CLSI, Clinical and Laboratory Standards Institute: 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087; , 2010.
[51]
Pfaller, M.A.; Sheehan, D.J.; Rex, J.H. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin. Microbiol. Rev., 2004, 17(2), 268-280.
[http://dx.doi.org/10.1128/CMR.17.2.268-280.2004 ] [PMID: 15084501]
[52]
CLSI. Methods for Determining Bacterial Activity of Antimicrobial Agents. In: CLSI document M26-A, 9th ed.; Clinical and Laboratory Standards Institute: 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087; , 1998.
[53]
CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard In: CLSI document M02-A11, 7th ed.; Clinical and Laboratory Standards Institute: 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA; , 2012.
[54]
CLSI. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts. In: CLSI document M44-A CLSI; 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA,; , 2004.
[55]
CLSI. Method for Antifungal Disk Diffusion Susceptibility Testing of Non-dermatophyte Filamentous Fungi. In: CLSI document M51- A; CLSI, Clinical and Laboratory Standards Institute: 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA; , 2010.
[56]
CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing Filamentous Fungi. In: CLSI document M38-A2, 2nd ed.; 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA; , 2008.
[57]
Jahan, N.; Khatoon, R.; Ahmad, S. Evaluation of antibacterial potential of medicinal plant Cassia sophera against organisms causing uri-nary tract infection. Int. J. Pure App. Biosci., 2015, 3(2), 450-455.
[58]
Rahman, M.M.; Sultana, T.; Ali, M.Y.; Rahman, M.M.; Al-Reza, S.M.; Rahman, A. Chemical composition and antibacterial activity of the essential oil and various extracts from Cassia sophera L. against Bacillus sp. from soil. Arab. J. Chem., 2017, 10, S2132-S2137.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.045]
[59]
Rao, S.; Vijayadeepthi, T.; Zoheb, M.; Suresh, C. Evaluation of antioxidant and antimicrobial potential of two edible Cassia species to explore their Neutraceutical values. J. Pharm. Res., 2012, 5(3), 1650-1655.
[60]
Parul, J.; Rajeev, N. Antibacterial activity of a new flavone glycoside from the seeds of Cassia sophera Linn. Int. Res. J. Pharm., 2012, 3(4), 369-371.
[61]
Deshwal, V.K.; Siddqui, M.M. Screening and evaluation of Anti-microbial activity in Tylophora indica and Cassia sophera. Biochem. Cell. Arch., 2011, 11(2), 461-464.
[62]
Singh, R.; Hussain, S.; Verma, R.; Sharma, P. Anti-mycobacterial screening of five Indian medicinal plants and partial purification of ac-tive extracts of Cassia sophera and Urtica dioica. Asian Pac. J. Trop. Med., 2013, 6(5), 366-371.
[http://dx.doi.org/10.1016/S1995-7645(13)60040-1 ] [PMID: 23608375]
[63]
W.H.O.. Preventing chronic diseases: A vital investment In: WHO Press; WHO Global report: Geneva,; , 2005.
[64]
Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med., 2006, 3(11), e442.
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[65]
Macdonald, J.S. Toxicity of 5-fluorouracil. Oncology (Williston Park), 1999, 13(7)(Suppl. 3), 33-34.
[PMID: 10442356]
[66]
Rexroth, G.; Scotland, V. Cardiac toxicity of 5-fluorouracil. Med. Klin. (Munich), 1994, 89(12), 680-688.
[PMID: 7870005]
[67]
Avilés, A.; Arévila, N.; Díaz Maqueo, J.C.; Gómez, T.; García, R.; Nambo, M.J. Late cardiac toxicity of doxorubicin, epirubicin, and mito-xantrone therapy for Hodgkin’s disease in adults. Leuk. Lymphoma, 1993, 11(3-4), 275-279.
[http://dx.doi.org/10.3109/10428199309087004] [PMID: 8260898]
[68]
Manil, L.; Couvreur, P.; Mahieu, P. Acute renal toxicity of doxorubicin (adriamycin)-loaded cyanoacrylate nanoparticles. Pharm. Res., 1995, 12(1), 85-87.
[http://dx.doi.org/10.1023/A:1016290704772] [PMID: 7724492]
[69]
Gibaud, S.; Andreux, J.P.; Weingarten, C.; Renard, M.; Couvreur, P. Increased bone marrow toxicity of doxorubicin bound to nanoparti-cles. Eur. J. Cancer, 1994, 30(6), 820-826.
[http://dx.doi.org/10.1016/0959-8049(94)90299-2] [PMID: 7917543]
[70]
Parvinen, L.M.; Kilkku, P.; Mäkinen, E.; Liukko, P.; Grönroos, M. Factors affecting the pulmonary toxicity of bleomycin. Acta Radiol. Oncol., 1983, 22(6), 417-421.
[http://dx.doi.org/10.3109/02841868309135964] [PMID: 6203333]
[71]
Karam, H.; Hurbain-Kosmath, I.; Housset, B. Direct toxic effect of bleomycin on alveolar type 2 cells. Toxicol. Lett., 1995, 76(2), 155-163.
[http://dx.doi.org/10.1016/0378-4274(94)03207-N] [PMID: 7536963]
[72]
Jain, R.; Jain, S.K. Screening of in vitro cytotoxic activity of some medicinal plants used traditionally to treat cancer in Chattisgharh state, India. Asian Pac. J. Trop. Biomed., 2011, 1(2), S147-S150.
[http://dx.doi.org/10.1016/S2221-1691(11)60144-5]
[73]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[74]
Russo, A.; Piovano, M.; Lombardo, L.; Vanella, L.; Cardile, V.; Garbarino, J. Pannarin inhibits cell growth and induces cell death in hu-man prostate carcinoma DU-145 cells. Anticancer Drugs, 2006, 17(10), 1163-1169.
[http://dx.doi.org/10.1097/01.cad.0000236310.66080.ed ] [PMID: 17075315]
[75]
Unnikrishnan, M.C.; Kuttan, R. Cytotoxicity of extracts of spices to cultured cells. Nutr. Cancer, 1988, 11(4), 251-257.
[http://dx.doi.org/10.1080/01635588809513995] [PMID: 3217263]
[76]
Economou, M.A.; Andersson, S.; Vasilcanu, D.; All-Ericsson, C.; Menu, E.; Girnita, A.; Girnita, L.; Axelson, M.; Seregard, S.; Larsson, O. Oral picropodophyllin (PPP) is well tolerated in vivo and inhibits IGF-1R expression and growth of uveal melanoma.. Acta Ophthalmol., 2008.86 Thesis 4(6), 35-41.
[http://dx.doi.org/10.1111/j.1755-3768.2008.01184.x] [PMID: 19032680]
[77]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New color-imetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[78]
Brahmachari, G.; Mondal, A.; Mondal, S.; Modolo, L.V.; Fatima, A.; Ruiz, A.; Carvalhod, J.E. 1,6-Dihydroxy-3-methyl-9,10-anthraquinone: An anti-cancerous natural pigment from Cassia Sophera Linn. (Caesalpiniaceae). Indian J. Chem., 2017, 56B, 1251-1255.
[79]
Verma, S.; Gupta, M.; Popli, H.; Aggarwal, G. diabetes mellitus treatment using herbal drugs. Int. J. Phytomed., 2018, 10(1), 1-10.
[http://dx.doi.org/10.5138/09750185.2181]
[80]
Kedar, P.; Chakrabarti, C.H. Effects of bittergourd (Momordica charantia) seed & glibenclamide in streptozotocin induced diabetes melli-tus. Indian J. Exp. Biol., 1982, 20(3), 232-235.
[PMID: 6811427]
[81]
Lanjhiyana, S.; Garabadu, D.; Ahirwar, D.; Bigoniya, P.; Rana, A.C.; Chandra, P.K.; Lanjhiyana, K.S.; Karuppaih, M. Antidiabetic activity of methanolic extract of stem bark of Elaeodendron glaucum Pers. in Stzized rat model. Adv. Appl. Sci. Res., 2011, 2(1), 47-62.
[82]
Murali, B.; Upadhyaya, U.M.; Goyal, R.K. Effect of chronic treatment with Enicostemma littorale in non-insulin-dependent diabetic (NIDDM) rats. J. Ethnopharmacol., 2002, 81(2), 199-204.
[http://dx.doi.org/10.1016/S0378-8741(02)00077-6] [PMID: 12065151]
[83]
Patlak, M. New weapons to combat an ancient disease: Treating diabetes. FASEB J., 2002, 16(14), 1853.
[http://dx.doi.org/10.1096/fj.02-0974bkt] [PMID: 12468446]
[84]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[85]
Schultz, J. C. Tannin-insect interactions. Chemistry and significance of condensed tannins,, 1989, 553, 417-433.
[86]
Stern, J.L.; Hagerman, A.E.; Steinberg, P.D.; Mason, P.K. Phlorotannin-protein interactions. J. Chem. Ecol., 1996, 22(10), 1877-1899.
[http://dx.doi.org/10.1007/BF02028510] [PMID: 24227114]
[87]
Scalbert, A. Antimicrobial properties of tannins. Phytochemistry, 1991, 30(12), 3875-3883.
[http://dx.doi.org/10.1016/0031-9422(91)83426-L]
[88]
Reygaert, W.C. The antimicrobial possibilities of green tea. Front. Microbiol., 2014, 5, 434.
[http://dx.doi.org/10.3389/fmicb.2014.00434] [PMID: 25191312]
[89]
Fathima, A.; Rao, J.R. Selective toxicity of Catechin-a natural flavonoid towards bacteria. Appl. Microbiol. Biotechnol., 2016, 100(14), 6395-6402.
[http://dx.doi.org/10.1007/s00253-016-7492-x] [PMID: 27052380]
[90]
Zhao, W-H.; Hu, Z-Q.; Okubo, S.; Hara, Y.; Shimamura, T. Mechanism of synergy between Epigallocatechin gallate and beta-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2001, 45(6), 1737-1742.
[http://dx.doi.org/10.1128/AAC.45.6.1737-1742.2001 ] [PMID: 11353619]
[91]
Ahmed, S.I.; Hayat, M.Q.; Tahir, M.; Mansoor, Q.; Ismail, M.; Keck, K.; Bates, R.B. Pharmacologically active flavonoids from the anti-cancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement. Altern. Med., 2016, 16(1), 460.
[http://dx.doi.org/10.1186/s12906-016-1443-z] [PMID: 27835979]
[92]
Ollila, F.; Halling, K.; Vuorela, P.; Vuorela, H.; Slotte, J.P. Characterization of flavonoid-biomembrane interactions. Arch. Biochem. Biophys., 2002, 399(1), 103-108.
[http://dx.doi.org/10.1006/abbi.2001.2759] [PMID: 11883909]
[93]
Sanver, D.; Murray, B.S.; Sadeghpour, A.; Rappolt, M.; Nelson, A.L. Experimental modeling of flavonoid-biomembrane interactions. Langmuir, 2016, 32(49), 13234-13243.
[http://dx.doi.org/10.1021/acs.langmuir.6b02219] [PMID: 27951697]
[94]
Ouyang, J.; Sun, F.; Feng, W.; Sun, Y.; Qiu, X.; Xiong, L.; Liu, Y.; Chen, Y. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J. Appl. Microbiol., 2016, 120(4), 966-974.
[http://dx.doi.org/10.1111/jam.13073] [PMID: 26808465]
[95]
Ohemeng, K.A.; Schwender, C.F.; Fu, K.P.; Barrett, J.F. DNA gyrase inhibitory and antibacterial activity of some flavones. Bioorg. Med. Chem. Lett., 1993, 3(2), 225-2.
[http://dx.doi.org/10.1016/S0960-894X(01)80881-7]
[96]
Plaper, A.; Golob, M.; Hafner, I.; Oblak, M.; Solmajer, T.; Jerala, R. Characterization of quercetin binding site on DNA gyrase. Biochem. Biophys. Res. Commun., 2003, 306(2), 530-536.
[http://dx.doi.org/10.1016/S0006-291X(03)01006-4 ] [PMID: 12804597]
[97]
García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res., 2009, 58(9), 537-552.
[http://dx.doi.org/10.1007/s00011-009-0037-3] [PMID: 19381780]
[98]
Vidya Priyadarsini, R.; Senthil Murugan, R.; Maitreyi, S.; Ramalingam, K.; Karunagaran, D.; Nagini, S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur. J. Pharmacol., 2010, 649(1-3), 84-91.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.020] [PMID: 20858478]
[99]
Brueggemeier, R.W.; Gu, X.; Mobley, J.A.; Joomprabutra, S.; Bhat, A.S.; Whetstone, J.L. Effects of phytoestrogens and synthetic combina-torial libraries on aromatase, estrogen biosynthesis, and metabolism. Ann. N. Y. Acad. Sci., 2001, 948(1), 51-66.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03986.x ] [PMID: 11795395]
[100]
Kang, Z.C.; Tsai, S.J.; Lee, H. Quercetin inhibits benzo[a]pyrene-induced DNA adducts in human Hep G2 cells by altering cytochrome P-450 1A1 gene expression. Nutr. Cancer, 1999, 35(2), 175-179.
[http://dx.doi.org/10.1207/S15327914NC352_12] [PMID: 10693172]
[101]
Moon, Y.J.; Wang, X.; Morris, M.E. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro, 2006, 20(2), 187-210.
[http://dx.doi.org/10.1016/j.tiv.2005.06.048] [PMID: 16289744]
[102]
Zhou, J.R.; Mukherjee, P.; Gugger, E.T.; Tanaka, T.; Blackburn, G.L.; Clinton, S.K. Inhibition of murine bladder tumorigenesis by soy isoflavones via alterations in the cell cycle, apoptosis, and angiogenesis. Cancer Res., 1998, 58(22), 5231-5238.
[PMID: 9823337]
[103]
Kioka, N.; Hosokawa, N.; Komano, T.; Hirayoshi, K.; Nagata, K.; Ueda, K. Quercetin, a bioflavonoid, inhibits the increase of human mul-tidrug resistance gene (MDR1) expression caused by arsenite. FEBS Lett., 1992, 301(3), 307-309.
[http://dx.doi.org/10.1016/0014-5793(92)80263-G] [PMID: 1349537]
[104]
Shapiro, A.B.; Ling, V. Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochem. Pharmacol., 1997, 53(4), 587-596.
[http://dx.doi.org/10.1016/S0006-2952(96)00826-X] [PMID: 9105411]
[105]
Sandhar, H.K.; Kumar, B.; Prasher, S.; Tiwari, P.; Salhan, M.; Sharma, P. A review of phytochemistry and pharmacology of flavonoids. Int Pharm Sci., 2011, 1(1), 25-41.
[106]
Johnson, I.S.; Armstrong, J.G.; Gorman, M.; Burnett, J.P., Jr The vinca alkaloids: A new class of oncolytic agents. Cancer Res., 1963, 23, 1390-1427.
[PMID: 14070392]
[107]
Rai, K.R.; Peterson, B.L.; Appelbaum, F.R.; Kolitz, J.; Elias, L.; Shepherd, L.; Hines, J.; Threatte, G.A.; Larson, R.A.; Cheson, B.D.; Schiffer, C.A. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N. Engl. J. Med., 2000, 343(24), 1750-1757.
[http://dx.doi.org/10.1056/NEJM200012143432402 ] [PMID: 11114313]
[108]
Logothetis, C.J.; Efstathiou, E.; Manuguid, F.; Kirkpatrick, P. Abiraterone acetate. Nat. Rev. Drug Discov., 2011, 10(8), 573-574.
[http://dx.doi.org/10.1038/nrd3516] [PMID: 21804589]
[109]
Gupta, R.; Bajpai, K.G.; Johri, S.; Saxenaa, M. An overview of Indian novel traditional medicinal plants with antidiabetic potentials. Com-plement Altern. Med., 2008, 5, 1-17.
[110]
Sievenpiper, J.L.; Arnason, J.T.; Leiter, L.A.; Vuksan, V. Null and opposing effects of Asian ginseng (Panax ginseng C.A. Meyer) on acute glycemia: Results of two acute dose escalation studies. J. Am. Coll. Nutr., 2003, 22(6), 524-532.
[http://dx.doi.org/10.1080/07315724.2003.10719331 ] [PMID: 14684758]
[111]
Wannes, W.A.; Marzouk, B. Research progress of Tunisian medicinal plants used for acute diabetes. J. Acute Dis., 2016, 5(5), 357-363.
[http://dx.doi.org/10.1016/j.joad.2016.08.001]
[112]
Prabhakar, P.K.; Doble, M. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin. J. Integr. Med., 2011, 17(8), 563-574.
[http://dx.doi.org/10.1007/s11655-011-0810-3] [PMID: 21826590]
[113]
Galor, S.W.; Benzie, I.F. Herbal medicine: An introduction to its history, usage, regulation, current trend sand research needs. In: Herbal Medicine. Biomolecular and Clinical Aspects, 2nd ed; , 2011.
[114]
Kardos, N.; Demain, A.L. Penicillin: The medicine with the greatest impact on therapeutic outcomes. Appl. Microbiol. Biotechnol., 2011, 92(4), 677-687.
[http://dx.doi.org/10.1007/s00253-011-3587-6] [PMID: 21964640]
[115]
Chambers, H.F.; Jawetz, E. Sulfonamides, Trimethoprim, and Quinolones. Basic Clin. Pharmacol, 1998, 761-763.
[116]
[117]
Cotrimoxazole, The American Society of Health-System Pharmacists. Archived from the original on 2015-09-06. Retrieved Aug 1, 2015.
[118]
Kazemipoor, M.; Radzi, C.W.; Cordell, G.A.; Yaze, I. Safety, efficacy and metabolism of traditional medicinal plants in the management of obesity: A review. Int. J. Chem. Eng. Appl., 2012, 3(4), 288-292.
[http://dx.doi.org/10.7763/IJCEA.2012.V3.201]
[119]
Rafieian-Kopaei, M. Medicinal plants for renal injury prevention J. Renal Inj. Prev., 2013, 2(2), 63-65.
[PMID: 25340130]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy