Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Tangeretin: A Biologically Potential Citrus Flavone

Author(s): Krishn Kumar Agrawal and Yogesh Murti*

Volume 8, Issue 4, 2022

Published on: 26 April, 2022

Article ID: e040322201698 Pages: 11

DOI: 10.2174/2215083808666220304100702

Price: $65

Abstract

Background: Flavonoids are plant-derived chemicals found naturally in various parts of plants. They are an important component in a broad range of nutraceuticals because of their antimutagenic, antibacterial, anti-inflammatory, and antioxidative properties. Tangeretin, an example of the flavone class of flavonoid compounds, is found in tangerine and other citrus fruit peels. It is a natural constituent with vast pharmacological activities and is extensively found in numerous fruits or fruit juices.

Objective: The goal of the study was to gather information on tangeretin as well as its pharmacological characteristics.

Methods: Electronic databases like Google Scholar, Scopus, Science Direct, PubMed, and Web of Science were thoroughly searched for tangeretin, properties, and uses.

Results: A total of 80 articles were reviewed in the present study covering current trends of research and development on tangeretin. Tangeretin's chemistry along with its source, extraction methods, and pharmaceutical importance, are exhaustively compiled here.

Conclusion: On the basis of the literature survey, it can be concluded that tangeretin has a great potential to become an active drug molecule in various ailments.

Keywords: Tangeretin, flavonoids, flavones, pharmacological properties, anti-inflammatory, antiviral, anticancer.

Graphical Abstract

[1]
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016; 5(e47): e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[2]
Castañeda-Ovando A, Pacheco-Hernández M de L, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocya-nins: A review. Food Chem 2009; 113(4): 859-71.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.001]
[3]
Lee YK, Yuk DY, Lee JW, et al. (-)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res 2009; 1250: 164-74.
[http://dx.doi.org/10.1016/j.brainres.2008.10.012] [PMID: 18992719]
[4]
Metodiewa D, Kochman A, Karolczak S. Evidence for antiradical and antioxidant properties of four biologically active N,N-diethylaminoethyl ethers of flavanone oximes: a comparison with natural polyphenolic flavonoid (rutin) action. Biochem Mol Biol Int 1997; 41(5): 1067-75.
[PMID: 9137839]
[5]
Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther 2002; 96(2-3): 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[6]
Mathesius U. Flavonoid functions in plants and their interactions with other organisms. Plants 2018; 7(2): E30.
[http://dx.doi.org/10.3390/plants7020030] [PMID: 29614017]
[7]
Dixon RA, Pasinetti GM. Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiol 2010; 154(2): 453-7.
[http://dx.doi.org/10.1104/pp.110.161430] [PMID: 20921162]
[8]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013; 2013: 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[9]
Dixon RA, Ferreira D. Genistein. Phytochemistry 2002; 60(3): 205-11.
[http://dx.doi.org/10.1016/S0031-9422(02)00116-4] [PMID: 12031439]
[10]
Hertog MGL, Hollman PCH, van de Putte B. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J Agric Food Chem 1993; 41(8): 1242-6.
[http://dx.doi.org/10.1021/jf00032a015]
[11]
Murti Y, Sharma S. Flavonoid: A pharmacologically significant scaffold. World J Pharm Pharm Sci 2017; 6(5): 488-504.
[http://dx.doi.org/10.20959/wjpps20175-9143]
[12]
Murti Y, Semwal BC, Goyal A, Mishra P. Naringenin scaffold as a template for drug designing. Curr Tradit Med 2019; 5.
[13]
Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 2001; 49(11): 5165-70.
[http://dx.doi.org/10.1021/jf010697n] [PMID: 11714298]
[14]
Santos EL, Maia BHLNS, Ferriani AP, Teixeira SD. Flavonoids: Classification, biosynthesis and chemical ecology. In: Flavonoids - From Biosynthesis to Human Health. InTech 2017.
[15]
Brodowska KM. Natural flavonoids: Classification, potential role, and application of flavonoid analogue. 2017.
[http://dx.doi.org/10.5281/zenodo.545778]
[16]
Ku YS, Ng MS, Cheng SS, et al. Understanding the composition, biosynthesis, accumulation and transport of flavonoids in crops for the promotion of crops as healthy sources of flavonoids for human consumption. Nutrients 2020; 12(6): 1717.
[http://dx.doi.org/10.3390/nu12061717] [PMID: 32521660]
[17]
Yonekura-Sakakibara K, Higashi Y, Nakabayashi R. The origin and evolution of plant flavonoid metabolism. Front Plant Sci 2019; 10: 943.
[http://dx.doi.org/10.3389/fpls.2019.00943] [PMID: 31428108]
[18]
Tapas AR, Sakarkar DM, Kakde RB. Flavonoids as nutraceuticals: A review. Trop J Pharm Res 2008; 7(3): 1089-99.
[http://dx.doi.org/10.4314/tjpr.v7i3.14693]
[19]
Lotha R, Sivasubramanian A. Flavonoidsnutraceuticals in prevention and treatment of cancer: A review. Asian J Pharm Clin Res 2018; 11(1): 42.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i1.23410]
[20]
Hui C, Qi X, Qianyong Z, Xiaoli P, Jundong Z, Mantian M. Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One 2013; 8(1): e54318.
[http://dx.doi.org/10.1371/journal.pone.0054318] [PMID: 23349849]
[21]
Karak P. Biological activities of flavonoids: An overview. Int J Pharm Sci Res 2019; 10(4): 1567-74.
[22]
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines (Basel) 2018; 5(3): E93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[23]
Murti Y, Mishra P. Flavanone: A versatile heterocyclic nucleus. Int J Chemtech Res 2014; 6(5): 3160-78.
[24]
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv Nutr 2017; 8(3): 423-35.
[http://dx.doi.org/10.3945/an.116.012948] [PMID: 28507008]
[25]
Zuiter AS. Proanthocyanidin: Chemistry and biology: From phenolic compounds to proanthocyanidins, reference module in chemistry. Mol Sci Chem Eng 2014; pp. 1-29.
[26]
Vanhoecke BW, Delporte F, Van Braeckel E, et al. A safety study of oral tangeretin and xanthohumol administration to laboratory mice. In Vivo 2005; 19(1): 103-7.
[PMID: 15796161]
[27]
Li CP, Wang LL, Jin ZS, Tang L. Study on the extraction technique of poly-methoxy flavonoids from citrus peels by using response sur-face methodology. Adv Mat Res 2012; 561: 544-9.
[28]
Lee YH, Charles AL, Kung HF, Ho CT, Huang TC. Extraction of nobiletin and TGN from Citrus depressaHayata by supercritical carbon dioxide with ethanol as modifier. Ind Crops Prod 2010; 31(1): 59-64.
[http://dx.doi.org/10.1016/j.indcrop.2009.09.003]
[29]
Machmudah S, Sulaswatty A, Sasaki M, Goto M, Hirose T. Supercritical CO2 extraction of nutmeg oil: Experiments and modeling. J Supercrit Fluids 2006; 39(1): 30-9.
[http://dx.doi.org/10.1016/j.supflu.2006.01.007]
[30]
Mitani R, Tashiro H, Arita E, Ono K, Haraguchi M, Tokunaga S, et al. Extraction of nobiletin and TGN with antioxidant activity from peels of Citrus poonensis using liquid carbon dioxide and ethanol entrainer. Sep Sci Technol 2021; 56(2): 290-300.
[http://dx.doi.org/10.1080/01496395.2020.1713813]
[31]
Mizuno H, Yoshikawa H, Usuki T. Extraction of nobiletin and TGN from peels of shekwasha and ponkan using [C2mim][(MeO)(H)PO2] and centrifugation. Nat Prod Commun 2019; 14(5): 1934578-84581.
[http://dx.doi.org/10.1177/1934578X19845816]
[32]
Tsukayama M, Ichikawa R, Yamamoto K, Sasaki T, Kawamura Y. Microwave-assisted rapid extraction of polymethoxy flavones from dried peels of citrus Yuko hort. ex tanaka. Nippon Shokuhin Kagaku Kogaku Kaishi 2009; 56(6): 359-62.
[http://dx.doi.org/10.3136/nskkk.56.359]
[33]
Kawamoto Y, Suidou Y, Suetsugu T, et al. Functional ingredients extraction from citrus Genkou by supercritical carbon dioxide. Asian J Appl Sci 2016; 04(04): 833-8.
[34]
Capuzzo A, Maffei ME, Occhipinti A. Supercritical fluid extraction of plant flavors and fragrances. Molecules 2013; 18(6): 7194-238.
[http://dx.doi.org/10.3390/molecules18067194] [PMID: 23783457]
[35]
Wang D, Wang J, Huang X, Tu Y, Ni K. Identification of polymethoxylated flavones from green tangerine peel (Pericarpium Citri Reticula-tae Viride) by chromatographic and spectroscopic techniques. J Pharm Biomed Anal 2007; 44(1): 63-9.
[http://dx.doi.org/10.1016/j.jpba.2007.01.048] [PMID: 17367982]
[36]
Benavente-García O, Castillo J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 2008; 56(15): 6185-205.
[http://dx.doi.org/10.1021/jf8006568] [PMID: 18593176]
[37]
Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA. The effects of polyphenols and other bioactives on human health. Food Funct 2019; 10(2): 514-28.
[http://dx.doi.org/10.1039/C8FO01997E] [PMID: 30746536]
[38]
Xu S, Kong YG, Jiao WE, et al. Tangeretin promotes regulatory T cell differentiation by inhibiting Notch1/Jagged1 signaling in allergic rhinitis. Int Immunopharmacol 2019; 72: 402-12.
[http://dx.doi.org/10.1016/j.intimp.2019.04.039] [PMID: 31030096]
[39]
Buckner JH. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 2010; 10(12): 849-59.
[http://dx.doi.org/10.1038/nri2889] [PMID: 21107346]
[40]
Li L-M, Liu W. Effect of TGN on ovalbumin-provoked allergic respiratory asthma in Swiss albino mice. Trop J Pharm Res 2018; 17(2): 253.
[http://dx.doi.org/10.4314/tjpr.v17i2.9]
[41]
Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, et al. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and pre-vent graft-versus-host disease development. J Hematol Oncol 2016; 9(1): 113.
[http://dx.doi.org/10.1186/s13045-016-0343-5] [PMID: 27765055]
[42]
Liu LL, Li F-H, Zhang Y, Zhang XF, Yang J. Tangeretin has anti-asthmatic effects via regulating PI3K and Notch signaling and modulating Th1/Th2/Th17 cytokine balance in neonatal asthmatic mice. Braz J Med Biol Res 2017; 50(8): e5991.
[http://dx.doi.org/10.1590/1414-431x20175991] [PMID: 28746467]
[43]
Ito T, Connett JM, Kunkel SL, Matsukawa A. Notch system in the linkage of innate and adaptive immunity. J Leukoc Biol 2012; 92(1): 59-65.
[http://dx.doi.org/10.1189/jlb.1011529] [PMID: 22459946]
[44]
Periyasamy K, Baskaran K, Ilakkia A, Vanitha K, Selvaraj S, Sakthisekaran D. Antitumor efficacy of tangeretin by targeting the oxidative stress mediated on 7,12-dimethylbenz(a) anthracene-induced proliferative breast cancer in Sprague-Dawley rats. Cancer Chemother Pharmacol 2015; 75(2): 263-72.
[http://dx.doi.org/10.1007/s00280-014-2629-z] [PMID: 25431347]
[45]
Hirano T, Abe K, Gotoh M, Oka K. Citrus flavone tangeretin inhibits leukaemic HL-60 cell growth partially through induction of apoptosis with less cytotoxicity on normal lymphocytes. Br J Cancer 1995; 72(6): 1380-8.
[http://dx.doi.org/10.1038/bjc.1995.518] [PMID: 8519648]
[46]
Hotz MA, Del Bino G, Lassota P, Traganos F, Darzynkiewicz Z. Cytostatic and cytotoxic effects of fostriecin on human promyelocytic HL-60 and lymphocytic MOLT-4 leukemic cells. Cancer Res 1992; 52(6): 1530-5.
[PMID: 1540962]
[47]
Lakshmi A, Subramanian SP. Tangeretin ameliorates oxidative stress in the renal tissues of rats with experimental breast cancer induced by 7,12-dimethylbenz[a]anthracene. Toxicol Lett 2014; 229(2): 333-48.
[http://dx.doi.org/10.1016/j.toxlet.2014.06.845] [PMID: 24995432]
[48]
Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 2011; 85(4): 241-72.
[http://dx.doi.org/10.1007/s00204-011-0674-5] [PMID: 21365312]
[49]
Lakshmi A, Subramanian S. Chemotherapeutic effect of tangeretin, a polymethoxylated flavone studied in 7, 12-dimethylbenz(a) anthra-cene induced mammary carcinoma in experimental rats. Biochimie 2014; 99: 96-109.
[http://dx.doi.org/10.1016/j.biochi.2013.11.017] [PMID: 24299963]
[50]
Arivazhagan L. SorimuthuPillai S. TGN, a citrus pentamethoxyflavone, exerts cytostatic effect via p53/p21 up-regulation and suppresses metastasis in 7,12-dimethylbenz(α)anthracene-induced rat mammary carcinoma. J Nutr Biochem 2014; 25(11): 1140-53.
[http://dx.doi.org/10.1016/j.jnutbio.2014.06.007] [PMID: 25151216]
[51]
Pan MH, Chen WJ, Lin-Shiau SY, Ho CT, Lin JK. Tangeretin induces cell-cycle G1 arrest through inhibiting cyclin-dependent kinases 2 and 4 activities as well as elevating Cdk inhibitors p21 and p27 in human colorectal carcinoma cells. Carcinogenesis 2002; 23(10): 1677-84.
[http://dx.doi.org/10.1093/carcin/23.10.1677] [PMID: 12376477]
[52]
Arafa SA, Zhu Q, Barakat BM, et al. Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phos-phoinositide 3-kinase/Akt signaling pathway. Cancer Res 2009; 69(23): 8910-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1543] [PMID: 19903849]
[53]
Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene 2003; 22(56): 8983-98.
[http://dx.doi.org/10.1038/sj.onc.1207115] [PMID: 14663477]
[54]
Dong Y, Cao A, Shi J, et al. Tangeretin, a citrus polymethoxyflavonoid, induces apoptosis of human gastric cancer AGS cells through extrinsic and intrinsic signaling pathways. Oncol Rep 2014; 31(4): 1788-94.
[http://dx.doi.org/10.3892/or.2014.3034] [PMID: 24573532]
[55]
Depypere HT, Bracke ME, Boterberg T, et al. Inhibition of tamoxifen’s therapeutic benefit by tangeretin in mammary cancer. Eur J Cancer 2000; 36(36)(Suppl. 4): S73.
[http://dx.doi.org/10.1016/S0959-8049(00)00234-3] [PMID: 11056327]
[56]
Guo J, Chen J, Ren W, et al. Citrus flavone tangeretin is a potential insulin sensitizer targeting hepatocytes through suppressing MEK-ERK1/2 pathway. Biochem Biophys Res Commun 2020; 529(2): 277-82.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.212] [PMID: 32703423]
[57]
Zhang W, Thompson BJ, Hietakangas V, Cohen SM. MAPK/ERK signaling regulates insulin sensitivity to control glucose metabolism in Drosophila. PLoS Genet 2011; 7(12): e1002429.
[http://dx.doi.org/10.1371/journal.pgen.1002429] [PMID: 22242005]
[58]
Qin D, Jiang YR. TGN inhibition of high-glucose-induced IL-1β IL-6, TGF-β1, and VEGF expression in human RPE cells. J Diabetes Res 2020; 2020: 9490642.
[http://dx.doi.org/10.1155/2020/9490642] [PMID: 33354576]
[59]
Gordon-Thomson C, de Iongh RU, Hales AM, Chamberlain CG, McAvoy JW. Differential cataractogenic potency of TGF-beta1, -beta2, and -beta3 and their expression in the postnatal rat eye. Invest Ophthalmol Vis Sci 1998; 39(8): 1399-409.
[PMID: 9660488]
[60]
Liu Y, Han J, Zhou Z, Li D. Tangeretin inhibits streptozotocin-induced cell apoptosis via regulating NF-κB pathway in INS-1 cells. J Cell Biochem 2019; 120(3): 3286-93.
[http://dx.doi.org/10.1002/jcb.27596] [PMID: 30216514]
[61]
Zheng S, Zhao M, Ren Y, Wu Y, Yang J. Sesamin suppresses STZ induced INS-1 cell apoptosis through inhibition of NF-κB activation and regulation of Bcl-2 family protein expression. Eur J Pharmacol 2015; 750: 52-8.
[http://dx.doi.org/10.1016/j.ejphar.2015.01.031] [PMID: 25637086]
[62]
Kim MS, Hur HJ, Kwon DY, Hwang JT. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myo-tubes and improves glucose tolerance in high-fat diet-induced obese mice. Mol Cell Endocrinol 2012; 358(1): 127-34.
[http://dx.doi.org/10.1016/j.mce.2012.03.013] [PMID: 22476082]
[63]
Nery M, Ferreira PS, Gonçalves DR, Spolidorio LC, Manthey JA, Cesar TB. Physiological effects of tangeretin and heptamethoxyflavone on obese C57BL/6J mice fed a high-fat diet and analyses of the metabolites originating from these two polymethoxylated flavones. Food Sci Nutr 2021; 9(4): 1997-2009.
[http://dx.doi.org/10.1002/fsn3.2167] [PMID: 33841818]
[64]
Kang M-K, Kim S-I, Oh SY, Na W, Kang Y-H. TGN ameliorates glucose-induced podocyte injury through blocking epithelial to mesen-chymal transition caused by oxidative stress and hypoxia. Int J Mol Sci 2020; 21(22): 8577.
[http://dx.doi.org/10.3390/ijms21228577]
[65]
Yang T, Feng C, Wang D, et al. Neuroprotective and anti-inflammatory effect of TGN against cerebral ischemia-reperfusion injury in rats. Inflammation 2020; 43(6): 2332-43.
[http://dx.doi.org/10.1007/s10753-020-01303-z] [PMID: 32734386]
[66]
Lee YY, Lee EJ, Park JS, Jang SE, Kim DH, Kim HS. Anti-inflammatory and antioxidant mechanism of TGN in activated microglia. J Neuroimmune Pharmacol 2016; 11(2): 294-305.
[http://dx.doi.org/10.1007/s11481-016-9657-x] [PMID: 26899309]
[67]
Li X, Xie P, Hou Y, et al. TGN inhibits oxidative stress and inflammation via upregulating Nrf-2 signaling pathway in collagen-induced arthritic rats. Pharmacology 2019; 104(3-4): 187-95.
[http://dx.doi.org/10.1159/000501163] [PMID: 31344704]
[68]
Guo S, Wu X, Zheng J, Smith SA, Dong P, Xiao H. Identification of 4′-demethylTGN as a major urinary metabolite of TGN in mice and its anti-inflammatory activities. J Agric Food Chem 2021; 69(15): 4381-91.
[http://dx.doi.org/10.1021/acs.jafc.0c06334] [PMID: 33787243]
[69]
Shu Z, Yang B, Zhao H, et al. Tangeretin exerts anti-neuroinflammatory effects via NF-κB modulation in lipopolysaccharide-stimulated microglial cells. Int Immunopharmacol 2014; 19(2): 275-82.
[http://dx.doi.org/10.1016/j.intimp.2014.01.011] [PMID: 24462494]
[70]
Yao X, Zhu X, Pan S, Fang Y, Jiang F, Phillips GO, et al. Antimicrobial activity of nobiletin and TGN against Pseudomonas. Food Chem 2012; 132(4): 1883-90.
[http://dx.doi.org/10.1016/j.foodchem.2011.12.021]
[71]
Wang M, Meng D, Zhang P, et al. Antioxidant protection of nobiletin, 5-demethylnobiletin, TGN, and 5-demethylTGN from citrus peel in Saccharomyces cerevisiae. J Agric Food Chem 2018; 66(12): 3155-60.
[http://dx.doi.org/10.1021/acs.jafc.8b00509] [PMID: 29526093]
[72]
Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000; 63(7): 1035-42.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[73]
Tang K, He S, Zhang X, et al. Tangeretin, an extract from citrus peels, blocks cellular entry of arenaviruses that cause viral hemorrhagic fever. Antiviral Res 2018; 160: 87-93.
[http://dx.doi.org/10.1016/j.antiviral.2018.10.011] [PMID: 30339847]
[74]
Xu J-J, Liu Z, Tang W, et al. TGN from Citrus reticulate inhibits respiratory syncytial virus replication and associated inflammation in vivo. J Agric Food Chem 2015; 63(43): 9520-7.
[http://dx.doi.org/10.1021/acs.jafc.5b03482] [PMID: 26468759]
[75]
da Rocha MN, Alves DR, Marinho MM, de Morais SM, Marinho ES. Virtual screening of citrus flavonoid TGN: A promising pharmaco-logical tool for the treatment and prevention of Zika fever and COVID-19. J Comput Biophys Chem 2021; 20(03): 283-304.
[http://dx.doi.org/10.1142/S2737416521500137]
[76]
Zhang E, Yang H, Li M, Ding M. A possible underlying mechanism behind the cardioprotective efficacy of tangeretin on isoproterenol triggered cardiotoxicity via modulating PI3K/Akt signaling pathway in a rat model. J Food Biochem 2020; 44(9): e13368.
[http://dx.doi.org/10.1111/jfbc.13368] [PMID: 32643820]
[77]
Omar HA, Mohamed WR, Arab HH, Arafa SA. TGN alleviates cisplatin-induced acute hepatic injury in rats: Targeting MAPKs and apop-tosis. PLoS One 2016; 11(3): e0151649.
[http://dx.doi.org/10.1371/journal.pone.0151649] [PMID: 27031695]
[78]
Zheng J, Shao Y, Jiang Y, et al. Tangeretin inhibits hepatocellular carcinoma proliferation and migration by promoting autophagy-related BECLIN1. Cancer Manag Res 2019; 11: 5231-42.
[http://dx.doi.org/10.2147/CMAR.S200974] [PMID: 31239776]
[79]
Lee B, Shim I, Lee H, Hahm D-H. The polymethoxylated flavone, TGN improves cognitive memory in rats experiencing a single episode of prolonged post-traumatic stress. Animal Cells Syst (Seoul) 2018; 22(1): 54-62.
[http://dx.doi.org/10.1080/19768354.2018.1426627]
[80]
Vaiyapuri S, Ali MS, Moraes LA, et al. Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling. Arterioscler Thromb Vasc Biol 2013; 33(12): 2740-9.
[http://dx.doi.org/10.1161/ATVBAHA.113.301988] [PMID: 24135020]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy