Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Selective Cytotoxic Constituents from Gardenia latifolia and their In Silico Topoisomerase IIα Inhibition

Author(s): Asmaa M. Selim, Soad A. L. Bayoumi, Anber F. Mohammed, Enaam Y. Backheet and Shaymaa M. Mohamed*

Volume 18, Issue 8, 2022

Published on: 19 April, 2022

Article ID: e040322201687 Pages: 9

DOI: 10.2174/1573407218666220304094123

Price: $65

Abstract

Background: The search for natural anticancer agents is a worthy scientific research goal, driven by the hope to lessen cancer's tremendous global burden.

Objective: This study aimed at evaluating the cytotoxic activity of Gardenia latifolia Ait. (Rubiaceae) against lung (A549) and colon (HCT116) cancer cell lines. Cytotoxicity-guided isolation of the bioactive phytochemicals was conducted, followed by various mechanistic validations of the appealing cytotoxic metabolites.

Methods: The cytotoxic effects were determined using an MTT assay. The two most cytotoxic compounds were further evaluated for their effects on cell cycle progression and apoptotic capabilities using the flow cytometry approach. Additionally, we conducted a molecular docking analysis to reveal their potential interactions with the human topoisomerase IIα.

Results: The phytochemical investigation afforded nine compounds, including a new one, (-) 1- acetyl 4,5-di-O-caffeoylquinic acid. The latter compound was the most cytotoxic against the colon cancer cell line (IC50 1.9 μg/ml) with a remarkable tumor-selectivity (SI ≈ 15). Moreover, the isolated glycoside, 1-O- [6-O- (5-O-vanilloyl- β-ᴅ-apiofuranosy1)- β-ᴅ-glucopyranosy1]-3,4,5- trimethoxybenzene, showed selective cytotoxicity towards A549 and HCT116 cells (IC50 values of 3.8 and 3.3 μg/ml, respectively). Both compounds considerably affected the cell cycle distribution. They caused G2/M cell cycle arrest, showed apoptotic capabilities, and displayed significant in silico topoisomerase IIα inhibition.

Conclusion: Two cytotoxic and apoptotic compounds were reported from Gardenia latifolia. Subsequent in vivo studies and clinical trials should be conducted to substantiate their anticipated therapeutic values.

Keywords: Gardenia latifolia Rubiaceae cytotoxicity apoptosis molecular docking topoisomerase IIα inhibition.

Graphical Abstract

[1]
WHO. WHO report on cancer: setting priorities, investing wisely and providing care for all Available from: http://apps.who.int/bookorders (Accessed 2020 -07 -10)
[2]
Hammond, W.A.; Swaika, A.; Mody, K. Pharmacologic resistance in colorectal cancer: a review. Ther. Adv. Med. Oncol., 2016, 8(1), 57-84.
[http://dx.doi.org/10.1177/1758834015614530 ] [PMID: 26753006]
[3]
Jhanwar, S.C.; Xu, X.L.; Elahi, A.H.; Abramson, D.H. Cancer genomics of lung cancer including malignant mesothelioma: A brief overview of current status and future prospects. Adv. Biol. Regul., 2020, 78(1), 100723.
[http://dx.doi.org/10.1016/j.jbior.2020.100723 ] [PMID: 32992231]
[4]
Larsen, B.H.V.; Soelberg, J.; Jäger, A.K. COX-1 Inhibitory effect of medicinal plants of Ghana. S. Afr. J. Bot., 2015, 99, 129-131.
[http://dx.doi.org/10.1016/j.sajb.2015.04.004]
[5]
Hua, D.; Luo, W.; Duan, J.; Jin, D.; Zhou, X.; Sun, C.; Wang, Q.; Shi, C.; Jiang, Z.; Wang, R.; Rao, C.; Yu, S.; Li, S.; Tang, S. screening and identification of potent α-glycosidase inhibitors from gardenia jasminoides ellis. S. Afr. J. Bot., 2018, 119, 377-382.
[http://dx.doi.org/10.1016/j.sajb.2018.10.004]
[6]
Zhang, H.; Lai, Q.; Li, Y.; Liu, Y.; Yang, M. Learning and memory improvement and neuroprotection of Gardenia jasminoides (Fructus gardenia) extract on ischemic brain injury rats. J. Ethnopharmacol., 2017, 196, 225-235.
[http://dx.doi.org/10.1016/j.jep.2016.11.042 ] [PMID: 27940085]
[7]
Chen, L.; Li, M.; Yang, Z.; Tao, W.; Wang, P.; Tian, X.; Li, X.; Wang, W. Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. J. Ethnopharmacol., 2020, 257, 112829.
[http://dx.doi.org/10.1016/j.jep.2020.112829 ] [PMID: 32311486]
[8]
Hu, Y.; Liu, X.; Xia, Q.; Yin, T.; Bai, C.; Wang, Z.; Du, L.; Li, X.; Wang, W.; Sun, L.; Liu, Y.; Zhang, H.; Deng, L.; Chen, Y. Comparative anti-arthritic investigation of iridoid glycosides and crocetin derivatives from Gardenia jasminoides Ellis in Freund’s complete adjuvant-induced arthritis in rats. Phytomedicine, 2019, 53, 223-233.
[http://dx.doi.org/10.1016/j.phymed.2018.07.005 ] [PMID: 30668402]
[9]
Gonçalves de Oliveira-Júnior, R.; Marcoult-Fréville, N.; Prunier, G.; Beaugeard, L.; Beserra de Alencar Filho, E.; Simões Mourão, E.D.; Michel, S.; Quintans-Júnior, L.J.; Guedes da Silva Almeida, J.R.; Grougnet, R.; Picot, L. Polymethoxyflavones from Gardenia oudiepe (Rubiaceae) induce cytoskeleton disruption-mediated apoptosis and sensitize BRAF-mutated melanoma cells to chemotherapy. Chem. Biol. Interact., 2020, 325, 109109.
[http://dx.doi.org/10.1016/j.cbi.2020.109109 ] [PMID: 32376239]
[10]
Thanasansurapong, S.; Tuchinda, P.; Reutrakul, V.; Pohmakotr, M.; Piyachaturawat, P.; Chairoungdua, A.; Suksen, K.; Akkarawongsapat, R.; Limthongkul, J.; Napaswad, C.; Nuntasaen, N. Cytotoxic and anti-HIV-1 activities of triterpenoids and flavonoids isolated from leaves and twigs of Gardenia sessiliflora. Phytochem. Lett., 2020, 35, 46-52.
[http://dx.doi.org/10.1016/j.phytol.2019.10.007]
[11]
Reddy, Y.M.; Kumar, S.P.J.; Saritha, K.V.; Gopal, P.; Reddy, T.M.; Simal-Gandara, J. phytochemical profiling of methanolic fruit extract of Gardenia latifolia Ait. by LC-MS/MS analysis and evaluation of Its antioxidant and antimicrobial activity. Plants, 2021, 10(3), 1-10.
[http://dx.doi.org/10.3390/plants10030545 ] [PMID: 33805789]
[12]
Kuriyama, I.; Nakajima, Y.; Nishida, H.; Konishi, T.; Takeuchi, T.; Sugawara, F.; Yoshida, H.; Mizushina, Y. Inhibitory effects of low molecular weight polyphenolics from Inonotus obliquus on human DNA topoisomerase activity and cancer cell proliferation. Mol. Med. Rep., 2013, 8(2), 535-542.
[http://dx.doi.org/10.3892/mmr.2013.1547 ] [PMID: 23799608]
[13]
Yim, S.H.; Kim, H.J.; Park, S.H.; Kim, J.; Williams, D.R.; Jung, D.W.; Lee, I.S. Cytotoxic caffeic acid derivatives from the rhizomes of Cimicifuga heracleifolia. Arch. Pharm. Res., 2012, 35(9), 1559-1565.
[http://dx.doi.org/10.1007/s12272-012-0906-0 ] [PMID: 23054712]
[14]
Mishima, S.; Inoh, Y.; Narita, Y.; Ohta, S.; Sakamoto, T.; Araki, Y.; Suzuki, K.M.; Akao, Y.; Nozawa, Y. Identification of caffeoylquinic acid derivatives from Brazilian propolis as constituents involved in induction of granulocytic differentiation of HL-60 cells. Bioorg. Med. Chem., 2005, 13(20), 5814-5818.
[http://dx.doi.org/10.1016/j.bmc.2005.05.044 ] [PMID: 15993085]
[15]
Ooi, K.L.; Muhammad, T.S.T.; Tan, M.L.; Sulaiman, S.F. Cytotoxic, apoptotic and anti-α-glucosidase activities of 3,4-di-O-caffeoyl quinic acid, an antioxidant isolated from the polyphenolic-rich extract of Elephantopus mollis Kunth. J. Ethnopharmacol., 2011, 135(3), 685-695.
[http://dx.doi.org/10.1016/j.jep.2011.04.001 ] [PMID: 21497647]
[16]
Tolosa, L.; Donato, M.T.; Gómez-Lechón, M.J. General cytotoxicity assessment by means of the MTT Assay. In: Methods in Molecular Biology; Humana Press Inc., 2015; 1250, pp. 333-348.
[http://dx.doi.org/10.1007/978-1-4939-2074-7_26]
[17]
Silvestri, M.A.; Miles, D.; Rothwell, A.P.; Wood, K.V.; Cushman, M. The ‘apparent’ hydrolysis of alkyl esters during electrospray ionization. Rapid Commun. Mass Spectrom., 2003, 17(15), 1703-1708.
[http://dx.doi.org/10.1002/rcm.1104 ] [PMID: 12872274]
[18]
Flores-Parra, A.; Gutiérrez-Avella, D.M.; Contreras, R.; Khuong-Huu, F. 13C and 1H NMR investigations of quinic acid derivatives: complete spectral assignment and elucidation of preferred conformations. Magn. Reson. Chem., 1989, 27(6), 544-555.
[http://dx.doi.org/10.1002/mrc.1260270607]
[19]
Faruque, M.O.; Ankhi, U.R.; Kamaruzzaman, M.; Barlow, J.W.; Zhou, B.; Hao, J.; Yang, X.; Hu, X. Chemical composition and antimicrobial activity of Congea tomentosa, an Ethnomedicinal plant from Bangladesh. Ind. Crops Prod., 2019, 141(April), 111745.
[http://dx.doi.org/10.1016/j.indcrop.2019.111745]
[20]
Chen, G.Y.; Dai, C.Y.; Wang, T.S.; Jiang, C.W.; Han, C.R.; Songa, X.P. A new flavonol from the stem-bark of Premna fulva. ARKIVOC, 2010, 2010(2), 179-185.
[http://dx.doi.org/10.3998/ark.5550190.0011.213]
[21]
Lee, E.J.; Kim, J.S.; Kim, H.P.; Lee, J.H.; Kang, S.S. phenolic constituents from the flower buds of Lonicera japonica and their 5-lipoxygenase inhibitory activities. Food Chem., 2010, 120(1), 134-139.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.088]
[22]
Feng, Z.; Song, S.; An, Y.; Yang, Y.; Jiang, J.; Zhang, P. phytochemistry letters hepatoprotective acyl glycosides obtained from Erycibe hainanesis. Phytochem. Lett., 2014, 9, 163-167.
[http://dx.doi.org/10.1016/j.phytol.2014.06.006]
[23]
Estork, D.M.; Gusmão, D.F.; Paciencia, M.L.B.; Díaz, I.E.C.; Varella, A.D.; Younes, R.N.; Reis, L.F.L.; Montero, E.F.S.; Bernardi, M.M.; Suffredini, I.B. First chemical evaluation and toxicity of Casinga-cheirosa to Balb-c male mice. Molecules, 2014, 19(4), 3973-3987.
[http://dx.doi.org/10.3390/molecules19043973 ] [PMID: 24699143]
[24]
Basnet, P.; Matsushige, K.; Hase, K.; Kadota, S.; Namba, T. Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models. Biol. Pharm. Bull., 1996, 19(11), 1479-1484.
[http://dx.doi.org/10.1248/bpb.19.1479 ] [PMID: 8951168]
[25]
Group, C. CMolecular Operating Environment (MOE 2010) Available from: http://www.chemcomp.com
[26]
Wang, Y-R.; Chen, S-F.; Wu, C-C.; Liao, Y-W.; Lin, T-S.; Liu, K-T.; Chen, Y-S.; Li, T-K.; Chien, T-C.; Chan, N-L. Producing irreversible topoisomerase II-mediated DNA breaks by site-specific Pt(II)-methionine coordination chemistry. Nucleic Acids Res., 2017, 45(18), 10861-10871.
[http://dx.doi.org/10.1093/nar/gkx742 ] [PMID: 28977631]
[27]
Pogorelčnik, B.; Perdih, A.; Solmajer, T. Recent developments of DNA poisons--human DNA topoisomerase IIα inhibitors--as anticancer agents. Curr. Pharm. Des., 2013, 19(13), 2474-2488.
[http://dx.doi.org/10.2174/1381612811319130016 ] [PMID: 23363399]
[28]
Wu, C.C.; Li, T.K.; Farh, L.; Lin, L.Y.; Lin, T.S.; Yu, Y.J.; Yen, T.J.; Chiang, C.W.; Chan, N.L. structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science, 2011, 333(6041), 459-462.
[29]
Jain, C.K.; Majumder, H.K.; Roychoudhury, S. Natural compounds as anticancer agents targeting DNA topoisomerases. Curr. Genomics, 2017, 18(1), 75-92.
[http://dx.doi.org/10.2174/1389202917666160808125213 ] [PMID: 28503091]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy