Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Perspective

Current Perspective in Cancer Theranostics Based on Gold Nanoparticles

Author(s): Sobhan Chatterjee and Feng Liang*

Volume 22, Issue 13, 2022

Published on: 06 April, 2022

Page: [2354 - 2357] Pages: 4

DOI: 10.2174/1871520622666220222141609

Abstract

The growth of nanotechnology has revolutionized the diagnosis and treatment of diseases with high precision and effectiveness. Nanoparticles (NPs) represent a major point of attention in the scientific field, with an increasing number of studies revealing promising results. The unique physicochemical properties, biocompatibility, and highly developed chemical properties of gold nanoparticles (AuNPs) have promoted breakthroughs in the cancer community, focusing on the therapeutic and diagnostic applications of cancer diagnosis and treatment. This perspective aims to summarize the latest research on multifunctional AuNPs as therapeutic, diagnostic agents in cancer diagnosis and treatment. Several nanostructured hybrid AuNPs have been reviewed, and their applications in imaging, targeting, therapy, and delivery have been discussed.

Keywords: Multifunctional gold nanoparticles, cancer therapy, theranostic, nanotechnology, hybrid nanoparticles, anti-cancer agents.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of inci-dence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Bouché, M.; Hsu, J.C.; Dong, Y.C.; Kim, J.; Taing, K.; Cormode, D.P. Recent advances in molecular imaging with gold nanoparticles. Bioconjug. Chem., 2020, 31(2), 303-314.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00669] [PMID: 31682405]
[3]
Gao, Q.; Zhang, J.; Gao, J.; Zhang, Z.; Zhu, H.; Wang, D. Gold nanoparticles in cancer theranostics. Front. Bioeng. Biotechnol., 2021, 9, 647905.
[http://dx.doi.org/10.3389/fbioe.2021.647905] [PMID: 33928072]
[4]
Gharatape, A.; Salehi, R. Recent progress in theranostic applications of hybrid gold nanoparticles. Eur. J. Med. Chem., 2017, 138, 221-233.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.034] [PMID: 28668475]
[5]
An, L.; Cao, M.; Zhang, X.; Lin, J.; Tian, Q.; Yang, S. pH and glutathione synergistically triggered release and self-assembly of Au nanospheres for tumor theranostics. ACS Appl. Mater. Interfaces, 2020, 12(7), 8050-8061.
[http://dx.doi.org/10.1021/acsami.0c00302] [PMID: 31994376]
[6]
Massoumi, B.; Farnudiyan-Habibi, A.; Derakhshankhah, H.; Samadian, H.; Jahanban-Esfahlan, R.; Jaymand, M. A novel multi-stimuli-responsive theranostic nanomedicine based on Fe3O4@Au nanoparticles against can-cer. Drug Dev. Ind. Pharm., 2020, 46(11), 1832-1843.
[http://dx.doi.org/10.1080/03639045.2020.1821052] [PMID: 32897756]
[7]
Buonerba, A.; Lapenta, R.; Donniacuo, A.; Licasale, M.; Vezzoli, E.; Mil-ione, S.; Capacchione, C.; Tecce, M.F.; Falqui, A.; Piacentini, R.; Grassi, C.; Grassi, A. NIR multiphoton ablation of cancer cells, fluorescence quench-ing and cellular uptake of dansyl-glutathione-coated gold nanoparticles. Sci. Rep., 2020, 10(1), 11380.
[http://dx.doi.org/10.1038/s41598-020-68397-1] [PMID: 32647291]
[8]
Ding, Y.; Xu, H.; Xu, C.; Tong, Z.; Zhang, S.; Bai, Y.; Chen, Y.; Xu, Q.; Zhou, L.; Ding, H.; Sun, Z.; Yan, S.; Mao, Z.; Wang, W. A nanomedicine fab-ricated from gold nanoparticles-decorated metal-organic framework for cas-cade chemo/chemodynamic cancer therapy. Adv. Sci. (Weinh.), 2020, 7(17), 2001060.
[http://dx.doi.org/10.1002/advs.202001060] [PMID: 32995124]
[9]
Ding, J.; Mao, Q.; Zhao, M.; Gao, Y.; Wang, A.; Ye, S.; Wang, X.; Xie, W.; Shi, H. Protein sulfenic acid-mediated anchoring of gold nanoparticles for enhanced CT imaging and radiotherapy of tumors in vivo. Nanoscale, 2020, 12(45), 22963-22969.
[http://dx.doi.org/10.1039/D0NR06440H] [PMID: 33206090]
[10]
Kozenkova, E.; Levada, K.; Efremova, M.V.; Omelyanchik, A.; Nalench, Y.A.; Garanina, A.S.; Pshenichnikov, S.; Zhukov, D.G.; Lunov, O.; Lunova, M.; Kozenkov, I.; Innocenti, C.; Albino, M.; Abakumov, M.A.; Sangregorio, C.; Rodionova, V. Multifunctional Fe3O4-Au nanoparticles for the mri di-agnosis and potential treatment of liver cancer. Nanomaterials (Basel), 2020, 10(9), 1-15.
[http://dx.doi.org/10.3390/nano10091646] [PMID: 32825748]
[11]
El-Ghareb, W.I.; Swidan, M.M.; Ibrahim, I.T.; Abd El-Bary, A.; Tadros, M.I.; Sakr, T.M. 99mTc-doxorubicin-loaded gallic acid-gold nanoparticles (99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int. J. Pharm., 2020, 586, 119514.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119514] [PMID: 32565281]
[12]
Fernandes, D.A.; Fernandes, D.D.; Malik, A.; Gomes, G.W.; Appak-Baskoy, S.; Berndl, E.; Gradinaru, C.C.; Kolios, M.C. Multifunctional nanoparticles as theranostic agents for therapy and imaging of breast cancer. J. Photochem. Photobiol. B, 2021, 218, 112110.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.112110] [PMID: 33865007]
[13]
Ijaz Dar, G.; Iqbal, M.Z.; Akakuru, O.U.; Yao, C.; Awiaz, G.; Wu, A. Facile synthesis of Au@Mn3O4 magneto-plasmonic nanoflowers for T1-weighted magnetic resonance imaging and photothermal therapy of cancer. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(36), 8356-8367.
[http://dx.doi.org/10.1039/D0TB01526A] [PMID: 32794542]
[14]
Wang, H.; An, L.; Tao, C.; Ling, Z.; Lin, J.; Tian, Q.; Yang, S. A smart theranostic platform for photoacoustic and magnetic resonance dual-imaging-guided photothermal-enhanced chemodynamic therapy. Nanoscale, 2020, 12(8), 5139-5150.
[http://dx.doi.org/10.1039/C9NR10039C] [PMID: 32073016]
[15]
Wang, R.; Yang, H.; Fu, R.; Su, Y.; Lin, X.; Jin, X.; Du, W.; Shan, X.; Huang, G. Biomimetic upconversion nanoparticles and gold nanoparticles for nov-el simultaneous dual-modal imaging-guided photothermal therapy of Can-cer. Cancers (Basel), 2020, 12(11), 3136.
[http://dx.doi.org/10.3390/cancers12113136] [PMID: 33120892]
[16]
Shariati, M. The cancer therapy materialization by theranostic nanoparticles based on gold doped iron oxide under electromagnetic field amplification. Nanomedicine, 2021, 35, 102406.
[http://dx.doi.org/10.1016/j.nano.2021.102406] [PMID: 33932592]
[17]
Xiao, T.; Qin, J.; Peng, C.; Guo, R.; Lu, X.; Shi, X. A dendrimer-based dual radiodense element-containing nanoplatform for targeted enhanced tumor computed tomography imaging. Langmuir, 2020, 36(12), 3096-3103.
[http://dx.doi.org/10.1021/acs.langmuir.0c00451] [PMID: 32178521]
[18]
Yang, L.; Kim, T-H.; Cho, H-Y.; Luo, J.; Lee, J-M.; Chueng, S.D.; Hou, Y.; Yin, P.T-T.; Han, J.; Kim, J.H.; Chung, B.G.; Choi, J-W.; Lee, K-B. Hybrid graphene-gold nanoparticle-based nucleic acid conjugates for cancer-specific multimodal imaging and combined therapeutics. Adv. Funct. Mater., 2021, 31(5), 2006918.
[http://dx.doi.org/10.1002/adfm.202006918] [PMID: 33776614]
[19]
Yang, Y.; He, Y.; Deng, Z.; Li, J.; Huang, J.; Zhong, S. Intelligent nanoprobe: acid-responsive drug release and in situ evaluation of its own therapeutic effect. Anal. Chem., 2020, 92(18), 12371-12378.
[http://dx.doi.org/10.1021/acs.analchem.0c02099] [PMID: 32786256]
[20]
Zhang, Y.; Guo, C.; Liu, L.; Xu, J.; Jiang, H.; Li, D.; Lan, J.; Li, J.; Yang, J.; Tu, Q.; Sun, X.; Alamgir, M.; Chen, X.; Shen, G.; Zhu, J.; Tao, J. ZnO-based multifunctional nanocomposites to inhibit progression and metastasis of melanoma by eliciting antitumor immunity via immunogenic cell death. Theranostics, 2020, 10(24), 11197-11214.
[http://dx.doi.org/10.7150/thno.44920] [PMID: 33042278]
[21]
Khan, M.; Boumati, S.; Arib, C.; Thierno Diallo, A.; Djaker, N.; Doan, B.T.; Spadavecchia, J. Doxorubicin (DOX) gadolinium-gold-complex: A new way to tune hybrid nanorods as theranostic agent. Int. J. Nanomedicine, 2021, 16, 2219-2236.
[http://dx.doi.org/10.2147/IJN.S295809] [PMID: 33762822]
[22]
Ge, X.; Fu, Q.; Su, L.; Li, Z.; Zhang, W.; Chen, T.; Yang, H.; Song, J. Light-activated gold nanorod vesicles with NIR-II fluorescence and photoacous-tic imaging performances for cancer theranostics. Theranostics, 2020, 10(11), 4809-4821.
[http://dx.doi.org/10.7150/thno.44376] [PMID: 32308751]
[23]
Xiong, J.; Jiang, B.; Luo, Y.; Zou, J.; Gao, X.; Xu, D.; Du, Y.; Hao, L. Multi-functional nanoparticles encapsulating astragalus polysaccharide and gold nanorods in combination with focused ultrasound for the treatment of breast cancer. Int. J. Nanomedicine, 2020, 15, 4151-4169.
[http://dx.doi.org/10.2147/IJN.S246447] [PMID: 32606670]
[24]
Yang, Z.; Du, Y.; Sun, Q.; Peng, Y.; Wang, R.; Zhou, Y.; Wang, Y.; Zhang, C.; Qi, X. Albumin-based nanotheranostic probe with hypoxia alleviating po-tentiates synchronous multimodal imaging and phototherapy for glioma. ACS Nano, 2020, 14(5), 6191-6212.
[http://dx.doi.org/10.1021/acsnano.0c02249] [PMID: 32320600]
[25]
Zhang, D.; Ye, Z.; Liu, H.; Wang, X.; Hua, J.; Ling, Y.; Wei, L.; Xia, Y.; Sun, S.; Xiao, L. Cell membrane coated smart two-dimensional supraparticle for in vivo homotypic cancer targeting and enhanced combinational theranostics. Nanotheranostics, 2021, 5(3), 275-287.
[http://dx.doi.org/10.7150/ntno.57657] [PMID: 33654654]
[26]
Li, C.; Mei, E.; Chen, C.; Li, Y.; Nugasur, B.; Hou, L.; Ding, X.; Hu, M.; Zhang, Y.; Su, Z.; Lin, J.; Yang, Y.; Huang, P.; Li, Z. Gold-nanobipyramid-based nanotheranostics for dual-modality imaging-guided phototherapy. ACS Appl. Mater. Interfaces, 2020, 12(11), 12541-12548.
[http://dx.doi.org/10.1021/acsami.0c00112] [PMID: 32083461]
[27]
Liu, Y.; Li, Z.; Yin, Z.; Zhang, H.; Gao, Y.; Huo, G.; Wu, A.; Zeng, L. Ampli-fied photoacoustic signal and enhanced photothermal conversion of poly-dopamine-coated gold nanobipyramids for phototheranostics and synergis-tic chemotherapy. ACS Appl. Mater. Interfaces, 2020, 12(13), 14866-14875.
[http://dx.doi.org/10.1021/acsami.9b22979] [PMID: 32153178]
[28]
Liu, B.; Qiao, G.; Han, Y.; Shen, E.; Alfranca, G.; Tan, H.; Wang, L.; Pan, S.; Ma, L.; Xiong, W.; Liu, Y.; Cui, D. Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imag-ing and photothermal/photodynamic therapy. Acta Biomater., 2020, 117, 361-373.
[http://dx.doi.org/10.1016/j.actbio.2020.09.040] [PMID: 33007481]
[29]
D’Hollander, A.; Vande Velde, G.; Jans, H.; Vanspauwen, B.; Vermeersch, E.; Jose, J.; Struys, T.; Stakenborg, T.; Lagae, L.; Himmelreich, U. Assess-ment of the theranostic potential of gold nanostars-a multimodal imaging and photothermal treatment study. Nanomaterials (Basel), 2020, 10(11), 2112.
[http://dx.doi.org/10.3390/nano10112112] [PMID: 33114177]
[30]
Liang, S.; Sun, M.; Lu, Y.; Shi, S.; Yang, Y.; Lin, Y.; Feng, C.; Liu, J.; Dong, C. Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(36), 8368-8382.
[http://dx.doi.org/10.1039/D0TB01391A] [PMID: 32966532]

© 2025 Bentham Science Publishers | Privacy Policy