Review Article

电化学检测肝癌生物标志物的核酸适配体和新型生物受体

卷 29, 期 25, 2022

页: [4363 - 4390] 页: 28

弟呕挨: 10.2174/0929867329666220222113707

价格: $65

摘要

肝细胞癌是一种死亡率高、发病率高的恶性肿瘤。这种疾病的早期发现可以帮助提高生存率和患者的整体利益。这种疾病的非侵入性诊断策略是最重要的。在这个范围内,检测肝细胞癌的生物标志物可以提供一个有用的诊断工具。核酸适配体是一种短的单链DNAs或RNAs,可以特异性结合选定的分析物,并作为可用于电极功能化的伪生物识别元件。此外,其他类型的DNA序列也可以用来构建用于肝细胞癌生物标志物定量的DNA生物传感器。在此,我们分析了用于检测肝细胞癌生物标志物(如micro- RNAs、长链非编码 RNAs、外泌体、循环肿瘤细胞和蛋白质)的适体传感器和 DNA 生物传感器的最新示例。文献数据进行了比较批判性的讨论,突出了在诊断中使用电化学生物传感器的优势,以及使用纳米材料和生物成分在电极功能化以提高灵敏度和选择性。

关键词: 肝细胞癌(HCC),适配体,生物标志物,电化学生物传感器,DNA序列,miRNAs。

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6.
[http://dx.doi.org/10.1038/s41572-020-00240-3] [PMID: 33479224]
[3]
Kim, E.; Viatour, P. Hepatocellular carcinoma: old friends and new tricks. Exp. Mol. Med., 2020, 52(12), 1898-1907.
[http://dx.doi.org/10.1038/s12276-020-00527-1] [PMID: 33268834]
[4]
Singal, A.G.; Lampertico, P.; Nahon, P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J. Hepatol., 2020, 72(2), 250-261.
[http://dx.doi.org/10.1016/j.jhep.2019.08.025] [PMID: 31954490]
[5]
Sangro, B.; Sarobe, P.; Hervás-Stubbs, S.; Melero, I. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(8), 525-543.
[http://dx.doi.org/10.1038/s41575-021-00438-0] [PMID: 33850328]
[6]
Ferrante, N.D.; Pillai, A.; Singal, A.G. Update on the diagnosis and treatment of hepatocellular carcinoma. Gastroenterol. Hepatol. (N. Y.), 2020, 16(10), 506-516.
[PMID: 34017223]
[7]
Atkinson, A.J.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Schooley, R.T.; Spilker, B.A.; Woodcock, J.; Zeger, S.L. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 2001, 69(3), 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[8]
Parikh, N.D.; Mehta, A.S.; Singal, A.G.; Block, T.; Marrero, J.A.; Lok, A.S. Biomarkers for the early detection of hepatocellular carcinoma. Cancer Epidemiol. Biomarkers Prev., 2020, 29(12), 2495-2503.
[http://dx.doi.org/10.1158/1055-9965.EPI-20-0005] [PMID: 32238405]
[9]
Abreu, P.; Ferreira, R.; Mineli, V.; Ribeiro, M.A.; Ferreira, F.G.; DE Mello Vianna, R.M.; Tomasich, F.D.S.; Szutan, L.A. Alternative biomarkers to predict tumor biology in hepatocellular carcinoma. Anticancer Res., 2020, 40(12), 6573-6784.
[http://dx.doi.org/10.21873/anticanres.14682] [PMID: 33288552]
[10]
Pan, Y.; Chen, H.; Yu, J. Biomarkers in hepatocellular carcinoma: current status and future perspectives. Biomedicines, 2020, 8(12), 1-17.
[http://dx.doi.org/10.3390/biomedicines8120576] [PMID: 33297335]
[11]
Galle, P.R.; Forner, A.; Llovet, J.M.; Mazzaferro, V.; Piscaglia, F.; Raoul, J.L.; Schirmacher, P.; Vilgrain, V. EASL clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol., 2018, 69(1), 182-236.
[http://dx.doi.org/10.1016/j.jhep.2018.03.019] [PMID: 29628281]
[12]
Chen, J.; Wang, J.; Cao, D.; Yang, J.; Shen, K.; Huang, H.; Shi, X. Alpha-fetoprotein (AFP)-producing epithelial ovarian carcinoma (EOC): A retrospective study of 27 cases. Arch. Gynecol. Obstet., 2021, 304(4), 1043-1053.
[http://dx.doi.org/10.1007/s00404-021-06017-7] [PMID: 33751209]
[13]
Zacharakis, G.; Aleid, A.; Aldossari, K.K. New and old biomarkers of hepatocellular carcinoma. Hepatoma Res., 2018, 4(10), 65.
[http://dx.doi.org/10.20517/2394-5079.2018.76]
[14]
Qu, J.; Yang, J.; Chen, M.; Cui, L.; Wang, T.; Gao, W.; Tian, J.; Wei, R. MicroRNA-21 as a diagnostic marker for hepatocellular carcinoma: A systematic review and meta-analysis. Pak. J. Med. Sci., 2019, 35(5), 1466-1471.
[http://dx.doi.org/10.12669/pjms.35.5.685] [PMID: 31489028]
[15]
Wong, C.M.; Tsang, F.H.; Ng, I.O.L. Non-coding RNAs in hepatocellular carcinoma: Molecular functions and pathological implications. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(3), 137-151.
[http://dx.doi.org/10.1038/nrgastro.2017.169] [PMID: 29317776]
[16]
De Stefano, F.; Chacon, E.; Turcios, L.; Marti, F.; Gedaly, R. Novel biomarkers in hepatocellular carcinoma. Dig. Liver Dis., 2018, 50(11), 1115-1123.
[http://dx.doi.org/10.1016/j.dld.2018.08.019] [PMID: 30217732]
[17]
Duan, X.; Hu, J.; Wang, Y.; Gao, J.; Peng, D.; Xia, L. MicroRNA-145: A promising biomarker for hepatocellular carcinoma (HCC). Gene, 2014, 541(1), 67-68.
[http://dx.doi.org/10.1016/j.gene.2014.03.018] [PMID: 24630966]
[18]
Ciui, B.; Jambrec, D.; Sandulescu, R.; Cristea, C. Bioelectrochemistry for MiRNA Detection. Curr. Opin. Electrochem., 2017, 5(1), 183-192.
[http://dx.doi.org/10.1016/j.coelec.2017.09.014]
[19]
Jopling, C. Liver-Specific MicroRNA-122. RNA Biol., 2012, 9(2), 1-6.
[20]
Mocan, T.; Ilies, M.; Nenu, I.; Craciun, R.; Horhat, A.; Susa, R.; Minciuna, I.; Rusu, I.; Mocan, L.P.; Seicean, A.; Iuga, C.A.; Hajjar, N.A.; Sparchez, M.; Leucuta, D.C.; Sparchez, Z. Serum levels of soluble programmed death-ligand 1 (sPD-L1): A possible biomarker in predicting post-treatment outcomes in patients with early hepatocellular carcinoma. Int. Immunopharmacol., 2021, 94(2), 107467.
[http://dx.doi.org/10.1016/j.intimp.2021.107467] [PMID: 33611059]
[21]
Sasaki, R.; Kanda, T.; Yokosuka, O.; Kato, N.; Matsuoka, S.; Moriyama, M. Exosomes and hepatocellular carcinoma: From bench to bedside. Int. J. Mol. Sci., 2019, 20(6), 1-18.
[http://dx.doi.org/10.3390/ijms20061406] [PMID: 30897788]
[22]
Chen, W.; Mao, Y.; Liu, C.; Wu, H.; Chen, S. Exosome in hepatocellular carcinoma: an update. J. Cancer, 2021, 12(9), 2526-2536.
[http://dx.doi.org/10.7150/jca.54566] [PMID: 33854614]
[23]
Ning, Y.; Hu, J.; Lu, F. Aptamers used for biosensors and targeted therapy. Biomed. Pharmacother., 2020, 132(10), 110902.
[http://dx.doi.org/10.1016/j.biopha.2020.110902] [PMID: 33096353]
[24]
Ștefan, G.; Hosu, O.; De Wael, K.; Lobo-Castañón, M.J.; Cristea, C. Aptamers in biomedicine: Selection strategies and recent advances. Electrochim. Acta, 2021, 376, 137994.
[http://dx.doi.org/10.1016/j.electacta.2021.137994]
[25]
Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem., 2017, 1(10), 0076.
[http://dx.doi.org/10.1038/s41570-017-0076]
[26]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[27]
Torkamanian-Afshar, M.; Nematzadeh, S.; Tabarzad, M.; Najafi, A.; Lanjanian, H.; Masoudi-Nejad, A. In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm. Mol. Divers., 2021, 25(3), 1395-1407.
[http://dx.doi.org/10.1007/s11030-021-10192-9] [PMID: 33554306]
[28]
Bashir, A.; Yang, Q.; Wang, J.; Hoyer, S.; Chou, W.; McLean, C.; Davis, G.; Gong, Q.; Armstrong, Z.; Jang, J.; Kang, H.; Pawlosky, A.; Scott, A.; Dahl, G.E.; Berndl, M.; Dimon, M.; Ferguson, B.S. Machine learning guided aptamer refinement and discovery. Nat. Commun., 2021, 12(1), 2366.
[http://dx.doi.org/10.1038/s41467-021-22555-9] [PMID: 33888692]
[29]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
[30]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[31]
Alshaer, W.; Hillaireau, H.; Fattal, E. Aptamer-guided nanomedicines for anticancer drug delivery. Adv. Drug Deliv. Rev., 2018, 134, 122-137.
[http://dx.doi.org/10.1016/j.addr.2018.09.011] [PMID: 30267743]
[32]
He, F.; Wen, N.; Xiao, D.; Yan, J.; Xiong, H.; Cai, S.; Liu, Z.; Liu, Y. Aptamer-based targeted drug delivery systems: Current potential and challenges. Curr. Med. Chem., 2020, 27(13), 2189-2219.
[http://dx.doi.org/10.2174/0929867325666181008142831] [PMID: 30295183]
[33]
Malecka, K.; Mikuła, E.; Ferapontova, E.E. Design strategies for electrochemical aptasensors for cancer diagnostic devices. Sensors (Basel), 2021, 21(3), 1-41.
[http://dx.doi.org/10.3390/s21030736] [PMID: 33499136]
[34]
Pellestor, F.; Paulasova, P. The peptide nucleic acids (PNAs), powerful tools for molecular genetics and cytogenetics. Eur. J. Hum. Genet., 2004, 12(9), 694-700.
[http://dx.doi.org/10.1038/sj.ejhg.5201226] [PMID: 15213706]
[35]
Díaz-Fernández, A.; Lorenzo-Gómez, R.; Miranda-Castro, R.; de-Los-Santos-Álvarez, N.; Lobo-Castañón, M.J. Electrochemical aptasensors for cancer diagnosis in biological fluids - A review. Anal. Chim. Acta, 2020, 1124, 1-19.
[http://dx.doi.org/10.1016/j.aca.2020.04.022] [PMID: 32534661]
[36]
Forouzanfar, S.; Alam, F.; Pala, N.; Wang, C. Review -a review of electrochemical aptasensors for label-free cancer diagnosis. J. Electrochem. Soc., 2020, 167(6), 067511.
[http://dx.doi.org/10.1149/1945-7111/ab7f20]
[37]
Negahdary, M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens. Bioelectron., 2020, 152(12), 112018.
[http://dx.doi.org/10.1016/j.bios.2020.112018] [PMID: 32056737]
[38]
Ye, J.; Xu, M.; Tian, X.; Cai, S.; Zeng, S. Research advances in the detection of miRNA. J. Pharm. Anal., 2019, 9(4), 217-226.
[http://dx.doi.org/10.1016/j.jpha.2019.05.004] [PMID: 31452959]
[39]
Jet, T.; Gines, G.; Rondelez, Y.; Taly, V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem. Soc. Rev., 2021, 50(6), 4141-4161.
[http://dx.doi.org/10.1039/D0CS00609B] [PMID: 33538706]
[40]
de Planell-Saguer, M.; Rodicio, M.C. Detection methods for microRNAs in clinic practice. Clin. Biochem., 2013, 46(10-11), 869-878.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.02.017] [PMID: 23499588]
[41]
Krepelkova, I.; Mrackova, T.; Izakova, J.; Dvorakova, B.; Chalupova, L.; Mikulik, R.; Slaby, O.; Bartos, M.; Ruzicka, V. Evaluation of miRNA detection methods for the analytical characteristic necessary for clinical utilization. Biotechniques, 2019, 66(6), 277-284.
[http://dx.doi.org/10.2144/btn-2019-0021] [PMID: 31124705]
[42]
Kappel, A.; Keller, A. miRNA assays in the clinical laboratory: Workflow, detection technologies and automation aspects. Clin. Chem. Lab. Med., 2017, 55(5), 636-647.
[http://dx.doi.org/10.1515/cclm-2016-0467] [PMID: 27987355]
[43]
Wu, L.; Qu, X. Cancer biomarker detection: Recent achievements and challenges. Chem. Soc. Rev., 2015, 44(10), 2963-2997.
[http://dx.doi.org/10.1039/C4CS00370E] [PMID: 25739971]
[44]
Lequin, R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem., 2005, 51(12), 2415-2418.
[http://dx.doi.org/10.1373/clinchem.2005.051532] [PMID: 16179424]
[45]
Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 2015, 72, 4-15.
[http://dx.doi.org/10.1016/j.peptides.2015.04.012] [PMID: 25908411]
[46]
Butler, J.E. Enzyme-linked immunosorbent assay. J. Immunoassay, 2000, 21(2-3), 165-209.
[http://dx.doi.org/10.1080/01971520009349533] [PMID: 10929886]
[47]
Kałuzna-Czaplińska, J.; Jóźwik, J. Current applications of chromatographic methods for diagnosis and identification of potential biomarkers in cancer. Trends Anal. Chem., 2014, 56, 1-12.
[http://dx.doi.org/10.1016/j.trac.2013.12.007]
[48]
Wang, H.; Shi, T.; Qian, W.J.; Liu, T.; Kagan, J.; Srivastava, S.; Smith, R.D.; Rodland, K.D.; Camp, D.G. Clinical impact of recent advances in lc-ms for cancer biomarker discovery and verification. Expert Rev Proteomics, 2016, 13(1), 99-114.
[49]
Wu, H.; Xue, R.; Dong, L.; Liu, T.; Deng, C.; Zeng, H.; Shen, X. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal. Chim. Acta, 2009, 648(1), 98-104.
[http://dx.doi.org/10.1016/j.aca.2009.06.033] [PMID: 19616694]
[50]
Cao, H.; Huang, H.; Xu, W.; Chen, D.; Yu, J.; Li, J.; Li, L. Fecal metabolome profiling of liver cirrhosis and hepatocellular carcinoma patients by ultra performance liquid chromatography-mass spectrometry. Anal. Chim. Acta, 2011, 691(1-2), 68-75.
[http://dx.doi.org/10.1016/j.aca.2011.02.038] [PMID: 21458633]
[51]
Chen, S.; Kong, H.; Lu, X.; Li, Y.; Yin, P.; Zeng, Z.; Xu, G. Pseudotargeted metabolomics method and its application in serum biomarker discovery for hepatocellular carcinoma based on ultra high-performance liquid chromatography/triple quadrupole mass spectrometry. Anal. Chem., 2013, 85(17), 8326-8333.
[http://dx.doi.org/10.1021/ac4016787] [PMID: 23889541]
[52]
Zhu, X.; Gao, T. Spectrometry. Nano-Inspired Biosensors for Protein Assay with Clinical Applications; Li, G., Ed.; Elsevier Science B. V: Amsterdam, 2019, pp. 237-264.
[http://dx.doi.org/10.1016/B978-0-12-815053-5.00010-6]
[53]
Jussila, H.; Yang, H.; Granqvist, N.; Sun, Z. Surface plasmon resonance for characterization of large-area atomic-layer graphene film. Optica, 2016, 3(2), 151-158.
[http://dx.doi.org/10.1364/OPTICA.3.000151]
[54]
Xue, T.; Liang, W.; Li, Y.; Sun, Y.; Xiang, Y.; Zhang, Y.; Dai, Z.; Duo, Y.; Wu, L.; Qi, K.; Shivananju, B.N.; Zhang, L.; Cui, X.; Zhang, H.; Bao, Q. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun., 2019, 10(1), 28.
[http://dx.doi.org/10.1038/s41467-018-07947-8] [PMID: 30604756]
[55]
Azzouz, A.; Hejji, L.; Kim, K-H.; Kukkar, D.; Souhail, B.; Bhardwaj, N.; Brown, R.J.C.; Zhang, W. Advances in surface plasmon resonance-based biosensor technologies for cancer biomarker detection. Biosens. Bioelectron., 2022, 197, 113767.
[http://dx.doi.org/10.1016/j.bios.2021.113767] [PMID: 34768064]
[56]
Lim, H.J.; Saha, T.; Tey, B.T.; Tan, W.S.; Ooi, C.W. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens. Bioelectron., 2020, 168, 112513.
[http://dx.doi.org/10.1016/j.bios.2020.112513] [PMID: 32889395]
[57]
Manakhova, A.; Makhneva, E.; Skládal, P.; Necas, D.; Cechale, J.; Kalina, L.; Eliás, M.; Zajícková, L. The robust bio-immobilization based on pulsed plasma polymerization of cyclopropylamine and glutaraldehyde coupling chemistry. Appl. Surf. Sci., 2016, 360, 28-36.
[http://dx.doi.org/10.1016/j.apsusc.2015.10.178]
[58]
Makhneva, E.; Manakhov, A.; Skládal, P.; Zajíčková, L. Development of effective QCM biosensors by cyclopropylamine plasma polymerization and antibody immobilization using cross-linking reactions. Surf. Coat. Tech., 2016, 290, 116-123.
[http://dx.doi.org/10.1016/j.surfcoat.2015.09.035]
[59]
Farka, Z.; Kovář, D.; Skládal, P. Rapid detection of microorganisms based on active and passive modes of QCM. Sensors (Basel), 2014, 15(1), 79-92.
[http://dx.doi.org/10.3390/s150100079] [PMID: 25545267]
[60]
Silva, A.L.; Pinto, E.M.; Ponzio, E.A.; Figueiredo, E.C.; Semaan, F.S. Bioinspired chemically modified electrodes for electroanalysis. In: New developments in Analytical Chemistry Research; Granger, B., Ed.; Nova Science Publishers: New York, 2015; pp. 41-86.
[61]
Chikkaveeraiah, B.V.; Bhirde, A.A.; Morgan, N.Y.; Eden, H.S.; Chen, X. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano, 2012, 6(8), 6546-6561.
[http://dx.doi.org/10.1021/nn3023969] [PMID: 22835068]
[62]
Cui, B.; Liu, P.; Liu, X.; Liu, S.; Zhang, Z. Molecularly imprinted polymers for electrochemical detection and analysis: progress and perspectives. J. Mater. Res. Technol., 2020, 9(6), 12568-12584.
[http://dx.doi.org/10.1016/j.jmrt.2020.08.052]
[63]
El Aamri, M.; Yammouri, G.; Mohammadi, H.; Amine, A.; Korri-Youssoufi, H. Electrochemical biosensors for detection of microrna as a cancer biomarker: Pros and cons. Biosensors (Basel), 2020, 10(11), E186.
[http://dx.doi.org/10.3390/bios10110186] [PMID: 33233700]
[64]
Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors definitions and classification. Pure Appl. Chem., 1991, 63(9), 1247-1250.
[http://dx.doi.org/10.1351/pac199163091247]
[65]
Thevenot, D.; Toth, K.; Durst, R.; Wilson, G. Electrochemical biosensors: Recommended definition and classification. Pure Appl. Chem., 1999, 71(12), 2333-2348.
[http://dx.doi.org/10.1351/pac199971122333]
[66]
Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev., 2017, 117(15), 9973-10042.
[http://dx.doi.org/10.1021/acs.chemrev.7b00037] [PMID: 28753280]
[67]
Ruiz Simões, F.; Xavier, M.G. Electrochemical sensors. In: Nanoscience and its Applications; Da Roz, A.; Ferreira, M.; de Lima Leite, F.; Oliveira, O., Eds.; Applied Science Publishers: Oxford, 2017; pp. 155-178.
[http://dx.doi.org/10.1016/B978-0-323-49780-0.00006-5]
[68]
Farghaly, O.A.; Abdel Hameed, R.S.; Abu-Nawwas, A.A.H. Analytical application using modern electrochemical techniques. Int. J. Electrochem. Sci., 2014, 9(6), 3287-3318.
[69]
Harris, D. Electroanalytical techniques. In: Quantitative Chemical Analysis; W.H. Freeman and Company: New-York, 2010; pp. 361-392.
[70]
Amine, A.; Mohammadi, H. Amperometry. In: Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P.; Poole, C.; Townshend, A.; Miró, M.B.T.-E., Eds.; Academic Press: Oxford, 2019; pp. 85-98.
[71]
Lisdat, F.; Schäfer, D. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem., 2008, 391(5), 1555-1567.
[http://dx.doi.org/10.1007/s00216-008-1970-7] [PMID: 18414837]
[72]
Sassolas, A.; Blum, L.J.; Béatrice, D.L.B. Electrochemical aptasensors. Electroanalysis, 2009, 21(11), 1237-1250.
[http://dx.doi.org/10.1002/elan.200804554]
[73]
Rhouati, A.; Catanante, G.; Nunes, G.; Hayat, A.; Marty, J.L. Label-free aptasensors for the detection of mycotoxins. Sensors (Basel), 2016, 16(12), 1-21.
[http://dx.doi.org/10.3390/s16122178] [PMID: 27999353]
[74]
Hosseinzadeh, L.; Mazloum-Ardakani, M. Advances in aptasensor technology; 1st ed. Elsevier, 2020, Vol. 99.
[75]
Ikebukuro, K.; Kiyohara, C.; Sode, K. Electrochemical detection of protein using a double aptamer sandwich. Anal. Lett., 2004, 37(14), 2901-2909.
[http://dx.doi.org/10.1081/AL-200035778]
[76]
Wang, Y.; Zhang, X.; Zhao, L.; Bao, T.; Wen, W.; Zhang, X.; Wang, S. Integrated amplified aptasensor with in-situ precise preparation of copper nanoclusters for ultrasensitive electrochemical detection of microRNA 21. Biosens. Bioelectron., 2017, 98, 386-391.
[http://dx.doi.org/10.1016/j.bios.2017.07.009] [PMID: 28709088]
[77]
Jia, Q.; Huang, S.; Hu, M.; Song, Y.; Wang, M.; Zhang, Z.; He, L. Polyoxometalate-derived MoS2 nanosheets embedded around iron-hydroxide nanorods as the platform for sensitively determining MiRNA-21. Sens. Actuators B Chem., 2020, 323(1), 128647.
[http://dx.doi.org/10.1016/j.snb.2020.128647]
[78]
Mohamadi, M.; Mostafavi, A.; Torkzadeh-Mahani, M. Design of a sensitive and selective electrochemical aptasensor for the determination of the complementary cDNA of miRNA-145 based on the intercalation and electrochemical reduction of doxorubicin. J. AOAC Int., 2017, 100(6), 1754-1760.
[http://dx.doi.org/10.5740/jaoacint.16-0302] [PMID: 28421985]
[79]
Cao, Z.; Duan, F.; Huang, X.; Liu, Y.; Zhou, N.; Xia, L.; Zhang, Z.; Du, M. A multiple aptasensor for ultrasensitive detection of miRNAs by using covalent-organic framework nanowire as platform and shell-encoded gold nanoparticles as signal labels. Anal. Chim. Acta, 2019, 1082, 176-185.
[http://dx.doi.org/10.1016/j.aca.2019.07.062] [PMID: 31472706]
[80]
Duan, F.; Guo, C.; Hu, M.; Song, Y.; Wang, M.; He, L.; Zhang, Z.; Pettinari, R.; Zhou, L. Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of MicroRNA-155. Sens. Actuators B Chem., 2020, 310(12), 127844.
[http://dx.doi.org/10.1016/j.snb.2020.127844]
[81]
Wang, S.; Zhang, L.; Wan, S.; Cansiz, S.; Cui, C.; Liu, Y.; Cai, R.; Hong, C.; Teng, I.T.; Shi, M.; Wu, Y.; Dong, Y.; Tan, W. Aptasensor with expanded nucleotide using dna nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano, 2017, 11(4), 3943-3949.
[http://dx.doi.org/10.1021/acsnano.7b00373] [PMID: 28287705]
[82]
Jiang, J.; Yu, Y.; Zhang, H.; Cai, C. Electrochemical aptasensor for exosomal proteins profiling based on DNA nanotetrahedron coupled with enzymatic signal amplification. Anal. Chim. Acta, 2020, 1130, 1-9.
[http://dx.doi.org/10.1016/j.aca.2020.07.012] [PMID: 32892927]
[83]
Sun, D.; Lu, J.; Wang, X.; Zhang, Y.; Chen, Z. Voltammetric aptamer based detection of hepg2 tumor cells by using an indium tin oxide electrode array and multifunctional nanoprobes. Mikrochim. Acta, 2017, 184(9), 3487-3496.
[http://dx.doi.org/10.1007/s00604-017-2376-z]
[84]
Sun, D.; Lu, J.; Chen, D.; Jiang, Y.; Wang, Z.; Qin, W.; Yu, Y.; Chen, Z.; Zhang, Y. Label-free electrochemical detection of HepG2 tumor cells with a self-assembled DNA nanostructure-based aptasensor. Sens. Actuators B Chem., 2018, 268, 359-367.
[http://dx.doi.org/10.1016/j.snb.2018.04.142]
[85]
Sun, D.; Lu, J.; Chen, Z.; Yu, Y.; Mo, M. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells. Anal. Chim. Acta, 2015, 885, 166-173.
[http://dx.doi.org/10.1016/j.aca.2015.05.027] [PMID: 26231902]
[86]
Chen, D.; Sun, D.; Wang, Z.; Qin, W.; Chen, L.; Zhou, L.; Zhang, Y. A DNA nanostructured aptasensor for the sensitive electrochemical detection of HepG2 cells based on multibranched hybridization chain reaction amplification strategy. Biosens. Bioelectron., 2018, 117(4), 416-421.
[http://dx.doi.org/10.1016/j.bios.2018.06.041] [PMID: 29966920]
[87]
Kashefi-Kheyrabadi, L.; Mehrgardi, M.A.; Wiechec, E.; Turner, A.P.F.; Tiwari, A. Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. Anal. Chem., 2014, 86(10), 4956-4960.
[http://dx.doi.org/10.1021/ac500375p] [PMID: 24754473]
[88]
Liu, N.; Fan, X.; Hou, H.; Gao, F.; Luo, X. Electrochemical sensing interfaces based on hierarchically architectured zwitterionic peptides for ultralow fouling detection of alpha fetoprotein in serum. Anal. Chim. Acta, 2021, 1146, 17-23.
[http://dx.doi.org/10.1016/j.aca.2020.12.031] [PMID: 33461713]
[89]
Huang, X.; Cui, B.; Ma, Y.; Yan, X.; Xia, L.; Zhou, N.; Wang, M.; He, L.; Zhang, Z. Three-dimensional nitrogen-doped mesoporous carbon nanomaterials derived from plant biomass: Cost-effective construction of label-free electrochemical aptasensor for sensitively detecting alpha-fetoprotein. Anal. Chim. Acta, 2019, 1078, 125-134.
[http://dx.doi.org/10.1016/j.aca.2019.06.009] [PMID: 31358210]
[90]
Li, W.; Chen, M.; Liang, J.; Lu, C.; Zhang, M.; Hu, F.; Zhou, Z.; Li, G. Electrochemical aptasensor for analyzing alpha-fetoprotein using RGO-CS-Fc nanocomposites integrated with gold-platinum nanoparticles. Anal. Methods, 2020, 12(41), 4956-4966.
[http://dx.doi.org/10.1039/D0AY01465F] [PMID: 33000769]
[91]
Gu, C.; Peng, Y.; Li, J.; Sen Liu, C.; Pang, H. Controllable synthesis of copper ion guided MIL-96 octadecahedron: Highly sensitive aptasensor toward alpha-fetoprotein. Appl. Mater. Today, 2020, 20, 100745.
[http://dx.doi.org/10.1016/j.apmt.2020.100745]
[92]
Heiat, M.; Negahdary, M. Sensitive diagnosis of alpha-fetoprotein by a label free nanoaptasensor designed by modified Au electrode with spindle-shaped gold nanostructure. Microchem. J., 2019, 148(2), 456-466.
[http://dx.doi.org/10.1016/j.microc.2019.05.004]
[93]
Li, G.; Li, S.; Wang, Z.; Xue, Y.; Dong, C.; Zeng, J.; Huang, Y.; Liang, J.; Zhou, Z. Label-free electrochemical aptasensor for detection of alpha-fetoprotein based on AFP-aptamer and thionin/reduced graphene oxide/gold nanoparticles. Anal. Biochem., 2018, 547(2), 37-44.
[http://dx.doi.org/10.1016/j.ab.2018.02.012] [PMID: 29452105]
[94]
Yang, S.; Zhang, F.; Wang, Z.; Liang, Q. A graphene oxide-based label-free electrochemical aptasensor for the detection of alpha-fetoprotein. Biosens. Bioelectron., 2018, 112(1), 186-192.
[http://dx.doi.org/10.1016/j.bios.2018.04.026] [PMID: 29705616]
[95]
Yang, X.; Zhao, C.; Zhang, C.; Wen, K.; Zhu, Y. Bi-directionally amplified ratiometric electrochemical aptasensor for the ultrasensitive detection of alpha-fetoprotein. Sens. Actuators B Chem., 2020, 323, 128666.
[http://dx.doi.org/10.1016/j.snb.2020.128666]
[96]
Han, B.; Dong, L.; Li, L.; Sha, L.; Cao, Y.; Zhao, J. Mild reduction-promoted sandwich aptasensing for simple and versatile detection of protein biomarkers. Sens. Actuators B Chem., 2020, 325, 128762.
[http://dx.doi.org/10.1016/j.snb.2020.128762]
[97]
Li, J.; Wang, B.; Gu, S.; Yang, Y.; Wang, Z.; Xiang, Y. Amperometric low potential aptasensor for the fucosylated golgi protein 73, a marker for hepatocellular carcinoma. Mikrochim. Acta, 2017, 184(9), 3131-3136.
[http://dx.doi.org/10.1007/s00604-017-2334-9]
[98]
Li, G.; Feng, H.; Shi, X.; Chen, M.; Liang, J.; Zhou, Z. Highly sensitive electrochemical aptasensor for Glypican-3 based on reduced graphene oxide-hemin nanocomposites modified on screen-printed electrode surface. Bioelectrochemistry, 2021, 138, 107696.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107696] [PMID: 33254049]
[99]
Shi, X.; Chen, M.; Feng, H.; Zhou, Z.; Wu, R.; Li, W.; Liang, J.; Chen, J.; Li, G. Glypican-3 electrochemical aptasensor based on reduced graphene oxide-chitosan-ferrocene deposition of platinum–palladium bimetallic nanoparticles. J. Appl. Electrochem., 2021, 51, 781-794.
[http://dx.doi.org/10.1007/s10800-021-01534-4]
[100]
Meirinho, S.G.; Dias, L.G.; Peres, A.M.; Rodrigues, L.R. Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX. Anal. Chim. Acta, 2017, 987, 25-37.
[http://dx.doi.org/10.1016/j.aca.2017.07.071] [PMID: 28916037]
[101]
Zhou, S.; Gu, C.; Li, Z.; Yang, L.; He, L.; Wang, M.; Huang, X.; Zhou, N.; Zhang, Z. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: Ultra-sensitive platform for the detection of osteopontin. Appl. Surf. Sci., 2019, 498(September), 143889.
[http://dx.doi.org/10.1016/j.apsusc.2019.143889]
[102]
Zhou, S.; Hu, M.; Huang, X.; Zhou, N.; Zhang, Z.; Wang, M.; Liu, Y.; He, L. Electrospun zirconium oxide embedded in graphene-like nanofiber for aptamer-based impedimetric bioassay toward osteopontin determination. Microchim. Acta, 2020, 187(4), 219.
[103]
Xing, Y.; Liu, J.; Sun, S.; Ming, T.; Wang, Y.; Luo, J.; Xiao, G.; Li, X.; Xie, J.; Cai, X. New electrochemical method for programmed death-ligand 1 detection based on a paper-based microfluidic aptasensor. Bioelectrochemistry, 2021, 140, 107789.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107789] [PMID: 33677221]
[104]
Hu, F.; Zhang, W.; Zhang, J.; Zhang, Q.; Sheng, T.; Gu, Y. An electrochemical biosensor for sensitive detection of MicroRNAs based on target-recycled non-enzymatic amplification. Sens. Actuators B Chem., 2018, 271(5), 15-23.
[http://dx.doi.org/10.1016/j.snb.2018.05.081]
[105]
Yammouri, G.; Mohammadi, H.; Amine, A. A highly sensitive electrochemical biosensor based on carbon black and gold nanoparticles modified pencil graphite electrode for MicroRNA-21 detection. Chem. Africa, 2019, 2(2), 291-300.
[http://dx.doi.org/10.1007/s42250-019-00058-x]
[106]
Sabahi, A.; Salahandish, R.; Ghaffarinejad, A.; Omidinia, E. Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer. Talanta, 2020, 209(12), 120595.
[http://dx.doi.org/10.1016/j.talanta.2019.120595] [PMID: 31892044]
[107]
Luo, L.; Wang, L.; Zeng, L.; Wang, Y.; Weng, Y.; Liao, Y.; Chen, T.; Xia, Y.; Zhang, J.; Chen, J. A ratiometric electrochemical DNA biosensor for detection of exosomal MicroRNA. Talanta, 2020, 207(4), 120298.
[http://dx.doi.org/10.1016/j.talanta.2019.120298] [PMID: 31594629]
[108]
Meng, T.; Jia, H.; An, S.; Wang, H.; Yang, X.; Zhang, Y. Pd nanoparticles-DNA layered nanoreticulation biosensor based on target-catalytic hairpin assembly for ultrasensitive and selective biosensing of MicroRNA-21. Sens. Actuators B Chem., 2020, 323(2), 128621.
[http://dx.doi.org/10.1016/j.snb.2020.128621]
[109]
Shin Low, S.; Pan, Y.; Ji, D.; Li, Y.; Lu, Y.; He, Y.; Chen, Q.; Liu, Q. Smartphone-based portable electrochemical biosensing system for detection of circulating MicroRNA-21 in saliva as a proof-of-concept. Sens. Actuators B Chem., 2020, 308(1), 127718.
[http://dx.doi.org/10.1016/j.snb.2020.127718]
[110]
Zouari, M.; Campuzano, S.; Pingarrón, J.M.; Raouafi, N. Femtomolar direct voltammetric determination of circulating miRNAs in sera of cancer patients using an enzymeless biosensor. Anal. Chim. Acta, 2020, 1104, 188-198.
[http://dx.doi.org/10.1016/j.aca.2020.01.016] [PMID: 32106951]
[111]
Meng, T.; Shang, N.; Nsabimana, A.; Ye, H.; Wang, H.; Wang, C.; Zhang, Y. An enzyme-free electrochemical biosensor based on target-catalytic hairpin assembly and Pd@UiO-66 for the ultrasensitive detection of microRNA-21. Anal. Chim. Acta, 2020, 1138, 59-68.
[http://dx.doi.org/10.1016/j.aca.2020.09.022] [PMID: 33161985]
[112]
Zhang, W.; Xu, H.; Zhao, X.; Tang, X.; Yang, S.; Yu, L.; Zhao, S.; Chang, K.; Chen, M. 3D DNA nanonet structure coupled with target-catalyzed hairpin assembly for dual-signal synergistically amplified electrochemical sensing of circulating microRNA. Anal. Chim. Acta, 2020, 1122, 39-47.
[http://dx.doi.org/10.1016/j.aca.2020.05.002] [PMID: 32503742]
[113]
Zhao, F.; Zhang, H.; Zheng, J. Novel electrochemical biosensing platform for MicroRNA detection based on G-quadruplex formation in nanochannels. Sens. Actuators B Chem., 2021, 327(9), 128898.
[http://dx.doi.org/10.1016/j.snb.2020.128898]
[114]
Meng, T.; Zhao, D.; Ye, H.; Feng, Y.; Wang, H.; Zhang, Y. Construction of an ultrasensitive electrochemical sensing platform for microRNA-21 based on interface impedance spectroscopy. J. Colloid Interface Sci., 2020, 578, 164-170.
[http://dx.doi.org/10.1016/j.jcis.2020.05.118] [PMID: 32521355]
[115]
Chai, H.; Wang, M.; Tang, L.; Miao, P. Ultrasensitive electrochemical detection of miRNA coupling tetrahedral DNA modified gold nanoparticles tags and catalyzed hairpin assembly. Anal. Chim. Acta, 2021, 1165, 338543.
[http://dx.doi.org/10.1016/j.aca.2021.338543] [PMID: 33975698]
[116]
Kasturi, S.; Eom, Y.; Torati, S.R.; Kim, C.G. Highly sensitive electrochemical biosensor based on naturally reduced RGO/Au nanocomposite for the detection of MiRNA-122 biomarker. J. Ind. Eng. Chem., 2021, 93, 186-195.
[http://dx.doi.org/10.1016/j.jiec.2020.09.022]
[117]
Hakimian, F.; Ghourchian, H. Ultrasensitive electrochemical biosensor for detection of microRNA-155 as a breast cancer risk factor. Anal. Chim. Acta, 2020, 1136, 1-8.
[http://dx.doi.org/10.1016/j.aca.2020.08.039] [PMID: 33081933]
[118]
Zhang, R.Y.; Luo, S.H.; Lin, X.M.; Hu, X.M.; Zhang, Y.; Zhang, X.H.; Wu, C.M.; Zheng, L.; Wang, Q. A novel electrochemical biosensor for exosomal microRNA-181 detection based on a catalytic hairpin assembly circuit. Anal. Chim. Acta, 2021, 1157, 338396.
[http://dx.doi.org/10.1016/j.aca.2021.338396] [PMID: 33832593]
[119]
Voccia, D.; Sosnowska, M.; Bettazzi, F.; Roscigno, G.; Fratini, E.; De Franciscis, V.; Condorelli, G.; Chitta, R.; D’Souza, F.; Kutner, W.; Palchetti, I. Direct determination of small RNAs using a biotinylated polythiophene impedimetric genosensor. Biosens. Bioelectron., 2017, 87(9), 1012-1019.
[http://dx.doi.org/10.1016/j.bios.2016.09.058] [PMID: 27686606]
[120]
Daneshpour, M.; Karimi, B.; Omidfar, K. Simultaneous detection of gastric cancer-involved miR-106a and let-7a through a dual-signal-marked electrochemical nanobiosensor. Biosens. Bioelectron., 2018, 109(1), 197-205.
[http://dx.doi.org/10.1016/j.bios.2018.03.022] [PMID: 29567564]
[121]
Elhakim, H.K.A.; Azab, S.M.; Fekry, A.M. A novel simple biosensor containing silver nanoparticles/propolis (bee glue) for microRNA let-7a determination. Mater. Sci. Eng. C, 2018, 92(5), 489-495.
[http://dx.doi.org/10.1016/j.msec.2018.06.063] [PMID: 30184774]
[122]
Soda, N.; Umer, M.; Kasetsirikul, S.; Salomon, C.; Kline, R.; Nguyen, N.T.; Rehm, B.H.A.; Shiddiky, M.J.A. An amplification-free method for the detection of HOTAIR long non-coding RNA. Anal. Chim. Acta, 2020, 1132, 66-73.
[http://dx.doi.org/10.1016/j.aca.2020.07.038] [PMID: 32980112]
[123]
Soda, N.; Umer, M.; Kashaninejad, N.; Kasetsirikul, S.; Kline, R.; Salomon, C.; Nguyen, N.T.; Shiddiky, M.J.A. PCR-free detection of long non-coding hotair rna in ovarian cancer cell lines and plasma samples. Cancers (Basel), 2020, 12(8), 22-33.
[http://dx.doi.org/10.3390/cancers12082233] [PMID: 32785167]
[124]
Jiang, X.; Zhu, Q.; Zhu, H.; Zhu, Z.; Miao, X. Antifouling lipid membrane coupled with silver nanoparticles for electrochemical detection of nucleic acids in biological fluids. Anal. Chim. Acta, 2021, 1177, 338751.
[http://dx.doi.org/10.1016/j.aca.2021.338751] [PMID: 34482888]
[125]
Jenike, A.E.; Halushka, M.K. miR-21: A non-specific biomarker of all maladies. Biomark. Res., 2021, 9(1), 18.
[http://dx.doi.org/10.1186/s40364-021-00272-1] [PMID: 33712063]
[126]
Dave, V.P.; Ngo, T.A.; Pernestig, A.K.; Tilevik, D.; Kant, K.; Nguyen, T.; Wolff, A.; Bang, D.D. MicroRNA amplification and detection technologies: Opportunities and challenges for point of care diagnostics. Lab. Invest., 2019, 99(4), 452-469.
[http://dx.doi.org/10.1038/s41374-018-0143-3] [PMID: 30542067]
[127]
Zhang, C.; Chen, J.; Sun, R.; Huang, Z.; Luo, Z.; Zhou, C.; Wu, M.; Duan, Y.; Li, Y. The recent development of hybridization chain reaction strategies in biosensors. ACS Sens., 2020, 5(10), 2977-3000.
[http://dx.doi.org/10.1021/acssensors.0c01453] [PMID: 32945653]
[128]
Yao, R.W.; Wang, Y.; Chen, L.L. Cellular functions of long noncoding RNAs. Nat. Cell Biol., 2019, 21(5), 542-551.
[http://dx.doi.org/10.1038/s41556-019-0311-8] [PMID: 31048766]
[129]
Zhang, H.; Liao, Z.; Liu, F.; Su, C.; Zhu, H.; Li, Y.; Tao, R.; Liang, H.; Zhang, B.; Zhang, X. Long noncoding RNA HULC promotes hepatocellular carcinoma progression. Aging (Albany NY), 2019, 11(20), 9111-9127.
[http://dx.doi.org/10.18632/aging.102378] [PMID: 31645479]
[130]
Hai, X.; Li, Y.; Zhu, C.; Song, W.; Cao, J.; Bi, S. DNA-based label-free electrochemical biosensors: from principles to applications. Trends Anal. Chem., 2020, 133, 116098.
[http://dx.doi.org/10.1016/j.trac.2020.116098]
[131]
Singh, A.K.; Kumar, R.; Pandey, A.K. Hepatocellular carcinoma: causes, mechanism of progression and biomarkers. Curr. Chem. Genomics Transl. Med., 2018, 12(1), 9-26.
[http://dx.doi.org/10.2174/2213988501812010009] [PMID: 30069430]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy