Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Aptamers and New Bioreceptors for the Electrochemical Detection of Biomarkers Expressed in Hepatocellular Carcinoma

Author(s): Alexandra Pusta, Mihaela Tertis, Florin Graur, Cecilia Cristea* and Nadim Al Hajjar

Volume 29, Issue 25, 2022

Page: [4363 - 4390] Pages: 28

DOI: 10.2174/0929867329666220222113707

Price: $65

Abstract

Hepatocellular carcinoma is a malignancy associated with high mortality and increasing incidence. Early detection of this disease could help increase survival and overall patient benefit. Non-invasive strategies for the diagnosis of this medical condition are of utmost importance. In this scope, the detection of hepatocellular carcinoma biomarkers can provide a useful diagnostic tool. Aptamers are short, single-stranded DNAs or RNAs that can specifically bind selected analytes and act as pseudo-biorecognition elements that can be employed for electrode functionalization. Also, other types of DNA sequences can be used to construct DNA-based biosensors applied for the quantification of hepatocellular carcinoma biomarkers. Herein, we analyze recent examples of aptasensors and DNA biosensors for the detection of hepatocellular carcinoma biomarkers, like micro- RNAs, long non-coding RNAs, exosomes, circulating tumor cells, and proteins. The literature data are discussed comparatively in a critical manner, highlighting the advantages of using electrochemical biosensors in diagnosis, as well as the use of nanomaterials and biocomponents in the functionalization of electrodes for improved sensitivity and selectivity.

Keywords: Hepatocellular carcinoma (HCC), aptamers, biomarkers, electrochemical biosensors, DNA sequences, miRNAs.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6.
[http://dx.doi.org/10.1038/s41572-020-00240-3] [PMID: 33479224]
[3]
Kim, E.; Viatour, P. Hepatocellular carcinoma: old friends and new tricks. Exp. Mol. Med., 2020, 52(12), 1898-1907.
[http://dx.doi.org/10.1038/s12276-020-00527-1] [PMID: 33268834]
[4]
Singal, A.G.; Lampertico, P.; Nahon, P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J. Hepatol., 2020, 72(2), 250-261.
[http://dx.doi.org/10.1016/j.jhep.2019.08.025] [PMID: 31954490]
[5]
Sangro, B.; Sarobe, P.; Hervás-Stubbs, S.; Melero, I. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(8), 525-543.
[http://dx.doi.org/10.1038/s41575-021-00438-0] [PMID: 33850328]
[6]
Ferrante, N.D.; Pillai, A.; Singal, A.G. Update on the diagnosis and treatment of hepatocellular carcinoma. Gastroenterol. Hepatol. (N. Y.), 2020, 16(10), 506-516.
[PMID: 34017223]
[7]
Atkinson, A.J.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Schooley, R.T.; Spilker, B.A.; Woodcock, J.; Zeger, S.L. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 2001, 69(3), 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[8]
Parikh, N.D.; Mehta, A.S.; Singal, A.G.; Block, T.; Marrero, J.A.; Lok, A.S. Biomarkers for the early detection of hepatocellular carcinoma. Cancer Epidemiol. Biomarkers Prev., 2020, 29(12), 2495-2503.
[http://dx.doi.org/10.1158/1055-9965.EPI-20-0005] [PMID: 32238405]
[9]
Abreu, P.; Ferreira, R.; Mineli, V.; Ribeiro, M.A.; Ferreira, F.G.; DE Mello Vianna, R.M.; Tomasich, F.D.S.; Szutan, L.A. Alternative biomarkers to predict tumor biology in hepatocellular carcinoma. Anticancer Res., 2020, 40(12), 6573-6784.
[http://dx.doi.org/10.21873/anticanres.14682] [PMID: 33288552]
[10]
Pan, Y.; Chen, H.; Yu, J. Biomarkers in hepatocellular carcinoma: current status and future perspectives. Biomedicines, 2020, 8(12), 1-17.
[http://dx.doi.org/10.3390/biomedicines8120576] [PMID: 33297335]
[11]
Galle, P.R.; Forner, A.; Llovet, J.M.; Mazzaferro, V.; Piscaglia, F.; Raoul, J.L.; Schirmacher, P.; Vilgrain, V. EASL clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol., 2018, 69(1), 182-236.
[http://dx.doi.org/10.1016/j.jhep.2018.03.019] [PMID: 29628281]
[12]
Chen, J.; Wang, J.; Cao, D.; Yang, J.; Shen, K.; Huang, H.; Shi, X. Alpha-fetoprotein (AFP)-producing epithelial ovarian carcinoma (EOC): A retrospective study of 27 cases. Arch. Gynecol. Obstet., 2021, 304(4), 1043-1053.
[http://dx.doi.org/10.1007/s00404-021-06017-7] [PMID: 33751209]
[13]
Zacharakis, G.; Aleid, A.; Aldossari, K.K. New and old biomarkers of hepatocellular carcinoma. Hepatoma Res., 2018, 4(10), 65.
[http://dx.doi.org/10.20517/2394-5079.2018.76]
[14]
Qu, J.; Yang, J.; Chen, M.; Cui, L.; Wang, T.; Gao, W.; Tian, J.; Wei, R. MicroRNA-21 as a diagnostic marker for hepatocellular carcinoma: A systematic review and meta-analysis. Pak. J. Med. Sci., 2019, 35(5), 1466-1471.
[http://dx.doi.org/10.12669/pjms.35.5.685] [PMID: 31489028]
[15]
Wong, C.M.; Tsang, F.H.; Ng, I.O.L. Non-coding RNAs in hepatocellular carcinoma: Molecular functions and pathological implications. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(3), 137-151.
[http://dx.doi.org/10.1038/nrgastro.2017.169] [PMID: 29317776]
[16]
De Stefano, F.; Chacon, E.; Turcios, L.; Marti, F.; Gedaly, R. Novel biomarkers in hepatocellular carcinoma. Dig. Liver Dis., 2018, 50(11), 1115-1123.
[http://dx.doi.org/10.1016/j.dld.2018.08.019] [PMID: 30217732]
[17]
Duan, X.; Hu, J.; Wang, Y.; Gao, J.; Peng, D.; Xia, L. MicroRNA-145: A promising biomarker for hepatocellular carcinoma (HCC). Gene, 2014, 541(1), 67-68.
[http://dx.doi.org/10.1016/j.gene.2014.03.018] [PMID: 24630966]
[18]
Ciui, B.; Jambrec, D.; Sandulescu, R.; Cristea, C. Bioelectrochemistry for MiRNA Detection. Curr. Opin. Electrochem., 2017, 5(1), 183-192.
[http://dx.doi.org/10.1016/j.coelec.2017.09.014]
[19]
Jopling, C. Liver-Specific MicroRNA-122. RNA Biol., 2012, 9(2), 1-6.
[20]
Mocan, T.; Ilies, M.; Nenu, I.; Craciun, R.; Horhat, A.; Susa, R.; Minciuna, I.; Rusu, I.; Mocan, L.P.; Seicean, A.; Iuga, C.A.; Hajjar, N.A.; Sparchez, M.; Leucuta, D.C.; Sparchez, Z. Serum levels of soluble programmed death-ligand 1 (sPD-L1): A possible biomarker in predicting post-treatment outcomes in patients with early hepatocellular carcinoma. Int. Immunopharmacol., 2021, 94(2), 107467.
[http://dx.doi.org/10.1016/j.intimp.2021.107467] [PMID: 33611059]
[21]
Sasaki, R.; Kanda, T.; Yokosuka, O.; Kato, N.; Matsuoka, S.; Moriyama, M. Exosomes and hepatocellular carcinoma: From bench to bedside. Int. J. Mol. Sci., 2019, 20(6), 1-18.
[http://dx.doi.org/10.3390/ijms20061406] [PMID: 30897788]
[22]
Chen, W.; Mao, Y.; Liu, C.; Wu, H.; Chen, S. Exosome in hepatocellular carcinoma: an update. J. Cancer, 2021, 12(9), 2526-2536.
[http://dx.doi.org/10.7150/jca.54566] [PMID: 33854614]
[23]
Ning, Y.; Hu, J.; Lu, F. Aptamers used for biosensors and targeted therapy. Biomed. Pharmacother., 2020, 132(10), 110902.
[http://dx.doi.org/10.1016/j.biopha.2020.110902] [PMID: 33096353]
[24]
Ștefan, G.; Hosu, O.; De Wael, K.; Lobo-Castañón, M.J.; Cristea, C. Aptamers in biomedicine: Selection strategies and recent advances. Electrochim. Acta, 2021, 376, 137994.
[http://dx.doi.org/10.1016/j.electacta.2021.137994]
[25]
Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem., 2017, 1(10), 0076.
[http://dx.doi.org/10.1038/s41570-017-0076]
[26]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[27]
Torkamanian-Afshar, M.; Nematzadeh, S.; Tabarzad, M.; Najafi, A.; Lanjanian, H.; Masoudi-Nejad, A. In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm. Mol. Divers., 2021, 25(3), 1395-1407.
[http://dx.doi.org/10.1007/s11030-021-10192-9] [PMID: 33554306]
[28]
Bashir, A.; Yang, Q.; Wang, J.; Hoyer, S.; Chou, W.; McLean, C.; Davis, G.; Gong, Q.; Armstrong, Z.; Jang, J.; Kang, H.; Pawlosky, A.; Scott, A.; Dahl, G.E.; Berndl, M.; Dimon, M.; Ferguson, B.S. Machine learning guided aptamer refinement and discovery. Nat. Commun., 2021, 12(1), 2366.
[http://dx.doi.org/10.1038/s41467-021-22555-9] [PMID: 33888692]
[29]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
[30]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[31]
Alshaer, W.; Hillaireau, H.; Fattal, E. Aptamer-guided nanomedicines for anticancer drug delivery. Adv. Drug Deliv. Rev., 2018, 134, 122-137.
[http://dx.doi.org/10.1016/j.addr.2018.09.011] [PMID: 30267743]
[32]
He, F.; Wen, N.; Xiao, D.; Yan, J.; Xiong, H.; Cai, S.; Liu, Z.; Liu, Y. Aptamer-based targeted drug delivery systems: Current potential and challenges. Curr. Med. Chem., 2020, 27(13), 2189-2219.
[http://dx.doi.org/10.2174/0929867325666181008142831] [PMID: 30295183]
[33]
Malecka, K.; Mikuła, E.; Ferapontova, E.E. Design strategies for electrochemical aptasensors for cancer diagnostic devices. Sensors (Basel), 2021, 21(3), 1-41.
[http://dx.doi.org/10.3390/s21030736] [PMID: 33499136]
[34]
Pellestor, F.; Paulasova, P. The peptide nucleic acids (PNAs), powerful tools for molecular genetics and cytogenetics. Eur. J. Hum. Genet., 2004, 12(9), 694-700.
[http://dx.doi.org/10.1038/sj.ejhg.5201226] [PMID: 15213706]
[35]
Díaz-Fernández, A.; Lorenzo-Gómez, R.; Miranda-Castro, R.; de-Los-Santos-Álvarez, N.; Lobo-Castañón, M.J. Electrochemical aptasensors for cancer diagnosis in biological fluids - A review. Anal. Chim. Acta, 2020, 1124, 1-19.
[http://dx.doi.org/10.1016/j.aca.2020.04.022] [PMID: 32534661]
[36]
Forouzanfar, S.; Alam, F.; Pala, N.; Wang, C. Review -a review of electrochemical aptasensors for label-free cancer diagnosis. J. Electrochem. Soc., 2020, 167(6), 067511.
[http://dx.doi.org/10.1149/1945-7111/ab7f20]
[37]
Negahdary, M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens. Bioelectron., 2020, 152(12), 112018.
[http://dx.doi.org/10.1016/j.bios.2020.112018] [PMID: 32056737]
[38]
Ye, J.; Xu, M.; Tian, X.; Cai, S.; Zeng, S. Research advances in the detection of miRNA. J. Pharm. Anal., 2019, 9(4), 217-226.
[http://dx.doi.org/10.1016/j.jpha.2019.05.004] [PMID: 31452959]
[39]
Jet, T.; Gines, G.; Rondelez, Y.; Taly, V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem. Soc. Rev., 2021, 50(6), 4141-4161.
[http://dx.doi.org/10.1039/D0CS00609B] [PMID: 33538706]
[40]
de Planell-Saguer, M.; Rodicio, M.C. Detection methods for microRNAs in clinic practice. Clin. Biochem., 2013, 46(10-11), 869-878.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.02.017] [PMID: 23499588]
[41]
Krepelkova, I.; Mrackova, T.; Izakova, J.; Dvorakova, B.; Chalupova, L.; Mikulik, R.; Slaby, O.; Bartos, M.; Ruzicka, V. Evaluation of miRNA detection methods for the analytical characteristic necessary for clinical utilization. Biotechniques, 2019, 66(6), 277-284.
[http://dx.doi.org/10.2144/btn-2019-0021] [PMID: 31124705]
[42]
Kappel, A.; Keller, A. miRNA assays in the clinical laboratory: Workflow, detection technologies and automation aspects. Clin. Chem. Lab. Med., 2017, 55(5), 636-647.
[http://dx.doi.org/10.1515/cclm-2016-0467] [PMID: 27987355]
[43]
Wu, L.; Qu, X. Cancer biomarker detection: Recent achievements and challenges. Chem. Soc. Rev., 2015, 44(10), 2963-2997.
[http://dx.doi.org/10.1039/C4CS00370E] [PMID: 25739971]
[44]
Lequin, R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem., 2005, 51(12), 2415-2418.
[http://dx.doi.org/10.1373/clinchem.2005.051532] [PMID: 16179424]
[45]
Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 2015, 72, 4-15.
[http://dx.doi.org/10.1016/j.peptides.2015.04.012] [PMID: 25908411]
[46]
Butler, J.E. Enzyme-linked immunosorbent assay. J. Immunoassay, 2000, 21(2-3), 165-209.
[http://dx.doi.org/10.1080/01971520009349533] [PMID: 10929886]
[47]
Kałuzna-Czaplińska, J.; Jóźwik, J. Current applications of chromatographic methods for diagnosis and identification of potential biomarkers in cancer. Trends Anal. Chem., 2014, 56, 1-12.
[http://dx.doi.org/10.1016/j.trac.2013.12.007]
[48]
Wang, H.; Shi, T.; Qian, W.J.; Liu, T.; Kagan, J.; Srivastava, S.; Smith, R.D.; Rodland, K.D.; Camp, D.G. Clinical impact of recent advances in lc-ms for cancer biomarker discovery and verification. Expert Rev Proteomics, 2016, 13(1), 99-114.
[49]
Wu, H.; Xue, R.; Dong, L.; Liu, T.; Deng, C.; Zeng, H.; Shen, X. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal. Chim. Acta, 2009, 648(1), 98-104.
[http://dx.doi.org/10.1016/j.aca.2009.06.033] [PMID: 19616694]
[50]
Cao, H.; Huang, H.; Xu, W.; Chen, D.; Yu, J.; Li, J.; Li, L. Fecal metabolome profiling of liver cirrhosis and hepatocellular carcinoma patients by ultra performance liquid chromatography-mass spectrometry. Anal. Chim. Acta, 2011, 691(1-2), 68-75.
[http://dx.doi.org/10.1016/j.aca.2011.02.038] [PMID: 21458633]
[51]
Chen, S.; Kong, H.; Lu, X.; Li, Y.; Yin, P.; Zeng, Z.; Xu, G. Pseudotargeted metabolomics method and its application in serum biomarker discovery for hepatocellular carcinoma based on ultra high-performance liquid chromatography/triple quadrupole mass spectrometry. Anal. Chem., 2013, 85(17), 8326-8333.
[http://dx.doi.org/10.1021/ac4016787] [PMID: 23889541]
[52]
Zhu, X.; Gao, T. Spectrometry. Nano-Inspired Biosensors for Protein Assay with Clinical Applications; Li, G., Ed.; Elsevier Science B. V: Amsterdam, 2019, pp. 237-264.
[http://dx.doi.org/10.1016/B978-0-12-815053-5.00010-6]
[53]
Jussila, H.; Yang, H.; Granqvist, N.; Sun, Z. Surface plasmon resonance for characterization of large-area atomic-layer graphene film. Optica, 2016, 3(2), 151-158.
[http://dx.doi.org/10.1364/OPTICA.3.000151]
[54]
Xue, T.; Liang, W.; Li, Y.; Sun, Y.; Xiang, Y.; Zhang, Y.; Dai, Z.; Duo, Y.; Wu, L.; Qi, K.; Shivananju, B.N.; Zhang, L.; Cui, X.; Zhang, H.; Bao, Q. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun., 2019, 10(1), 28.
[http://dx.doi.org/10.1038/s41467-018-07947-8] [PMID: 30604756]
[55]
Azzouz, A.; Hejji, L.; Kim, K-H.; Kukkar, D.; Souhail, B.; Bhardwaj, N.; Brown, R.J.C.; Zhang, W. Advances in surface plasmon resonance-based biosensor technologies for cancer biomarker detection. Biosens. Bioelectron., 2022, 197, 113767.
[http://dx.doi.org/10.1016/j.bios.2021.113767] [PMID: 34768064]
[56]
Lim, H.J.; Saha, T.; Tey, B.T.; Tan, W.S.; Ooi, C.W. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens. Bioelectron., 2020, 168, 112513.
[http://dx.doi.org/10.1016/j.bios.2020.112513] [PMID: 32889395]
[57]
Manakhova, A.; Makhneva, E.; Skládal, P.; Necas, D.; Cechale, J.; Kalina, L.; Eliás, M.; Zajícková, L. The robust bio-immobilization based on pulsed plasma polymerization of cyclopropylamine and glutaraldehyde coupling chemistry. Appl. Surf. Sci., 2016, 360, 28-36.
[http://dx.doi.org/10.1016/j.apsusc.2015.10.178]
[58]
Makhneva, E.; Manakhov, A.; Skládal, P.; Zajíčková, L. Development of effective QCM biosensors by cyclopropylamine plasma polymerization and antibody immobilization using cross-linking reactions. Surf. Coat. Tech., 2016, 290, 116-123.
[http://dx.doi.org/10.1016/j.surfcoat.2015.09.035]
[59]
Farka, Z.; Kovář, D.; Skládal, P. Rapid detection of microorganisms based on active and passive modes of QCM. Sensors (Basel), 2014, 15(1), 79-92.
[http://dx.doi.org/10.3390/s150100079] [PMID: 25545267]
[60]
Silva, A.L.; Pinto, E.M.; Ponzio, E.A.; Figueiredo, E.C.; Semaan, F.S. Bioinspired chemically modified electrodes for electroanalysis. In: New developments in Analytical Chemistry Research; Granger, B., Ed.; Nova Science Publishers: New York, 2015; pp. 41-86.
[61]
Chikkaveeraiah, B.V.; Bhirde, A.A.; Morgan, N.Y.; Eden, H.S.; Chen, X. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano, 2012, 6(8), 6546-6561.
[http://dx.doi.org/10.1021/nn3023969] [PMID: 22835068]
[62]
Cui, B.; Liu, P.; Liu, X.; Liu, S.; Zhang, Z. Molecularly imprinted polymers for electrochemical detection and analysis: progress and perspectives. J. Mater. Res. Technol., 2020, 9(6), 12568-12584.
[http://dx.doi.org/10.1016/j.jmrt.2020.08.052]
[63]
El Aamri, M.; Yammouri, G.; Mohammadi, H.; Amine, A.; Korri-Youssoufi, H. Electrochemical biosensors for detection of microrna as a cancer biomarker: Pros and cons. Biosensors (Basel), 2020, 10(11), E186.
[http://dx.doi.org/10.3390/bios10110186] [PMID: 33233700]
[64]
Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors definitions and classification. Pure Appl. Chem., 1991, 63(9), 1247-1250.
[http://dx.doi.org/10.1351/pac199163091247]
[65]
Thevenot, D.; Toth, K.; Durst, R.; Wilson, G. Electrochemical biosensors: Recommended definition and classification. Pure Appl. Chem., 1999, 71(12), 2333-2348.
[http://dx.doi.org/10.1351/pac199971122333]
[66]
Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev., 2017, 117(15), 9973-10042.
[http://dx.doi.org/10.1021/acs.chemrev.7b00037] [PMID: 28753280]
[67]
Ruiz Simões, F.; Xavier, M.G. Electrochemical sensors. In: Nanoscience and its Applications; Da Roz, A.; Ferreira, M.; de Lima Leite, F.; Oliveira, O., Eds.; Applied Science Publishers: Oxford, 2017; pp. 155-178.
[http://dx.doi.org/10.1016/B978-0-323-49780-0.00006-5]
[68]
Farghaly, O.A.; Abdel Hameed, R.S.; Abu-Nawwas, A.A.H. Analytical application using modern electrochemical techniques. Int. J. Electrochem. Sci., 2014, 9(6), 3287-3318.
[69]
Harris, D. Electroanalytical techniques. In: Quantitative Chemical Analysis; W.H. Freeman and Company: New-York, 2010; pp. 361-392.
[70]
Amine, A.; Mohammadi, H. Amperometry. In: Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P.; Poole, C.; Townshend, A.; Miró, M.B.T.-E., Eds.; Academic Press: Oxford, 2019; pp. 85-98.
[71]
Lisdat, F.; Schäfer, D. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem., 2008, 391(5), 1555-1567.
[http://dx.doi.org/10.1007/s00216-008-1970-7] [PMID: 18414837]
[72]
Sassolas, A.; Blum, L.J.; Béatrice, D.L.B. Electrochemical aptasensors. Electroanalysis, 2009, 21(11), 1237-1250.
[http://dx.doi.org/10.1002/elan.200804554]
[73]
Rhouati, A.; Catanante, G.; Nunes, G.; Hayat, A.; Marty, J.L. Label-free aptasensors for the detection of mycotoxins. Sensors (Basel), 2016, 16(12), 1-21.
[http://dx.doi.org/10.3390/s16122178] [PMID: 27999353]
[74]
Hosseinzadeh, L.; Mazloum-Ardakani, M. Advances in aptasensor technology; 1st ed. Elsevier, 2020, Vol. 99.
[75]
Ikebukuro, K.; Kiyohara, C.; Sode, K. Electrochemical detection of protein using a double aptamer sandwich. Anal. Lett., 2004, 37(14), 2901-2909.
[http://dx.doi.org/10.1081/AL-200035778]
[76]
Wang, Y.; Zhang, X.; Zhao, L.; Bao, T.; Wen, W.; Zhang, X.; Wang, S. Integrated amplified aptasensor with in-situ precise preparation of copper nanoclusters for ultrasensitive electrochemical detection of microRNA 21. Biosens. Bioelectron., 2017, 98, 386-391.
[http://dx.doi.org/10.1016/j.bios.2017.07.009] [PMID: 28709088]
[77]
Jia, Q.; Huang, S.; Hu, M.; Song, Y.; Wang, M.; Zhang, Z.; He, L. Polyoxometalate-derived MoS2 nanosheets embedded around iron-hydroxide nanorods as the platform for sensitively determining MiRNA-21. Sens. Actuators B Chem., 2020, 323(1), 128647.
[http://dx.doi.org/10.1016/j.snb.2020.128647]
[78]
Mohamadi, M.; Mostafavi, A.; Torkzadeh-Mahani, M. Design of a sensitive and selective electrochemical aptasensor for the determination of the complementary cDNA of miRNA-145 based on the intercalation and electrochemical reduction of doxorubicin. J. AOAC Int., 2017, 100(6), 1754-1760.
[http://dx.doi.org/10.5740/jaoacint.16-0302] [PMID: 28421985]
[79]
Cao, Z.; Duan, F.; Huang, X.; Liu, Y.; Zhou, N.; Xia, L.; Zhang, Z.; Du, M. A multiple aptasensor for ultrasensitive detection of miRNAs by using covalent-organic framework nanowire as platform and shell-encoded gold nanoparticles as signal labels. Anal. Chim. Acta, 2019, 1082, 176-185.
[http://dx.doi.org/10.1016/j.aca.2019.07.062] [PMID: 31472706]
[80]
Duan, F.; Guo, C.; Hu, M.; Song, Y.; Wang, M.; He, L.; Zhang, Z.; Pettinari, R.; Zhou, L. Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of MicroRNA-155. Sens. Actuators B Chem., 2020, 310(12), 127844.
[http://dx.doi.org/10.1016/j.snb.2020.127844]
[81]
Wang, S.; Zhang, L.; Wan, S.; Cansiz, S.; Cui, C.; Liu, Y.; Cai, R.; Hong, C.; Teng, I.T.; Shi, M.; Wu, Y.; Dong, Y.; Tan, W. Aptasensor with expanded nucleotide using dna nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano, 2017, 11(4), 3943-3949.
[http://dx.doi.org/10.1021/acsnano.7b00373] [PMID: 28287705]
[82]
Jiang, J.; Yu, Y.; Zhang, H.; Cai, C. Electrochemical aptasensor for exosomal proteins profiling based on DNA nanotetrahedron coupled with enzymatic signal amplification. Anal. Chim. Acta, 2020, 1130, 1-9.
[http://dx.doi.org/10.1016/j.aca.2020.07.012] [PMID: 32892927]
[83]
Sun, D.; Lu, J.; Wang, X.; Zhang, Y.; Chen, Z. Voltammetric aptamer based detection of hepg2 tumor cells by using an indium tin oxide electrode array and multifunctional nanoprobes. Mikrochim. Acta, 2017, 184(9), 3487-3496.
[http://dx.doi.org/10.1007/s00604-017-2376-z]
[84]
Sun, D.; Lu, J.; Chen, D.; Jiang, Y.; Wang, Z.; Qin, W.; Yu, Y.; Chen, Z.; Zhang, Y. Label-free electrochemical detection of HepG2 tumor cells with a self-assembled DNA nanostructure-based aptasensor. Sens. Actuators B Chem., 2018, 268, 359-367.
[http://dx.doi.org/10.1016/j.snb.2018.04.142]
[85]
Sun, D.; Lu, J.; Chen, Z.; Yu, Y.; Mo, M. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells. Anal. Chim. Acta, 2015, 885, 166-173.
[http://dx.doi.org/10.1016/j.aca.2015.05.027] [PMID: 26231902]
[86]
Chen, D.; Sun, D.; Wang, Z.; Qin, W.; Chen, L.; Zhou, L.; Zhang, Y. A DNA nanostructured aptasensor for the sensitive electrochemical detection of HepG2 cells based on multibranched hybridization chain reaction amplification strategy. Biosens. Bioelectron., 2018, 117(4), 416-421.
[http://dx.doi.org/10.1016/j.bios.2018.06.041] [PMID: 29966920]
[87]
Kashefi-Kheyrabadi, L.; Mehrgardi, M.A.; Wiechec, E.; Turner, A.P.F.; Tiwari, A. Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. Anal. Chem., 2014, 86(10), 4956-4960.
[http://dx.doi.org/10.1021/ac500375p] [PMID: 24754473]
[88]
Liu, N.; Fan, X.; Hou, H.; Gao, F.; Luo, X. Electrochemical sensing interfaces based on hierarchically architectured zwitterionic peptides for ultralow fouling detection of alpha fetoprotein in serum. Anal. Chim. Acta, 2021, 1146, 17-23.
[http://dx.doi.org/10.1016/j.aca.2020.12.031] [PMID: 33461713]
[89]
Huang, X.; Cui, B.; Ma, Y.; Yan, X.; Xia, L.; Zhou, N.; Wang, M.; He, L.; Zhang, Z. Three-dimensional nitrogen-doped mesoporous carbon nanomaterials derived from plant biomass: Cost-effective construction of label-free electrochemical aptasensor for sensitively detecting alpha-fetoprotein. Anal. Chim. Acta, 2019, 1078, 125-134.
[http://dx.doi.org/10.1016/j.aca.2019.06.009] [PMID: 31358210]
[90]
Li, W.; Chen, M.; Liang, J.; Lu, C.; Zhang, M.; Hu, F.; Zhou, Z.; Li, G. Electrochemical aptasensor for analyzing alpha-fetoprotein using RGO-CS-Fc nanocomposites integrated with gold-platinum nanoparticles. Anal. Methods, 2020, 12(41), 4956-4966.
[http://dx.doi.org/10.1039/D0AY01465F] [PMID: 33000769]
[91]
Gu, C.; Peng, Y.; Li, J.; Sen Liu, C.; Pang, H. Controllable synthesis of copper ion guided MIL-96 octadecahedron: Highly sensitive aptasensor toward alpha-fetoprotein. Appl. Mater. Today, 2020, 20, 100745.
[http://dx.doi.org/10.1016/j.apmt.2020.100745]
[92]
Heiat, M.; Negahdary, M. Sensitive diagnosis of alpha-fetoprotein by a label free nanoaptasensor designed by modified Au electrode with spindle-shaped gold nanostructure. Microchem. J., 2019, 148(2), 456-466.
[http://dx.doi.org/10.1016/j.microc.2019.05.004]
[93]
Li, G.; Li, S.; Wang, Z.; Xue, Y.; Dong, C.; Zeng, J.; Huang, Y.; Liang, J.; Zhou, Z. Label-free electrochemical aptasensor for detection of alpha-fetoprotein based on AFP-aptamer and thionin/reduced graphene oxide/gold nanoparticles. Anal. Biochem., 2018, 547(2), 37-44.
[http://dx.doi.org/10.1016/j.ab.2018.02.012] [PMID: 29452105]
[94]
Yang, S.; Zhang, F.; Wang, Z.; Liang, Q. A graphene oxide-based label-free electrochemical aptasensor for the detection of alpha-fetoprotein. Biosens. Bioelectron., 2018, 112(1), 186-192.
[http://dx.doi.org/10.1016/j.bios.2018.04.026] [PMID: 29705616]
[95]
Yang, X.; Zhao, C.; Zhang, C.; Wen, K.; Zhu, Y. Bi-directionally amplified ratiometric electrochemical aptasensor for the ultrasensitive detection of alpha-fetoprotein. Sens. Actuators B Chem., 2020, 323, 128666.
[http://dx.doi.org/10.1016/j.snb.2020.128666]
[96]
Han, B.; Dong, L.; Li, L.; Sha, L.; Cao, Y.; Zhao, J. Mild reduction-promoted sandwich aptasensing for simple and versatile detection of protein biomarkers. Sens. Actuators B Chem., 2020, 325, 128762.
[http://dx.doi.org/10.1016/j.snb.2020.128762]
[97]
Li, J.; Wang, B.; Gu, S.; Yang, Y.; Wang, Z.; Xiang, Y. Amperometric low potential aptasensor for the fucosylated golgi protein 73, a marker for hepatocellular carcinoma. Mikrochim. Acta, 2017, 184(9), 3131-3136.
[http://dx.doi.org/10.1007/s00604-017-2334-9]
[98]
Li, G.; Feng, H.; Shi, X.; Chen, M.; Liang, J.; Zhou, Z. Highly sensitive electrochemical aptasensor for Glypican-3 based on reduced graphene oxide-hemin nanocomposites modified on screen-printed electrode surface. Bioelectrochemistry, 2021, 138, 107696.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107696] [PMID: 33254049]
[99]
Shi, X.; Chen, M.; Feng, H.; Zhou, Z.; Wu, R.; Li, W.; Liang, J.; Chen, J.; Li, G. Glypican-3 electrochemical aptasensor based on reduced graphene oxide-chitosan-ferrocene deposition of platinum–palladium bimetallic nanoparticles. J. Appl. Electrochem., 2021, 51, 781-794.
[http://dx.doi.org/10.1007/s10800-021-01534-4]
[100]
Meirinho, S.G.; Dias, L.G.; Peres, A.M.; Rodrigues, L.R. Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX. Anal. Chim. Acta, 2017, 987, 25-37.
[http://dx.doi.org/10.1016/j.aca.2017.07.071] [PMID: 28916037]
[101]
Zhou, S.; Gu, C.; Li, Z.; Yang, L.; He, L.; Wang, M.; Huang, X.; Zhou, N.; Zhang, Z. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: Ultra-sensitive platform for the detection of osteopontin. Appl. Surf. Sci., 2019, 498(September), 143889.
[http://dx.doi.org/10.1016/j.apsusc.2019.143889]
[102]
Zhou, S.; Hu, M.; Huang, X.; Zhou, N.; Zhang, Z.; Wang, M.; Liu, Y.; He, L. Electrospun zirconium oxide embedded in graphene-like nanofiber for aptamer-based impedimetric bioassay toward osteopontin determination. Microchim. Acta, 2020, 187(4), 219.
[103]
Xing, Y.; Liu, J.; Sun, S.; Ming, T.; Wang, Y.; Luo, J.; Xiao, G.; Li, X.; Xie, J.; Cai, X. New electrochemical method for programmed death-ligand 1 detection based on a paper-based microfluidic aptasensor. Bioelectrochemistry, 2021, 140, 107789.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107789] [PMID: 33677221]
[104]
Hu, F.; Zhang, W.; Zhang, J.; Zhang, Q.; Sheng, T.; Gu, Y. An electrochemical biosensor for sensitive detection of MicroRNAs based on target-recycled non-enzymatic amplification. Sens. Actuators B Chem., 2018, 271(5), 15-23.
[http://dx.doi.org/10.1016/j.snb.2018.05.081]
[105]
Yammouri, G.; Mohammadi, H.; Amine, A. A highly sensitive electrochemical biosensor based on carbon black and gold nanoparticles modified pencil graphite electrode for MicroRNA-21 detection. Chem. Africa, 2019, 2(2), 291-300.
[http://dx.doi.org/10.1007/s42250-019-00058-x]
[106]
Sabahi, A.; Salahandish, R.; Ghaffarinejad, A.; Omidinia, E. Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer. Talanta, 2020, 209(12), 120595.
[http://dx.doi.org/10.1016/j.talanta.2019.120595] [PMID: 31892044]
[107]
Luo, L.; Wang, L.; Zeng, L.; Wang, Y.; Weng, Y.; Liao, Y.; Chen, T.; Xia, Y.; Zhang, J.; Chen, J. A ratiometric electrochemical DNA biosensor for detection of exosomal MicroRNA. Talanta, 2020, 207(4), 120298.
[http://dx.doi.org/10.1016/j.talanta.2019.120298] [PMID: 31594629]
[108]
Meng, T.; Jia, H.; An, S.; Wang, H.; Yang, X.; Zhang, Y. Pd nanoparticles-DNA layered nanoreticulation biosensor based on target-catalytic hairpin assembly for ultrasensitive and selective biosensing of MicroRNA-21. Sens. Actuators B Chem., 2020, 323(2), 128621.
[http://dx.doi.org/10.1016/j.snb.2020.128621]
[109]
Shin Low, S.; Pan, Y.; Ji, D.; Li, Y.; Lu, Y.; He, Y.; Chen, Q.; Liu, Q. Smartphone-based portable electrochemical biosensing system for detection of circulating MicroRNA-21 in saliva as a proof-of-concept. Sens. Actuators B Chem., 2020, 308(1), 127718.
[http://dx.doi.org/10.1016/j.snb.2020.127718]
[110]
Zouari, M.; Campuzano, S.; Pingarrón, J.M.; Raouafi, N. Femtomolar direct voltammetric determination of circulating miRNAs in sera of cancer patients using an enzymeless biosensor. Anal. Chim. Acta, 2020, 1104, 188-198.
[http://dx.doi.org/10.1016/j.aca.2020.01.016] [PMID: 32106951]
[111]
Meng, T.; Shang, N.; Nsabimana, A.; Ye, H.; Wang, H.; Wang, C.; Zhang, Y. An enzyme-free electrochemical biosensor based on target-catalytic hairpin assembly and Pd@UiO-66 for the ultrasensitive detection of microRNA-21. Anal. Chim. Acta, 2020, 1138, 59-68.
[http://dx.doi.org/10.1016/j.aca.2020.09.022] [PMID: 33161985]
[112]
Zhang, W.; Xu, H.; Zhao, X.; Tang, X.; Yang, S.; Yu, L.; Zhao, S.; Chang, K.; Chen, M. 3D DNA nanonet structure coupled with target-catalyzed hairpin assembly for dual-signal synergistically amplified electrochemical sensing of circulating microRNA. Anal. Chim. Acta, 2020, 1122, 39-47.
[http://dx.doi.org/10.1016/j.aca.2020.05.002] [PMID: 32503742]
[113]
Zhao, F.; Zhang, H.; Zheng, J. Novel electrochemical biosensing platform for MicroRNA detection based on G-quadruplex formation in nanochannels. Sens. Actuators B Chem., 2021, 327(9), 128898.
[http://dx.doi.org/10.1016/j.snb.2020.128898]
[114]
Meng, T.; Zhao, D.; Ye, H.; Feng, Y.; Wang, H.; Zhang, Y. Construction of an ultrasensitive electrochemical sensing platform for microRNA-21 based on interface impedance spectroscopy. J. Colloid Interface Sci., 2020, 578, 164-170.
[http://dx.doi.org/10.1016/j.jcis.2020.05.118] [PMID: 32521355]
[115]
Chai, H.; Wang, M.; Tang, L.; Miao, P. Ultrasensitive electrochemical detection of miRNA coupling tetrahedral DNA modified gold nanoparticles tags and catalyzed hairpin assembly. Anal. Chim. Acta, 2021, 1165, 338543.
[http://dx.doi.org/10.1016/j.aca.2021.338543] [PMID: 33975698]
[116]
Kasturi, S.; Eom, Y.; Torati, S.R.; Kim, C.G. Highly sensitive electrochemical biosensor based on naturally reduced RGO/Au nanocomposite for the detection of MiRNA-122 biomarker. J. Ind. Eng. Chem., 2021, 93, 186-195.
[http://dx.doi.org/10.1016/j.jiec.2020.09.022]
[117]
Hakimian, F.; Ghourchian, H. Ultrasensitive electrochemical biosensor for detection of microRNA-155 as a breast cancer risk factor. Anal. Chim. Acta, 2020, 1136, 1-8.
[http://dx.doi.org/10.1016/j.aca.2020.08.039] [PMID: 33081933]
[118]
Zhang, R.Y.; Luo, S.H.; Lin, X.M.; Hu, X.M.; Zhang, Y.; Zhang, X.H.; Wu, C.M.; Zheng, L.; Wang, Q. A novel electrochemical biosensor for exosomal microRNA-181 detection based on a catalytic hairpin assembly circuit. Anal. Chim. Acta, 2021, 1157, 338396.
[http://dx.doi.org/10.1016/j.aca.2021.338396] [PMID: 33832593]
[119]
Voccia, D.; Sosnowska, M.; Bettazzi, F.; Roscigno, G.; Fratini, E.; De Franciscis, V.; Condorelli, G.; Chitta, R.; D’Souza, F.; Kutner, W.; Palchetti, I. Direct determination of small RNAs using a biotinylated polythiophene impedimetric genosensor. Biosens. Bioelectron., 2017, 87(9), 1012-1019.
[http://dx.doi.org/10.1016/j.bios.2016.09.058] [PMID: 27686606]
[120]
Daneshpour, M.; Karimi, B.; Omidfar, K. Simultaneous detection of gastric cancer-involved miR-106a and let-7a through a dual-signal-marked electrochemical nanobiosensor. Biosens. Bioelectron., 2018, 109(1), 197-205.
[http://dx.doi.org/10.1016/j.bios.2018.03.022] [PMID: 29567564]
[121]
Elhakim, H.K.A.; Azab, S.M.; Fekry, A.M. A novel simple biosensor containing silver nanoparticles/propolis (bee glue) for microRNA let-7a determination. Mater. Sci. Eng. C, 2018, 92(5), 489-495.
[http://dx.doi.org/10.1016/j.msec.2018.06.063] [PMID: 30184774]
[122]
Soda, N.; Umer, M.; Kasetsirikul, S.; Salomon, C.; Kline, R.; Nguyen, N.T.; Rehm, B.H.A.; Shiddiky, M.J.A. An amplification-free method for the detection of HOTAIR long non-coding RNA. Anal. Chim. Acta, 2020, 1132, 66-73.
[http://dx.doi.org/10.1016/j.aca.2020.07.038] [PMID: 32980112]
[123]
Soda, N.; Umer, M.; Kashaninejad, N.; Kasetsirikul, S.; Kline, R.; Salomon, C.; Nguyen, N.T.; Shiddiky, M.J.A. PCR-free detection of long non-coding hotair rna in ovarian cancer cell lines and plasma samples. Cancers (Basel), 2020, 12(8), 22-33.
[http://dx.doi.org/10.3390/cancers12082233] [PMID: 32785167]
[124]
Jiang, X.; Zhu, Q.; Zhu, H.; Zhu, Z.; Miao, X. Antifouling lipid membrane coupled with silver nanoparticles for electrochemical detection of nucleic acids in biological fluids. Anal. Chim. Acta, 2021, 1177, 338751.
[http://dx.doi.org/10.1016/j.aca.2021.338751] [PMID: 34482888]
[125]
Jenike, A.E.; Halushka, M.K. miR-21: A non-specific biomarker of all maladies. Biomark. Res., 2021, 9(1), 18.
[http://dx.doi.org/10.1186/s40364-021-00272-1] [PMID: 33712063]
[126]
Dave, V.P.; Ngo, T.A.; Pernestig, A.K.; Tilevik, D.; Kant, K.; Nguyen, T.; Wolff, A.; Bang, D.D. MicroRNA amplification and detection technologies: Opportunities and challenges for point of care diagnostics. Lab. Invest., 2019, 99(4), 452-469.
[http://dx.doi.org/10.1038/s41374-018-0143-3] [PMID: 30542067]
[127]
Zhang, C.; Chen, J.; Sun, R.; Huang, Z.; Luo, Z.; Zhou, C.; Wu, M.; Duan, Y.; Li, Y. The recent development of hybridization chain reaction strategies in biosensors. ACS Sens., 2020, 5(10), 2977-3000.
[http://dx.doi.org/10.1021/acssensors.0c01453] [PMID: 32945653]
[128]
Yao, R.W.; Wang, Y.; Chen, L.L. Cellular functions of long noncoding RNAs. Nat. Cell Biol., 2019, 21(5), 542-551.
[http://dx.doi.org/10.1038/s41556-019-0311-8] [PMID: 31048766]
[129]
Zhang, H.; Liao, Z.; Liu, F.; Su, C.; Zhu, H.; Li, Y.; Tao, R.; Liang, H.; Zhang, B.; Zhang, X. Long noncoding RNA HULC promotes hepatocellular carcinoma progression. Aging (Albany NY), 2019, 11(20), 9111-9127.
[http://dx.doi.org/10.18632/aging.102378] [PMID: 31645479]
[130]
Hai, X.; Li, Y.; Zhu, C.; Song, W.; Cao, J.; Bi, S. DNA-based label-free electrochemical biosensors: from principles to applications. Trends Anal. Chem., 2020, 133, 116098.
[http://dx.doi.org/10.1016/j.trac.2020.116098]
[131]
Singh, A.K.; Kumar, R.; Pandey, A.K. Hepatocellular carcinoma: causes, mechanism of progression and biomarkers. Curr. Chem. Genomics Transl. Med., 2018, 12(1), 9-26.
[http://dx.doi.org/10.2174/2213988501812010009] [PMID: 30069430]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy