Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Green Synthesis of Magnetite Nanoparticles Using Leaf Plant Extracts of South American Endemic Cryptocarya alba

Author(s): Giannina Alarcón-Aravena, Erico R. Carmona*, Gonzalo Recio-Sánchez, Aixa González Ruiz, Josefa Domenech, Ricard Marcos and Karla Garrido

Volume 18, Issue 5, 2022

Published on: 29 April, 2022

Page: [646 - 654] Pages: 9

DOI: 10.2174/1573413718666220221123725

Price: $65

Abstract

Background: Due to their extremely small size, large surface area, and magnetism, magnetite nanoparticles (Fe3O4NPs) have distinct chemical and physical properties, enhancing their suitability for a variety of medical, biosensing, electronic, and environmental applications.

Methods: Magnetite nanoparticles were easily obtained by green synthesis using leaf extracts of the South American endemic Cryptocaria alba (Peumo) tree. FeNPs were characterized by using UV-visible spectrophotometry, Transmission Electronic Microscopy (TEM), Dynamic Light Scattering (DLS), Laser Doppler Velocimetry (LDV), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TGA).

Results: Fe3O4NPs were successfully synthetized, and they showed crystalline nature, primary dry diameter means between 12 nm and 15 nm, spherical apparent shape, and good stability in aqueous suspension. Additionally, preliminary studies indicated that low concentrations of magnetite nanoparticles (1000 times lower than the literature reported) reduced chemical oxygen demand (COD), apart from concentrations of total phosphates and nitrates from pisciculture wastewater samples incubated for 24 h.

Conclusion: Green synthesis of Peumo iron nanoparticles is an easy, fast, and viable ecofriendly bioprocess under certain conditions of fabrication to obtain nanometric and stable iron particles with promising removal properties of nitrates, phosphates, and COD from wastewaters.

Keywords: Anthocyanins, bioreduction, flavonoids, nanotechnology, organic matter, polyphenols.

« Previous
Graphical Abstract

[1]
Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol., 2013, 31(4), 240-248.
[http://dx.doi.org/10.1016/j.tibtech.2013.01.003] [PMID: 23434153]
[2]
Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.J. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel), 2015, 8(11), 7278-7308.
[http://dx.doi.org/10.3390/ma8115377] [PMID: 28793638]
[3]
Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett., 2016, 38(4), 545-560.
[http://dx.doi.org/10.1007/s10529-015-2026-7] [PMID: 26721237]
[4]
Arularasu, M.V.; Devakumar, J.; Rajendran, T.V. An innovative approach for green synthesis of iron oxide nanoparticles: Characterization and its photocatalytic activity. Polyhedron, 2018, 156, 279-290.
[http://dx.doi.org/10.1016/j.poly.2018.09.036]
[5]
Bolade, O.P.; Williams, A.B.; Benson, N.U. Green synthesis of iron-based nanomaterials for environmental remediation: A review. Environ. Nanotechnol. Monit. Manag., 2020, 13, 100279.
[http://dx.doi.org/10.1016/j.enmm.2019.100279]
[6]
Kumar, I.; Mondal, M.; Sakthivel, N. Green synthesis of phytogenic nanoparticles.Green synthesis, characterization and applications of nanoparticles; Elsevier, 2019, pp. 37-73.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00003-4]
[7]
Wang, Y.; O’Connor, D.; Shen, Z.; Lo, I.M.C.; Tsang, D.C.W.; Pehkonen, S. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. J. Clean. Prod., 2019, 226, 540-549.
[http://dx.doi.org/10.1016/j.jclepro.2019.04.128]
[8]
Pattanayak, D.S.; Pal, D.; Thakur, C.; Kumar, S.; Devnani, G.L. Bio-synthesis of iron nanoparticles for environmental remediation: Status till date. Mater. Today Proc., 2021, 44, 3150-3155.
[http://dx.doi.org/10.1016/j.matpr.2021.02.821]
[9]
Prasad, K.S.; Gandhi, P.; Selvaraj, K. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As (III) and As (V) from aqueous solution. Appl. Surf. Sci., 2014, 317, 1052-1059.
[http://dx.doi.org/10.1016/j.apsusc.2014.09.042]
[10]
El-Kassas, H.Y.; Aly-Eldeen, M.A.; Gharib, S.M. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: characterization and application for lead bioremediation. Acta Oceanol. Sin., 2016, 35(8), 89-98.
[http://dx.doi.org/10.1007/s13131-016-0880-3]
[11]
Fazlzadeh, M.; Rahmani, K.; Zarei, A.; Abdoallahzadeh, H.; Nasiri, F.; Khosravi, R. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr (VI) from aqueous solutions. Adv. Powder Technol., 2017, 28(1), 122-130.
[http://dx.doi.org/10.1016/j.apt.2016.09.003]
[12]
Lin, J.; He, F.; Su, B.; Sun, M.; Owens, G.; Chen, Z. The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation. J. Hazard. Mater., 2019, 379, 120832.
[http://dx.doi.org/10.1016/j.jhazmat.2019.120832] [PMID: 31276925]
[13]
Majumder, A.; Ramrakhiani, L.; Mukherjee, D.; Mishra, U.; Halder, A.; Mandal, A.K. Green synthesis of iron oxide nanoparticles for arsenic remediation in water and sludge utilization. Clean Technol. Environ. Policy, 2019, 21(4), 795-813.
[http://dx.doi.org/10.1007/s10098-019-01669-1]
[14]
Hoag, G.E.; Collins, J.B.; Holcomb, J.L.; Hoag, J.R.; Nadagouda, M.N.; Varma, R.S. Degradation of bromothymol blue by ‘greener’nano-scale zero-valent iron synthesized using tea polyphenols. J. Mater. Chem., 2009, 19(45), 8671-8677.
[http://dx.doi.org/10.1039/b909148c]
[15]
Shahwan, T.; Sirriah, S.A.; Nairat, M. Boyacı, E.; Eroğlu, A.E.; Scott, T.B. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J., 2011, 172(1), 258-266.
[http://dx.doi.org/10.1016/j.cej.2011.05.103]
[16]
Weng, X.; Huang, L.; Chen, Z.; Megharaj, M.; Naidu, R. Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind. Crops Prod., 2013, 51, 342-347.
[http://dx.doi.org/10.1016/j.indcrop.2013.09.024]
[17]
Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 130, 295-301.
[http://dx.doi.org/10.1016/j.saa.2014.04.037] [PMID: 24793479]
[18]
Wang, Z.; Fang, C.; Megharaj, M. Characterization of iron–polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain. Chem.& Eng., 2014, 2(4), 1022-1025.
[http://dx.doi.org/10.1021/sc500021n]
[19]
Prasad, C.; Karlapudi, S.; Venkateswarlu, P.; Bahadur, I.; Kumar, S. Green arbitrated synthesis of Fe3O4 magnetic nanoparticles with nanorod structure from pomegranate leaves and Congo red dye degradation studies for water treatment. J. Mol. Liq., 2017, 240, 322-328.
[http://dx.doi.org/10.1016/j.molliq.2017.05.100]
[20]
Wang, X.; Wang, A.; Ma, J.; Fu, M. Facile green synthesis of functional nanoscale zero-valent iron and studies of its activity toward ultrasound-enhanced decolorization of cationic dyes. Chemosphere, 2017, 166, 80-88.
[http://dx.doi.org/10.1016/j.chemosphere.2016.09.056] [PMID: 27689887]
[21]
Bishnoi, S.; Kumar, A.; Selvaraj, R. Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Mater. Res. Bull., 2018, 97, 121-127.
[http://dx.doi.org/10.1016/j.materresbull.2017.08.040]
[22]
Ebrahiminezhad, A.; Taghizadeh, S.; Ghasemi, Y.; Berenjian, A. Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Sci. Total Environ., 2018, 621, 1527-1532.
[http://dx.doi.org/10.1016/j.scitotenv.2017.10.076] [PMID: 29054616]
[23]
Arasu, M.V.; Arokiyaraj, S.; Viayaraghavan, P.; Kumar, T.S.J.; Duraipandiyan, V.; Al-Dhabi, N.A.; Kaviyarasu, K. One step green synthesis of larvicidal, and azo dye degrading antibacterial nanoparticles by response surface methodology. J. Photochem. Photobiol. B, 2019, 190, 154-162.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.020] [PMID: 30572187]
[24]
Hussain, S.B. Diospyros lotus-mediated synthesis of iron oxide nanoparticles and their application as a catalyst in fenton reaction. Curr. Nanosci., 2020, 16, 91-100.
[25]
Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total Environ., 2014, 466-467, 210-213.
[http://dx.doi.org/10.1016/j.scitotenv.2013.07.022] [PMID: 23895784]
[26]
Wang, T.; Lin, J.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Clean. Prod., 2014, 83, 413-419.
[http://dx.doi.org/10.1016/j.jclepro.2014.07.006]
[27]
Devatha, C.P.; Thalla, A.K.; Katte, S.Y. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J. Clean. Prod., 2016, 139, 1425-1435.
[http://dx.doi.org/10.1016/j.jclepro.2016.09.019]
[28]
Khin, M.M.; Nair, A.S.; Babu, V.J.; Murugan, R.; Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci., 2012, 5(8), 8075-8109.
[http://dx.doi.org/10.1039/c2ee21818f]
[29]
Recio-Sánchez, G.; Tighe-Neira, R.; Alvarado, C.; Inostroza-Blancheteau, C.; Benito, N.; García-Rodríguez, A.; Marcos, R.; Pesenti, H.; Carmona, E.R. Assessing the effectiveness of green synthetized silver nanoparticles with Cryptocarya alba extracts for remotion of the organic pollutant methylene blue dye. Environ. Sci. Pollut. Res. Int., 2019, 26(15), 15115-15123.
[http://dx.doi.org/10.1007/s11356-019-04934-4] [PMID: 30919197]
[30]
Feng, Z.; Zhu, Y.; Zhou, Q.; Wu, Y.; Wu, T. Magnetic WO3/Fe3O4 as catalyst for deep oxidative desulfurization of model oil. Mater. Sci. Eng. B, 2019, 240, 85-91.
[http://dx.doi.org/10.1016/j.mseb.2019.01.009]
[31]
Nnadozie, E.C.; Ajibade, P.A. Adsorption, kinetic and mechanistic studies of Pb (II) and Cr (VI) ions using APTES functionalized magnetic biochar. Microporous Mesoporous Mater., 2020, 309, 110573.
[http://dx.doi.org/10.1016/j.micromeso.2020.110573]
[32]
Mascolo, M.C.; Pei, Y.; Ring, T.A. Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials (Basel), 2013, 6(12), 5549-5567.
[http://dx.doi.org/10.3390/ma6125549] [PMID: 28788408]
[33]
Saif, S.; Tahir, A.; Chen, Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials (Basel), 2016, 6(11), 209.
[http://dx.doi.org/10.3390/nano6110209] [PMID: 28335338]
[34]
Beheshtkhoo, N.; Kouhbanani, M.A.J.; Savardashtaki, A.; Amani, A.M.; Taghizadeh, S. Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl. Phys., A Mater. Sci. Process., 2018, 124(5), 363.
[http://dx.doi.org/10.1007/s00339-018-1782-3]
[35]
Madubuonu, N.; Aisida, S.O.; Ahmad, I.; Botha, S.; Zhao, T.; Maaza, M. Bio-inspired iron oxide nanoparticles using Psidium guajava aqueous extract for antibacterial activity. Appl. Phys., A Mater. Sci. Process., 2020, 126(1), 1-8.
[http://dx.doi.org/10.1007/s00339-019-3249-6]
[36]
Carmona, E.R.; Reyes-Díaz, M.; Parodi, J.; Inostroza-Blancheteau, C. Antimutagenic evaluation of traditional medicinal plants from South America Peumus boldus and Cryptocarya alba using Drosophila melanogaster. J. Toxicol. Environ. Health A, 2017, 80(4), 208-217.
[http://dx.doi.org/10.1080/15287394.2017.1279574] [PMID: 28304234]
[37]
Pan, Z.; Lin, Y.; Sarkar, B.; Owens, G.; Chen, Z. Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal. J. Colloid Interface Sci., 2020, 558, 106-114.
[http://dx.doi.org/10.1016/j.jcis.2019.09.106] [PMID: 31585219]
[38]
Simirgiotis, M.J. Antioxidant capacity and HPLC-DAD-MS profiling of Chilean peumo (Cryptocarya alba) fruits and comparison with German peumo (Crataegus monogyna) from southern Chile. Molecules, 2013, 18(2), 2061-2080.
[http://dx.doi.org/10.3390/molecules18022061] [PMID: 23385342]
[39]
Giordano, A.; Fuentes-Barros, G.; Castro-Saavedra, S. Variation of secondary metabolites in the aerial biomass of Cryptocarya alba. Nat. Prod. Commun., 2019, 14(6), 1-19.
[http://dx.doi.org/10.1177/1934578X19856258]
[40]
Vitta, Y.; Figueroa, M.; Calderon, M.; Ciangherotti, C. Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Mater. Sci. Energy Technol., 2020, 3, 97-103.
[http://dx.doi.org/10.1016/j.mset.2019.10.014]
[41]
Khatami, M.; Alijani, H.Q.; Fakheri, B.; Mobasseri, M.M.; Heydarpour, M.; Farahani, Z.K. Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using Stevia plant and evaluation of its antioxidant properties. J. Clean. Prod., 2019, 208, 1171-1177.
[http://dx.doi.org/10.1016/j.jclepro.2018.10.182]
[42]
Nnadozie, E.C.; Ajibade, P.A. Green synthesis and characterization of magnetite (Fe3O4) nanoparticles using Chromolaena odorata root extract for smart nanocomposite. Mater. Lett., 2020, 263, 127145.
[http://dx.doi.org/10.1016/j.matlet.2019.127145]
[43]
Pasinszki, T.; Krebsz, M. Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials (Basel), 2020, 10(5), 917.
[http://dx.doi.org/10.3390/nano10050917] [PMID: 32397461]
[44]
Aragaw, T.A.; Bogale, F.M.; Aragaw, B.A.; Aragaw, B.A. Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. J. Saudi Chem. Soc., 2021, 101280.
[http://dx.doi.org/10.1016/j.jscs.2021.101280]
[45]
Biftu, W.K.; Ravindhranath, K.; Ramamoorty, M. New research trends in the processing and applications of iron-based nanoparticles as adsorbents in water remediation methods. Nanotechnol Environ Eng., 2020, 5(2), 12.
[http://dx.doi.org/10.1007/s41204-020-00076-y]
[46]
Hassan, M.; Naidu, R.; Du, J.; Liu, Y.; Qi, F. Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment. Sci. Total Environ., 2020, 702, 134893.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134893] [PMID: 31733558]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy