Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Green Synthesis of Silver Nanoparticles from Bark Extract of Terminalia arjuna and their Application as Next Generation Antibacterial Agents

Author(s): Jaspreet Singh, Venkatachalam Perumal, Umrao Singh, Durgesh Kumar Tripathi and Shivesh Sharma*

Volume 18, Issue 6, 2022

Published on: 14 March, 2022

Page: [743 - 757] Pages: 15

DOI: 10.2174/1573413718666220221102909

Price: $65

Abstract

Background: The antimicrobial properties of silver can be enhanced in the form of silver nanoparticles due to their specific physical, chemical, and biological properties, thus enabling their use in different antibacterial applications against antibiotic-resistant bacteria.

Objective: Present study was planned to evaluate the antibacterial activity of silver nanoparticles synthesized from bark extract of Terminalia arjuna.

Methods: Silver nanoparticles were synthesized using 80% methanolic extract of Terminalia arjuna bark, followed by their characterization using UV-Visible spectroscopy, particle size analysis, and atomic force microscopy. The antibacterial activity of synthesized silver nanoparticles was analyzed against Escherichia coli MTCC1687, Pseudomonas aeruginosa ATCC9027, and Staphylococcus aureus ATCC6538.

Results: The silver nanoparticles were observed to inhibit microbial growth in a concentrationdependent manner (2-0.5mg/mL), and the cell death was confirmed using fluorescent microscopy.

Conclusion: The antibacterial activity of these nanoparticles suggests that the synthesized nanoparticles can be used to treat bacterial infections of the skin.

Keywords: Silver nanoparticles, atomic force microscopy, XRD, growth curve, fluorescent microscopy, Terminalia arjuna.

Graphical Abstract

[1]
Kubik, T.; Bogunia-Kubik, K.; Sugisaka, M. Nanotechnology on duty in medical applications. Curr. Pharm. Biotechnol., 2005, 6(1), 17-33.
[http://dx.doi.org/10.2174/1389201053167248] [PMID: 15727553]
[2]
Muthuraman, M.S.; Nithya, S.; Vinoth Kumar, V.; Christena, L.R.; Vadivel, V.; Subramanian, N.S.; Anthony, S.P. Green synthesis of silver nanoparticles using Nardostachys jatamansi and evaluation of its anti-biofilm effect against classical colonizers. Microb. Pathog., 2019, 126, 1-5.
[http://dx.doi.org/10.1016/j.micpath.2018.10.024] [PMID: 30352266]
[3]
Yaraki, M.T.; Tan, Y.N. Metal nanoparticles-enhanced biosensors: synthesis, design and applications in fluorescence enhancement and surface-enhanced Raman scattering. Chemistry - Asian J., 2020, 15, 3180-3208.
[4]
Tavakkoli Yaraki, M.; Daqiqeh Rezaei, S.; Middha, E.; Tan, Y.N. Synthesis and simulation study of right silver bipyramids via seed-mediated growth cum selective oxidative etching approach. Part. Syst. Charact., 2020, 37(5), 2000027.
[http://dx.doi.org/10.1002/ppsc.202000027]
[5]
Singh, J.; Vishwakarma, K.; Ramawat, N.; Rai, P.; Singh, V.K.; Mishra, R.K. Nanomaterials and microbes’ interactions: a contemporary overview. Biotech, 2019, 9(3), 1-14. https://link.springer.com/article/10.1007/s13205-019-1576-0
[6]
Saraf, M.; Tavakkoli, Y.M. Prateek.; Tan, YN; Gupta, RK. Insights and perspectives regarding nanostructured fluorescent materials toward tackling COVID-19 and future pandemics. ACS Appl. Nano Mater., 2021, 4, 911-948.
[http://dx.doi.org/10.1021/acsanm.0c02945]
[7]
Tavakkoli Yaraki, M.; Tan, Y.N. Recent advances in metallic nanobiosensors development: Colorimetric, dynamic light scattering and fluorescence detection. Sensors Int., 2020, 1, 100049.
[http://dx.doi.org/10.1016/j.sintl.2020.100049]
[8]
Tavakkoli Yaraki, M.; Pan, Y.; Hu, F.; Yu, Y.; Liu, B.; Tan, Y.N. Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy. Mater. Chem. Front., 2020, 4(10), 3074-3085.
[http://dx.doi.org/10.1039/D0QM00469C]
[9]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145, 83-96.
[10]
Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomedicine, 2012, 7, 6003-6009.
[http://dx.doi.org/10.2147/IJN.S35347]
[11]
Durán, N.; Durán, M.; de Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine Nanotechnol. Biol. Med., 2016, 12, 789-799.
[12]
Kailasa, S.K.; Park, T.J.; Rohit, J.V.; Koduru, J.R. Antimicrobial activity of silver nanoparticles. In: Nanoparticles in Pharmacotherapy; Elsevier, 2019, pp. 461-484.
[http://dx.doi.org/10.1016/B978-0-12-816504-1.00009-0]
[13]
Sathishkumar, M.; Saroja, M.; Venkatachalam, V. Structural, morphological and antimicrobial activity of pure and aluminum doped zinc sulfide nanoparticles. Nanoscale Reports., 2019, 2(1), 17-21.
[http://dx.doi.org/10.26524/nr1913]
[14]
Sarkar, R.; Anil, K.C.; Kumbhakar, P.; Mandal, T. Aqueous synthesis and antibacterial activity of silver nanoparticles against Pseudomonas putida. Materials Today Proc., 2019, 11, 686-694.
[http://dx.doi.org/10.1016/j.matpr.2019.03.028]
[15]
Prasad, N.V.K.V.; Kambala, V.S.R.; Naidu, R. A critical review on biogenic silver nanoparticles and their antimicrobial activity. Curr. Nanosci., 2011, 7(4), 531-544.
[http://dx.doi.org/10.2174/157341311796196736]
[16]
Durán, N.; Fávaro, W.J.; Seabra, A.B. What do we really know about nanotoxicology of silver nanoparticles in vivo? new aspects, possible mechanisms, and perspectives. Curr. Nanosci., 2018, 16(3), 292-320.
[http://dx.doi.org/10.2174/1573413714666180809121322]
[17]
Vijayan, S.; Divya, K.; Varghese, S.; Jisha, M.S. Antifungal efficacy of chitosan-stabilized biogenic silver nanoparticles against pathogenic Candida spp. isolated from human. Bionanoscience, 2020, 10(4), 974-982.
[http://dx.doi.org/10.1007/s12668-020-00781-7]
[18]
Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J. Antimicrobial effects of silver nanoparticles. Nanomedicine Nanotechnology. Biol Med., 2007, 3(1), 95-101.
[19]
Ibrahim, F.; Khan, T.; Pujalte, G.G.A. Bacterial skin infections. Primary Care – Clin. Office Pract., 2015, 42, 485-499. Available from: http://www.primarycare.theclinics.com/article/S009545431500070 6/fulltext
[20]
Petkovšek, Z.; Eleršič, K.; Gubina, M.; Žgur-Bertok, D.; Starcic Erjavec, M. Virulence potential of Escherichia coli isolates from skin and soft tissue infections. J. Clin. Microbiol., 2009, 47(6), 1811-1817.
[http://dx.doi.org/10.1128/JCM.01421-08] [PMID: 19357208]
[21]
Wu, D.C.; Chan, W.W.; Metelitsa, A.I.; Fiorillo, L.; Lin, A.N. Pseudomonas skin infection: clinical features, epidemiology, and management. Am. J. Clin. Dermatol., 2011, 12(3), 157-169.
[http://dx.doi.org/10.2165/11539770-000000000-00000] [PMID: 21469761]
[22]
Olaniyi, R.; Pozzi, C.; Grimaldi, L.; Bagnoli, F. SStaphylococcus aureus-associated skin and soft tissue infections: Anatomical localization, epidemiology, therapy and potential prophylaxis. In: Bagnoli F., Rappuoli R., Grandi G. (Eds). Current Topics in Microbiology and Immunology, Springer Verlag, 2017, pp. 199-227.
[http://dx.doi.org/10.1007/82_2016_32]
[23]
Otto, M. Molecular basis of Staphylococcus epidermidis infections. Semin. Immunopathol., 2012, 34, 201-214.
[24]
Farina, C.; Gnecchi, F.; Luzzi, I.; Vailati, F. Vibrio cholerae O2 as a cause of a skin lesion in a tourist returning from Tunisia. J. Travel Med., 2000, 7, 92-94.
[25]
Sukumaran, V.; Senanayake, S. Bacterial skin and soft tissue infections. Aust. Prescr., 2016, 39(5), 159-163.
[http://dx.doi.org/10.18773/austprescr.2016.058] [PMID: 27789926]
[26]
Zaman, S.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A review on antibiotic resistance: alarm bells are ringing. Cureus, 2017, 9(6), e1403.
[27]
Bennett, P.M. Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. British J. Pharmacol., 2008, 153(S1), S347-S357.
[http://dx.doi.org/10.1038/sj.bjp.0707607]
[28]
Patwardhan, B.; Warude, D.; Pushpangadan, P.; Bhatt, N. Ayurveda and traditional Chinese medicine: a comparative overview. Evid. Based Complement. Alternat. Med., 2005, 2(4), 465-473.
[http://dx.doi.org/10.1093/ecam/neh140] [PMID: 16322803]
[29]
Aggarwal, B.B.; Ichikawa, H.; Garodia, P.; Weerasinghe, P.; Sethi, G.; Bhatt, I.D. From traditional Ayurvedic medicine to modern medicine: Identification of therapeutic targets for suppression of inflammation and cancer. Expert Opin. Therap Targets, 2006, 10, 87-118.
[30]
Pandey, M.M.; Rastogi, S.; Rawat, A.K.S. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid. Based Complement. Alternat. Med., 2013, 2013, 376327.
[http://dx.doi.org/10.1155/2013/376327]
[31]
Pole, S. Ayurvedic Medicine. Ayurvedic Medicine; Elsevier Ltd, 2006.
[32]
Mukherjee, P.K. Evaluation of Indian traditional medicine. Drug Inf. J., 2001, 35(2), 623-632.
[http://dx.doi.org/10.1177/009286150103500235]
[33]
Srivastava, J.K.; Shankar, E.; Gupta, S. Chamomile: A herbal medicine of the past with a bright future (review). Mol. Med. Rep., 2010, 3, 895-901.
[34]
Nanasombat, S.; Kuncharoen, N.; Ritcharoon, B.; Sukcharoen, P. Antibacterial activity of thai medicinal plant extracts against oral and gastrointestinal pathogenic bacteria and prebiotic effect on the growth of Lactobacillus acidophilus. Chiang Mai J. Sci., 2018, 45 Available from: http://epg.science.cmu.ac.th/ejournal/
[35]
Sameer, M.; Kadhim, B.D.S.M.S. Antifungal activity of derum (Juglans Regia L. Bark) extracts against Candida albicans isolates (in vitro study). MUSTANSIRIA Dent. J., 2018, 15(1), 49-57.
[36]
Atta, A.H.; Alkofahi, A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. J. Ethnopharmacol., 1998, 60(2), 117-124.
[http://dx.doi.org/10.1016/S0378-8741(97)00137-2] [PMID: 9582001]
[37]
Köksal, E.; Bursal, E.; Gülçin, İ.; Korkmaz, M.; Çağlayan, C.; Gören, A.C. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. Int. J. Food Prop., 2017, 20(3), 514-525.
[http://dx.doi.org/10.1080/10942912.2016.1168438]
[38]
Gade, A.; Gaikwad, S.; Tiwari, V.; Yadav, A.; Ingle, A.; Rai, M. Biofabrication of silver nanoparticles by Opuntia ficus-indica: in vitro antibacterial activity and study of the mechanism involved in the synthesis. Curr. Nanosci., 2010, 6(4), 370-375.
[http://dx.doi.org/10.2174/157341310791659026]
[39]
Afshar, P.; Sedaghat, S. Bio-synthesis of silver nanoparticles using water extract of satureja hortensis l and evaluation of the antibacterial properties. Curr. Nanosci., 2016, 12(1), 90-93.
[http://dx.doi.org/10.2174/1573413711666150529202238]
[40]
Raut, R.W.; Lakkakula, J.R.; Kolekar, N.S.; Mendhulkar, V.D.; Kashid, S.B. Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Curr. Nanosci., 2009, 5(1), 117-122.
[41]
Jain, S.; Yadav, P.P.; Gill, V.; Vasudeva, N.; Singla, N. Terminalia arjuna a sacred medicinal plant: Phytochemical and pharmacological profile. Phytochem. Rev., 2009, 8(2), 491-502.
[http://dx.doi.org/10.1007/s11101-009-9134-8]
[42]
Redfern, J.; Kinninmonth, M.; Burdass, D.; Verran, J. Using soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. J. Microbiol. Biol. Educ., 2014, 15(1), 45-46.
[http://dx.doi.org/10.1128/jmbe.v15i1.656] [PMID: 24839520]
[43]
Yasir, M.; Singh, J.; Tripathi, M.K.; Singh, P.; Shrivastava, R. Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity. Pharmacogn. Mag., 2017, 13(52), S840-S844. [https://pmc/articles/PMC5822509/?report=abstract
[44]
Marslin, G.; Selvakesavan, R.K.; Franklin, G.; Sarmento, B.; Dias, A.C.P. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int. J. Nanomedicine, 2015, 10, 5955-5963. [https://pmc/articles/PMC4590548/
[45]
Chandrasekaran, M.; Venkatesalu, V. Antibacterial and antifungal activity of Syzygium jambolanum seeds. J. Ethnopharmacol., 2004, 91(1), 105-108.
[http://dx.doi.org/10.1016/j.jep.2003.12.012] [PMID: 15036477]
[46]
Meletiadis, J.; Meis, J.F.G.M.; Mouton, J.W.; Verweij, P.E. Analysis of growth characteristics of filamentous fungi in different nutrient media. J. Clin. Microbiol., 2001, 39(2), 478-484.
[http://dx.doi.org/10.1128/JCM.39.2.478-484.2001] [PMID: 11158093]
[47]
Upadhyay, N.; Vishwakarma, K.; Singh, J.; Mishra, M.; Kumar, V.; Rani, R.; Mishra, R.K.; Chauhan, D.K.; Tripathi, D.K.; Sharma, S. Tolerance and reduction of chromium(VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Front. Plant Sci., 2017, 8, 778.
[http://dx.doi.org/10.3389/fpls.2017.00778] [PMID: 28588589]
[48]
Parsons, J.G.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Chapter 21 Use of plants in biotechnology: Synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Develop. Environ. Sci., 2007, 5, 463-485.
[49]
Khatami, M.; Pourseyedi, S.; Khatami, M.; Hamidi, H.; Zaeifi, M.; Soltani, L. Synthesis of silver nanoparticles using seed exudates of sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresour. Bioprocess., 2015, 2(1), 1-7.
[http://dx.doi.org/10.1186/s40643-015-0043-y]
[50]
Bawaskar, M.; Gaikwad, S.; Ingle, A.; Rathod, D.; Gade, A.; Duran, N. A new report on Mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr. Nanosci., 2010, 6(4), 376-380.
[http://dx.doi.org/10.2174/157341310791658919]
[51]
Al-limoun, M.; Qaralleh, H.N.; Khleifat, K.M.; Al-Anber, M.; Al-Tarawneh, A.; Al-sharafa, K. Culture media composition and reduction potential optimization of mycelia-free filtrate for the biosynthesis of silver nanoparticles using the fungus Tritirachium oryzae W5H. Curr. Nanosci., 2019, 16(5), 757-769.
[http://dx.doi.org/10.2174/1573413715666190725111956]
[52]
Yokesh, B.M.; Janaki, D.V.; Ramakritinan, C.M.; Umarani, R.; Taredahalli, N.; Kumaraguru, A.K. Application of biosynthesized silver nanoparticles in agricultural and marine pest control. Curr. Nanosci., 2014, 10(3), 374-381.
[53]
Mock, J.J.; Barbic, M.; Smith, D.R.; Schultz, D.A.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys., 2002, 116(15), 6755-6759.
[http://dx.doi.org/10.1063/1.1462610]
[54]
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnol., Biol. Med., Elsevier, 2010, 6, 257-262.
[http://dx.doi.org/10.1016/j.nano.2009.07.002]
[55]
Rajeshkumar, S.; Bharath, L.V. Mechanism of plant-mediated synthesis of silver nanoparticles- A review on biomolecules involved, characterisation and antibacterial activity. Chemico-Biol. Interact., 2017, 273, 219-227.
[56]
Sharma, R.; Gupta, H. Green synthesis of silver, copper and gold nanoparticles using Terminalia arjuna bark and their effect on seed germination. Nanosci. Nanotechnol. Asia, 2020, 11(2), 243-247.
[http://dx.doi.org/10.2174/2210681210999200521131404]
[57]
Sudarsan, S.; Kumar Shankar, M.; Kumar Belagal Motatis, A.; Shankar, S.; Krishnappa, D.; Mohan, C.D.; Rangappa, K.S.; Gupta, V.K.; Siddaiah, C.N. Green synthesis of silver nanoparticles by Cytobacillus firmus isolated from the stem bark of Terminalia arjuna and their antimicrobial activity. Biomolecules, 2021, 11(2), 1-16.
[http://dx.doi.org/10.3390/biom11020259] [PMID: 33578957]
[58]
Saiqa Ikram, S.A. Silver nanoparticles: one pot green synthesis using Terminalia arjuna extract for biological application. J. Nanomed. Nanotechnol., 2015, 06, 4.
[http://dx.doi.org/10.4172/2157-7439.1000309]
[59]
Ahmed, Q.; Gupta, N.; Kumar, A.; Nimesh, S. Antibacterial efficacy of silver nanoparticles synthesized employing Terminalia arjuna bark extract. Artif. Cells Nanomed. Biotechnol., 2017, 45(6), 1-9.
[http://dx.doi.org/10.1080/21691401.2016.1215328] [PMID: 27684206]
[60]
Liu, H.; Zhang, H.; Wang, J.; Wei, J. Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetics analysis. Arab. J. Chem., 2020, 13(1), 1011-1019.
[http://dx.doi.org/10.1016/j.arabjc.2017.09.004]
[61]
Xiang, Y.; Chen, D. Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA-PEGMA-MAA) composite hydrogel. Eur. Polym. J., 2007, 43(10), 4178-4187.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.08.005]
[62]
Robles, M.; Patiño Herrera, R.; Martin Montejano-Carrizales, J.; Cárdenas-González, J.F.; Robles-Martínez, M.; Patiño-Herrera, R. Bioremediation of pesticides view project small clusters view project Mentha piperita as a natural support for silver nanoparticles: A new Anti-Candida albicans treatment., 2020. Available from: www.elsevier.com/locate/colcom
[63]
Nouri, A.; Tavakkoli Yaraki, M.; Lajevardi, A.; Rezaei, Z.; Ghorbanpour, M.; Tanzifi, M. Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity. Colloid Interface Sci. Commun., 2020, 35, 100252.
[http://dx.doi.org/10.1016/j.colcom.2020.100252]
[64]
Abu Bakar, M.F.; Mohamed, M.; Rahmat, A.; Fry, J. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chem., 2009, 113(2), 479-483.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.081]
[65]
Friedman, M.; Jürgens, H.S. Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem., 2000, 48(6), 2101-2110.
[http://dx.doi.org/10.1021/jf990489j] [PMID: 10888506]
[66]
Abd El-Monem, A.M.; Gharieb, M.M.; Hussian, A-E.M.; Doman, K.M. Effect of pH on phytochemical and antibacterial activities of Spirulina platensis. Int. J. Appl. Environ. Sci., 2018, 13(4), 339-351.
[67]
Bayliak, M.M.; Burdyliuk, N.I.; Lushchak, V.I. Effects of pH on antioxidant and prooxidant properties of common medicinal herbs. Open Life Sci., 2016, 11(1), 298-307.
[http://dx.doi.org/10.1515/biol-2016-0040]
[68]
Ahmadi, O.; Jafarizadeh-Malmiri, H.; Jodeiri, N. Eco-friendly microwave-enhanced green synthesis of silver nanoparticles using Aloe vera leaf extract and their physico-chemical and antibacterial studies. Green Process Synth., 2018, 7(3), 231-240.
[http://dx.doi.org/10.1515/gps-2017-0039]
[69]
Mukherjee, P.; Roy, M.; Mandal, B.P.; Dey, G.K.; Mukherjee, P.K.; Ghatak, J.; Tyagi, A.K.; Kale, S.P. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 2008, 19(7), 075103.
[http://dx.doi.org/10.1088/0957-4484/19/7/075103] [PMID: 21817628]
[70]
Shukla, P.; Nandi, T.; Singh, R.P. Synthesis of sorbitan ester stabilized uniform spherical silver nanoparticles. Orient. J. Chem., 2016, 32(6), 2947-2955.
[http://dx.doi.org/10.13005/ojc/320614]
[71]
Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum., 2007, 78(1), 013705.
[http://dx.doi.org/10.1063/1.2432410] [PMID: 17503926]
[72]
Guven, Y.; Tuna, E.B.; Dincol, M.E.; Aktoren, O. X-ray diffraction analysis of MTA-plus, MTA-angelus and diaroot bioaggregate. Eur. J. Dent., 2014, 8(2), 211-215.
[73]
Abdollahnia, M.; Makhdoumi, A.; Mashreghi, M.; Eshghi, H. Exploring the potentials of halophilic prokaryotes from a solar saltern for synthesizing nanoparticles: The case of silver and selenium. PLoS One, 2020, 15(3), e0229886.
[74]
Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnology, 2017, 15, 65.
[75]
Duran, N.; Seabra, A.B. Biogenic synthesized Ag/Au nanoparticles: production, characterization, and applications. Curr. Nanosci., 2017, 14(2), 82-94.
[http://dx.doi.org/10.2174/1573413714666171207160637]
[76]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6, 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005]
[77]
Bonev, B.; Hooper, J.; Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother., 2008, 61(6), 1295-1301.
[http://dx.doi.org/10.1093/jac/dkn090] [PMID: 18339637]
[78]
du Toit, E.A.; Rautenbach, M. A sensitive standardised micro-gel well diffusion assay for the determination of antimicrobial activity. J. Microbiol. Methods, 2000, 42(2), 159-165.
[http://dx.doi.org/10.1016/S0167-7012(00)00184-6] [PMID: 11018272]
[79]
Othman, M.; Loh, H.S.; Wiart, C.; Khoo, T.J.; Lim, K.H.; Ting, K.N. Optimal methods for evaluating antimicrobial activities from plant extracts. J. Microbiol. Methods, 2011, 84(2), 161-166.
[http://dx.doi.org/10.1016/j.mimet.2010.11.008] [PMID: 21094190]
[80]
Oszmiański, J.; Wojdyło, A.; Juszczyk, P.; Nowicka, P. Roots and leaf extracts of Dipsacus fullonum L. and their biological activities. Plants, 2020, 9(1), 78.
[http://dx.doi.org/10.3390/plants9010078] [PMID: 31936189]
[81]
Williams, S.C.; Hong, Y.; Danavall, D.C.A.; Howard-Jones, M.H.; Gibson, D.; Frischer, M.E. Distinguishing between living and nonliving bacteria: Evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples. J. Microbiol. Methods, 1998, 32(3), 225-236.
[http://dx.doi.org/10.1016/S0167-7012(98)00014-1]
[82]
Thi Lan Huong, V.; Nguyen, N.T. Green synthesis, characterization and antibacterial activity of silver nanoparticles using Sapindus mukorossi fruit pericarp extract. Materials Today: Proceedings; Elsevier Ltd, 2019, pp. 88-93.
[83]
Salayová, A.; Bedlovičová, Z.; Daneu, N.; Baláž, M.; Lukáčová Bujňáková, Z.; Balážová, Ľ.; Tkáčiková, Ľ. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials (Basel), 2021, 11(4), 1005.
[http://dx.doi.org/10.3390/nano11041005] [PMID: 33919801]
[84]
Ulagesan, S.; Nam, T.J.; Choi, Y.H. Biogenic preparation and characterization of Pyropia yezoensis silver nanoparticles (P.y AgNPs) and their antibacterial activity against Pseudomonas aeruginosa. Bioprocess Biosyst. Eng., 2021, 44(3), 443-452.
[http://dx.doi.org/10.1007/s00449-020-02454-x] [PMID: 33040186]
[85]
Keshari, A.K.; Srivastava, R.; Singh, P.; Yadav, V.B.; Nath, G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med., 2020, 11(1), 37-44.
[http://dx.doi.org/10.1016/j.jaim.2017.11.003] [PMID: 30120058]
[86]
Esmaile, F.; Koohestani, H.; Abdollah-Pour, H. Characterization and antibacterial activity of silver nanoparticles green synthesized using Ziziphora clinopodioides extract. Environ. Nanotechnol. Monit. Manag., 2020, 14, 100303.
[http://dx.doi.org/10.1016/j.enmm.2020.100303]
[87]
Gomathi, M.; Prakasam, A.; Rajkumar, P.V.; Rajeshkumar, S.; Chandrasekaran, R.; Anbarasan, P.M. Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity. S. Afr. J. Chem. Eng., 2020, 32, 1-4.
[http://dx.doi.org/10.1016/j.sajce.2019.11.005]
[88]
Alsamhary, K.I. Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi J. Biol. Sci., 2020, 27(8), 2185-2191.
[http://dx.doi.org/10.1016/j.sjbs.2020.04.026] [PMID: 32714045]
[89]
Gutarowska, B.; Pietrzak, K.; Machnowski, W.; Danielewicz, D.; Szynkowska, M.; Konca, P. Application of silver nanoparticles for disinfection of materials to protect historical objects. Curr. Nanosci., 2014, 10(2), 277-286.
[http://dx.doi.org/10.2174/15734137113096660121]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy