Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Dihydroartemisinin Induces ER Stress-Mediated Apoptosis in Human Tongue Squamous Carcinoma by Regulating ROS Production

Author(s): Qun Zhou, Fangfei Ye, Jiaxuan Qiu*, Siying Zhang, Qingkun Jiang, Danfeng Xue and Jialun Li

Volume 22, Issue 16, 2022

Published on: 11 April, 2022

Page: [2902 - 2908] Pages: 7

DOI: 10.2174/1871520622666220215121341

Price: $65

Abstract

Background: Tongue squamous cell carcinoma is a fatal disease characterized by high invasion and early metastasis. Dihydroartemisinin, an antimalarial drug with multiple biological activities, is reported to be a potential anti-cancer agent.

Objective: This study aimed to evaluate the antitumor effect of Dihydroartemisinin on tongue squamous cell carcinoma cells, and to identify the underlying mechanisms of Dihydroartemisinin-induced cell apoptosis.

Methods: Here, Cell Counting Kit 8 assay and colony formation assay were conducted to study cell proliferation. Annexin V-FITC/propidium iodide staining and western blot analysis were performed to analyze cell apoptosis. DCFHDA probe was used to measure the generation of cellular reactive oxygen species. Endoplasmic reticulum stress activation was also determined via western blot analysis.

Results: The results showed that Dihydroartemisinin substantially inhibited cell proliferation and induced cell apoptosis in vivo. Moreover, reactive oxygen species production and endoplasmic reticulum stress activation were both observed after stimulation with Dihydroartemisinin. However, the reactive oxygen species inhibitor N-acetylcysteine significantly alleviated Dihydroartemisinin-induced endoplasmic reticulum stress and apoptosis.

Conclusion: These results imply that Dihydroartemisinin induced cell apoptosis by triggering reactive oxygen speciesmediated endoplasmic reticulum stress in CAL27 cells. In addition, Dihydroartemisinin might be an effective drug for tongue squamous cell carcinoma therapy.

Keywords: Dihydroartemisinin, endoplasmic reticulum stress, reactive oxygen species, tongue squamous cell carcinoma, apoptosis, anticancer.

Graphical Abstract

[1]
Sgaramella, N.; Gu, X.; Boldrup, L.; Coates, P.J.; Fahraeus, R.; Califano, L.; Tartaro, G.; Colella, G.; Spaak, L.N.; Strom, A.; Wilms, T.; Muzio, L.L.; Orabona, G.D.; Santagata, M.; Loljung, L.; Rossiello, R.; Danielsson, K.; Strindlund, K.; Lillqvist, S.; Nylander, K. Searching for new targets and treatments in the battle against squamous cell carcinoma of the head and neck, with specific focus on tumours of the tongue. Curr. Top. Med. Chem., 2018, 18(3), 214-218.
[http://dx.doi.org/10.2174/1568026618666180116121624] [PMID: 29345578]
[2]
Chen, J.; Liu, L.; Cai, X.; Yao, Z.; Huang, J. Progress in the study of long noncoding RNA in tongue squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2020, 129(1), 51-58.
[http://dx.doi.org/10.1016/j.oooo.2019.08.011] [PMID: 31611036]
[3]
Zhang, T.H.; Liang, L.Z.; Liu, X.L.; Wu, J.N.; Su, K.; Chen, J.Y.; Zheng, Q.Y. LncRNA UCA1/miR-124 axis modulates TGFβ1-induced epithelial-mesenchymal transition and invasion of tongue cancer cells through JAG1/Notch signaling. J. Cell. Biochem., 2019, 120(6), 10495-10504.
[http://dx.doi.org/10.1002/jcb.28334] [PMID: 30635938]
[4]
Luo, H.; Vong, C.T.; Chen, H.; Gao, Y.; Lyu, P.; Qiu, L.; Zhao, M.; Liu, Q.; Cheng, Z.; Zou, J.; Yao, P.; Gao, C.; Wei, J.; Ung, C.O.L.; Wang, S.; Zhong, Z.; Wang, Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin. Med., 2019, 14, 48.
[http://dx.doi.org/10.1186/s13020-019-0270-9] [PMID: 31719837]
[5]
Hao, X.; Zhong, Y.; Fu, X.; Lv, Z.; Shen, Q.; Yan, T.; Shi, P.; Ma, Y.; Chen, M.; Lv, X.; Wu, Z.; Zhao, J.; Sun, X.; Li, L.; Tang, K. Transcriptome analysis of genes associated with the artemisinin biosynthesis by jasmonic acid treatment under the light in Artemisia annua. Front. Plant Sci., 2017, 8, 971.
[http://dx.doi.org/10.3389/fpls.2017.00971] [PMID: 28642777]
[6]
Dama, S.; Niangaly, H.; Djimde, M.; Sagara, I.; Guindo, C.O.; Zeguime, A.; Dara, A.; Djimde, A.A.; Doumbo, O.K. A randomized trial of dihydroartemisinin-piperaquine versus artemetherlumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Mali. Malar. J., 2018, 17(1), 347.
[http://dx.doi.org/10.1186/s12936-018-2496-x] [PMID: 30290808]
[7]
Ni, L.; Kuang, Z.; Gong, Z.; Xue, D.; Zheng, Q. Dihydroartemisinin promotes the osteogenesis of human mesenchymal stem cells via the ERK and Wnt/β-catenin signaling pathways. BioMed Res. Int., 2019, 2019, 3456719.
[http://dx.doi.org/10.1155/2019/3456719] [PMID: 31534957]
[8]
Dai, X.; Zhang, X.; Chen, W.; Chen, Y.; Zhang, Q.; Mo, S.; Lu, J. Dihydroartemisinin: A potential natural anticancer drug. Int. J. Biol. Sci., 2021, 17(2), 603-622.
[http://dx.doi.org/10.7150/ijbs.50364] [PMID: 33613116]
[9]
Shi, X.; Wang, L.; Li, X.; Bai, J.; Li, J.; Li, S.; Wang, Z.; Zhou, M. Dihydroartemisinin induces autophagy-dependent death in human tongue squamous cell carcinoma cells through DNA double-strand break-mediated oxidative stress. Oncotarget, 2017, 8(28), 45981-45993.
[http://dx.doi.org/10.18632/oncotarget.17520] [PMID: 28526807]
[10]
Nishikawa, M. Reactive oxygen species in tumor metastasis. Cancer Lett., 2008, 266(1), 53-59.
[http://dx.doi.org/10.1016/j.canlet.2008.02.031]
[11]
Ferreira, C.A.; Ni, D.; Rosenkrans, Z.T.; Cai, W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res., 2018, 11(10), 4955-4984.
[http://dx.doi.org/10.1007/s12274-018-2092-y] [PMID: 30450165]
[12]
Lundgren, C.A.K.; Sjöstrand, D.; Biner, O.; Bennett, M.; Rudling, A.; Johansson, A.L.; Brzezinski, P.; Carlsson, J.; von Ballmoos, C.; Högbom, M. Scavenging of superoxide by a membrane-bound superoxide oxidase. Nat. Chem. Biol., 2018, 14(8), 788-793.
[http://dx.doi.org/10.1038/s41589-018-0072-x] [PMID: 29915379]
[13]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[14]
Shin, J.I.; Jeon, Y.J.; Lee, S.; Lee, Y.G.; Kim, J.B.; Lee, K. G-Protein-coupled receptor 120 mediates DHA-induced apoptosis by regulating IP3R, ROS and, ER stress levels in cisplatin-resistant cancer cells. Mol. Cells, 2019, 42(3), 252-261.
[http://dx.doi.org/10.14348/molcells.2019.2440] [PMID: 30764601]
[15]
Lin, C.L.; Lee, C.H.; Chen, C.M.; Cheng, C.W.; Chen, P.N.; Ying, T.H.; Hsieh, Y.H. Protodioscin induces apoptosis through rosmediated endoplasmic reticulum stress via the JNK/p38 activation pathways in human cervical cancer cells. Cell. Physiol. Biochem., 2018, 46(1), 322-334.
[http://dx.doi.org/10.1159/000488433] [PMID: 29590661]
[16]
Chen, W.; Li, P.; Liu, Y.; Yang, Y.; Ye, X.; Zhang, F.; Huang, H. Isoalantolactone induces apoptosis through ROS-mediated ER stress and inhibition of STAT3 in prostate cancer cells. J. Exp. Clin. Cancer Res., 2018, 37(1), 309.
[http://dx.doi.org/10.1186/s13046-018-0987-9] [PMID: 30541589]
[17]
Ren, X.; Boriero, D.; Chaiswing, L.; Bondada, S.; St Clair, D.K.; Butterfield, D.A. Plausible biochemical mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”), a condition that significantly impairs the quality of life of many cancer survivors. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6), 1088-1097.
[http://dx.doi.org/10.1016/j.bbadis.2019.02.007] [PMID: 30759363]
[18]
da Silva, D.C.; Valentão, P.; Andrade, P.B.; Pereira, D.M. Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: Tools and strategies to understand its complexity. Pharmacol. Res., 2020, 155, 104702.
[http://dx.doi.org/10.1016/j.phrs.2020.104702] [PMID: 32068119]
[19]
Martucciello, S.; Masullo, M.; Cerulli, A.; Piacente, S.; Natural Products Targeting, E.R. Natural products targeting ER stress, and the functional link to mitochondria. Int. J. Mol. Sci., 2020, 21(6), E1905.
[http://dx.doi.org/10.3390/ijms21061905] [PMID: 32168739]
[20]
Malhotra, J.D.; Miao, H.; Zhang, K.; Wolfson, A.; Pennathur, S.; Pipe, S.W.; Kaufman, R.J. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc. Natl. Acad. Sci. USA, 2008, 105(47), 18525-18530.
[http://dx.doi.org/10.1073/pnas.0809677105] [PMID: 19011102]
[21]
Walczak, A.; Gradzik, K.; Kabzinski, J.; Przybylowska-Sygut, K.; Majsterek, I.; Grzegorz, B.; Bartosz, G. The role of the ER-induced UPR pathway and the efficacy of its inhibitors and inducers in the inhibition of tumor progression. Oxid. Med. Cell. Longev., 2019, 2019, 5729710-5729715.
[http://dx.doi.org/10.1155/2019/5729710] [PMID: 30863482]
[22]
Jia, L.; Song, Q.; Zhou, C.; Li, X.; Pi, L.; Ma, X.; Li, H.; Lu, X.; Shen, Y.; Sethi, G. Dihydroartemisinin as a putative STAT3 inhibitor, suppresses the growth of head and neck squamous cell carcinoma by targeting Jak2/STAT3 signaling. PLoS One, 2016, 11(1), e0147157.
[http://dx.doi.org/10.1371/journal.pone.0147157] [PMID: 26784960]
[23]
Jin, H.; Zhao, Y.; Yang, J.; Zhang, X.; Ma, S. Hyperthermia enhances the sensitivity of pancreatic cancer SW1990 cells to gemcitabine through ROS/JNK signaling. Oncol. Lett., 2018, 16(5), 6742-6748.
[http://dx.doi.org/10.3892/ol.2018.9455] [PMID: 30405817]
[24]
Huang, H.; Xie, H.; Pan, Y.; Zheng, K.; Xia, Y.; Chen, W.; Plumbagin Triggers, E.R. Plumbagin triggers ER stress-mediated apoptosis in prostate cancer cells via induction of ROS. Cell. Physiol. Biochem., 2018, 45(1), 267-280.
[http://dx.doi.org/10.1159/000486773] [PMID: 29357323]
[25]
Xu, C.; Bailly-Maitre, B.; Reed, J.C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest., 2005, 115(10), 2656-2664.
[http://dx.doi.org/10.1172/JCI26373] [PMID: 16200199]
[26]
Lingani, M.; Bonkian, L.N.; Yerbanga, I.; Kazienga, A.; Valéa, I.; Sorgho, H.; Ouédraogo, J.B.; Mens, P.F.; Schallig, H.D.F.H.; Ravinetto, R.; d’Alessandro, U.; Tinto, H. In vivo/ex vivo efficacy of artemether-lumefantrine and artesunate-amodiaquine as first-line treatment for uncomplicated falciparum malaria in children: an open label randomized controlled trial in Burkina Faso. Malar. J., 2020, 19(1), 8.
[http://dx.doi.org/10.1186/s12936-019-3089-z] [PMID: 31906948]
[27]
Chen, H.H.; Zhou, H.J.; Fang, X. Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro. Pharmacol. Res., 2003, 48(3), 231-236.
[http://dx.doi.org/10.1016/S1043-6618(03)00107-5] [PMID: 12860439]
[28]
Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med., 2020, 52(2), 192-203.
[http://dx.doi.org/10.1038/s12276-020-0384-2] [PMID: 32060354]
[29]
Shi, F.; Xue, D.; Jiang, Q.; Qiu, J. Glaucocalyxin A induces apoptosis and autophagy in tongue squamous cell carcinoma cells by regulating ROS. Cancer Chemother. Pharmacol., 2021, 88(2), 235-246.
[http://dx.doi.org/10.1007/s00280-021-04285-3] [PMID: 33904969]
[30]
Roy, A.; Kumar, A. ER stress and unfolded protein response in cancer cachexia. Cancers (Basel), 2019, 11(12), E1929.
[http://dx.doi.org/10.3390/cancers11121929] [PMID: 31817027]
[31]
Ramirez, M.U.; Hernandez, S.R.; Soto-Pantoja, D.R.; Cook, K.L. Endoplasmic reticulum stress pathway, the unfolded protein response, modulates immune function in the tumor microenvironment to impact tumor progression and therapeutic response. Int. J. Mol. Sci., 2019, 21(1), E169.
[http://dx.doi.org/10.3390/ijms21010169] [PMID: 31881743]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy