Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Combination of Second-Generation Proteasome Inhibitor Carfilzomib with Bortezomib in Four Different Breast Cancer Cell Lines

Author(s): Ergul Mutlu Altundag, Ayse Mine Yilmaz, Ali Sahin and Betul Karademir Yilmaz*

Volume 22, Issue 16, 2022

Published on: 25 May, 2022

Page: [2909 - 2918] Pages: 10

DOI: 10.2174/1871520622666220329175501

Price: $65

Abstract

Background: Proteasome inhibitors target different pathways in cells and therefore are promising drugs in cancer therapy. The use of these inhibitors is approved mainly in hematological cancers, and recently many clinical trials and preclinical studies have been conducted on efficacy in solid tumors. Carfilzomib is a second-generation inhibitor and was developed to decrease the side effects of bortezomib. Although there are many valid therapies for breast cancer, resistance and recurrence are inevitable in many cases and the proteasomal system plays an important role in related pathways.

Objective: This study is a preliminary work to evaluate the combined effects of bortezomib and carfilzomib in four different breast cancer cells.

Methods: MDA-MB-231, MCF-7, UACC-2087, and SKBR-3 cell lines were used. Cell viability was determined using bortezomib and carfilzomib alone and in combination. Combination effect values were determined using the Chou- Talalay method. Apoptosis, proteasome activity, cleaved PARP, and HSP70 expressions were analyzed in the determined doses.

Results: The response to the combination of the two inhibitors was different in four cell lines. Apoptosis was significantly higher in combination groups compared to carfilzomib in three cell lines except for SKBR-3, and higher in the combination group compared to bortezomib only in UACC-2087. Combination decreased cleaved PARP levels in MDA-MB-231 and MCF-7 and increased SKBR-3 compared to bortezomib. HSP70 levels decreased in combination with UACC-2087 and SKBR-3 compared to carfilzomib.

Conclusion: Taken together, the combination of the two inhibitors was more apoptotic compared to carfilzomib and apoptosis was higher only in UACC-2087 compared to bortezomib. This apoptosis data can not be directly correlated to the degree of proteasome inhibition, PARP cleavage, and HSP70 response.

Keywords: Breast cancer cells, bortezomib, carfilzomib, cell lines, PARP levels, HSP70.

« Previous
Graphical Abstract

[1]
Organization, W.H. WHO report on cancer: Setting priorities, investing wisely and providing care for all. 2020.
[2]
Sharma, R. Global, regional, national burden of breast cancer in 185 countries: Evidence from GLOBOCAN 2018. Breast Cancer Res. Treat., 2021, 187(2), 557-567.
[http://dx.doi.org/10.1007/s10549-020-06083-6] [PMID: 33515396]
[3]
Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[4]
Dai, X.; Cheng, H.; Bai, Z.; Li, J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J. Cancer, 2017, 8(16), 3131-3141.
[http://dx.doi.org/10.7150/jca.18457] [PMID: 29158785]
[5]
Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers (Basel), 2021, 13(17), 4287.
[http://dx.doi.org/10.3390/cancers13174287] [PMID: 34503097]
[6]
Perou, C.M.; Børresen-Dale, A.L. Systems biology and genomics of breast cancer. Cold Spring Harb. Perspect. Biol., 2011, 3(2), a003293.
[http://dx.doi.org/10.1101/cshperspect.a003293] [PMID: 21047916]
[7]
Grune, T.; Catalgol, B.; Licht, A.; Ermak, G.; Pickering, A.M.; Ngo, J.K.; Davies, K.J. HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic. Biol. Med., 2011, 51(7), 1355-1364.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.015] [PMID: 21767633]
[8]
Manasanch, E.E.; Orlowski, R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol., 2017, 14(7), 417-433.
[http://dx.doi.org/10.1038/nrclinonc.2016.206] [PMID: 28117417]
[9]
Calderwood, S.K.; Khaleque, M.A.; Sawyer, D.B.; Ciocca, D.R. Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem. Sci., 2006, 31(3), 164-172.
[http://dx.doi.org/10.1016/j.tibs.2006.01.006] [PMID: 16483782]
[10]
Karademir, B.; Sari-Kaplan, G. Encyclopedia of Signaling Molecules; Choi, S., Ed.; Springer International Publishing: Cham, 2018, pp. 2330-2339.
[http://dx.doi.org/10.1007/978-3-319-67199-4_101809]
[11]
Roeten, M.S.F.; Cloos, J.; Jansen, G. Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother. Pharmacol., 2018, 81(2), 227-243.
[http://dx.doi.org/10.1007/s00280-017-3489-0] [PMID: 29184971]
[12]
Catalgol, B. Proteasome and cancer. Prog. Mol. Biol. Transl. Sci., 2012, 109, 277-293.
[http://dx.doi.org/10.1016/B978-0-12-397863-9.00008-0] [PMID: 22727425]
[13]
Casas, C. Grp78 at the centre of the stage in neurodegeneration and cancer. Front. Neurosci., 2017, 11, 1-15.
[http://dx.doi.org/10.3389/fnins.2017.00177]
[14]
Lee, E.; Nichols, P.; Groshen, S.; Spicer, D.; Lee, A.S. GRP78 as potential predictor for breast cancer response to adjuvant taxane therapy. Int. J. Cancer, 2011, 128(3), 726-731.
[http://dx.doi.org/10.1002/ijc.25370] [PMID: 20473863]
[15]
Fu, Y.; Li, J.; Lee, A.S. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res., 2007, 67(8), 3734-3740.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4594] [PMID: 17440086]
[16]
Barnes, J.A.; Dix, D.J.; Collins, B.W.; Luft, C.; Allen, J.W. Expression of inducible Hsp70 enhances the proliferation of MCF-7 breast cancer cells and protects against the cytotoxic effects of hyperthermia. Cell Stress Chaperones, 2001, 6(4), 316-325.
[http://dx.doi.org/10.1379/1466-1268(2001)006<0316:EOIHET>2.0.CO;2] [PMID: 11795468]
[17]
Dimas, D.T.; Perlepe, C.D.; Sergentanis, T.N.; Misitzis, I.; Kontzoglou, K.; Patsouris, E.; Kouraklis, G.; Psaltopoulou, T.; Nonni, A. The prognostic significance of Hsp70/Hsp90 expression in breast cancer: A systematic review and meta-analysis. Anticancer Res., 2018, 38(3), 1551-1562.
[PMID: 29491085]
[18]
Orlowski, R.Z.; Baldwin, A.S. Jr NF-kappaB as a therapeutic target in cancer. Trends Mol. Med., 2002, 8(8), 385-389.
[http://dx.doi.org/10.1016/S1471-4914(02)02375-4] [PMID: 12127724]
[19]
Chen, D.; Frezza, M.; Schmitt, S.; Kanwar, J.; Dou, Q.P. Bortezomib as the first proteasome inhibitor anticancer drug: Current status and future perspectives. Curr. Cancer Drug Targets, 2011, 11(3), 239-253.
[http://dx.doi.org/10.2174/156800911794519752] [PMID: 21247388]
[20]
Hegde, A.N.; Upadhya, S.C. The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci., 2007, 30(11), 587-595.
[http://dx.doi.org/10.1016/j.tins.2007.08.005] [PMID: 17950927]
[21]
Voortman, J.; Giaccone, G. Clinical application of proteasome inhibitor bortezomib: Characterization of neurotoxicity. Ubiquitin pro-teasome Syst; Cent; Nerv. Syst. from Physiol. to Pathol, 2007, pp. 1037-1054.
[22]
Allegra, A.; Alonci, A.; Gerace, D.; Russo, S.; Innao, V.; Calabrò, L.; Musolino, C. New orally active proteasome inhibitors in multiple myeloma. Leuk. Res., 2014, 38(1), 1-9.
[http://dx.doi.org/10.1016/j.leukres.2013.10.018] [PMID: 24239172]
[23]
Arlt, A.; Bauer, I.; Schafmayer, C.; Tepel, J.; Müerköster, S.S.; Brosch, M.; Röder, C.; Kalthoff, H.; Hampe, J.; Moyer, M.P.; Fölsch, U.R.; Schäfer, H. Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene, 2009, 28(45), 3983-3996.
[http://dx.doi.org/10.1038/onc.2009.264] [PMID: 19734940]
[24]
Lin, H.K.; Altuwaijri, S.; Lin, W.J.; Kan, P.Y.; Collins, L.L.; Chang, C. Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J. Biol. Chem., 2002, 277(39), 36570-36576.
[http://dx.doi.org/10.1074/jbc.M204751200] [PMID: 12119296]
[25]
Almond, J.B.; Snowden, R.T.; Hunter, A.; Dinsdale, D.; Cain, K.; Cohen, G.M. Proteasome inhibitor-induced apoptosis of B-chronic lymphocytic leukaemia cells involves cytochrome c release and caspase activation, accompanied by formation of an approximately 700 kDa Apaf-1 containing apoptosome complex. Leukemia, 2001, 15(9), 1388-1397.
[http://dx.doi.org/10.1038/sj.leu.2402201] [PMID: 11516099]
[26]
Buac, D.; Shen, M.; Schmitt, S.; Kona, F.R.; Deshmukh, R.; Zhang, Z.; Neslund-Dudas, C.; Mitra, B.; Dou, Q.P. From bortezomib to other inhibitors of the proteasome and beyond. Curr. Pharm. Des., 2013, 19(22), 4025-4038.
[http://dx.doi.org/10.2174/1381612811319220012] [PMID: 23181572]
[27]
Tseng, L-M.; Liu, C-Y.; Chang, K-C.; Chu, P-Y.; Shiau, C-W.; Chen, K-F. CIP2A is a target of bortezomib in human triple negative breast cancer cells. Breast Cancer Res., 2012, 14(2), R68.
[http://dx.doi.org/10.1186/bcr3175] [PMID: 22537901]
[28]
Waldschmidt, J.M.; Wider, D.; Müller, S.J.; Simon, A.; Decker, S.; Follo, M.; Duyster, J.; Wäsch, R.; Engelhardt, M. PIM1-Mediated CXCR4 phosphorylation: A potentially class-distinct therapeutic target of next generation proteasome inhibitors in multiple myeloma. Blood, 2016, 128(22), 2774.
[http://dx.doi.org/10.1182/blood.V128.22.2774.2774]
[29]
Chang, H.Y.; Huang, T.C.; Chen, N.N.; Huang, H.C.; Juan, H.F. Combination therapy targeting ectopic ATP synthase and 26S proteasome induces ER stress in breast cancer cells. Cell Death Dis., 2014, 5(11), e1540-e1540.
[http://dx.doi.org/10.1038/cddis.2014.504] [PMID: 25429617]
[30]
Gu, Y.; Bouwman, P.; Greco, D.; Saarela, J.; Yadav, B.; Jonkers, J.; Kuznetsov, S.G. Suppression of BRCA1 sensitizes cells to proteasome inhibitors. Cell Death Dis., 2014, 5(12), e1580-e1580.
[http://dx.doi.org/10.1038/cddis.2014.537] [PMID: 25522274]
[31]
Komatsu, S.; Miyazawa, K.; Moriya, S.; Takase, A.; Naito, M.; Inazu, M.; Kohno, N.; Itoh, M.; Tomoda, A. Clarithromycin enhances bortezomib-induced cytotoxicity via endoplasmic reticulum stress-mediated CHOP (GADD153) induction and autophagy in breast cancer cells. Int. J. Oncol., 2012, 40(4), 1029-1039.
[http://dx.doi.org/10.3892/ijo.2011.1317] [PMID: 22200786]
[32]
Miyahara, K.; Kazama, H.; Kokuba, H.; Komatsu, S.; Hirota, A.; Takemura, J.; Hirasawa, K.; Moriya, S.; Abe, A.; Hiramoto, M.; Ishikawa, T.; Miyazawa, K. Targeting bortezomib-induced aggresome formation using vinorelbine enhances the cytotoxic effect along with ER stress loading in breast cancer cell lines. Int. J. Oncol., 2016, 49(5), 1848-1858.
[http://dx.doi.org/10.3892/ijo.2016.3673] [PMID: 27601063]
[33]
Maynadier, M.; Basile, I.; Gallud, A.; Gary-Bobo, M.; Garcia, M. Combination treatment with proteasome inhibitors and antiestrogens has a synergistic effect mediated by p21WAF1 in estrogen receptor-positive breast cancer. Oncol. Rep., 2016, 36(2), 1127-1134.
[http://dx.doi.org/10.3892/or.2016.4873] [PMID: 27373750]
[34]
Accardi, F.; Toscani, D.; Costa, F.; Aversa, F.; Giuliani, N. The proteasome and myeloma-associated bone disease. Calcif. Tissue Int., 2018, 102(2), 210-226.
[http://dx.doi.org/10.1007/s00223-017-0349-1] [PMID: 29080972]
[35]
Jones, M.D.; Liu, J.C.; Barthel, T.K.; Hussain, S.; Lovria, E.; Cheng, D.; Schoonmaker, J.A.; Mulay, S.; Ayers, D.C.; Bouxsein, M.L.; Stein, G.S.; Mukherjee, S.; Lian, J.B. A proteasome inhibitor, bortezomib, inhibits breast cancer growth and reduces osteolysis by down-regulating metastatic genes. Clin. Cancer Res., 2010, 16(20), 4978-4989.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-3293] [PMID: 20843837]
[36]
Chiarle, R.; Pagano, M.; Inghirami, G. The cyclin dependent kinase inhibitor p27 and its prognostic role in breast cancer. Breast Cancer Res., 2001, 3(2), 91-94.
[http://dx.doi.org/10.1186/bcr277] [PMID: 11250752]
[37]
Podust, V.N.; Brownell, J.E.; Gladysheva, T.B.; Luo, R-S.; Wang, C.; Coggins, M.B.; Pierce, J.W.; Lightcap, E.S.; Chau, V.A. Nedd8 conju-gation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. Proc. Natl. Acad. Sci. USA, 2000, 97(9), 4579-4584.
[http://dx.doi.org/10.1073/pnas.090465597] [PMID: 10781063]
[38]
Deshmukh, R.R.; Dou, Q.P. Proteasome inhibitors induce AMPK activation via CaMKKβ in human breast cancer cells. Breast Cancer Res. Treat., 2015, 153(1), 79-88.
[http://dx.doi.org/10.1007/s10549-015-3512-2] [PMID: 26227473]
[39]
Mao, J-H.; Diest, P.J.V.; Perez-Losada, J.; Snijders, A.M. Revisiting the impact of age and molecular subtype on overall survival after radiotherapy in breast cancer patients. Sci. Rep., 2017, 7(1), 12587.
[http://dx.doi.org/10.1038/s41598-017-12949-5] [PMID: 28974723]
[40]
Tseng, Y.D.; Uno, H.; Hughes, M.E.; Niland, J.C.; Wong, Y.-N.; Theriault, R.; Blitzblau, R.C.; Moy, B.; Breslin, T.; Edge, S.B. Biological subtype predicts risk of locoregional recurrence after mastectomy and impact of postmastectomy radiation in a large national database. Int. J. Radi. Oncol* Biology* Phy., 2015, 93(3), 622, 630.
[41]
Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul., 1984, 22, 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]
[42]
Valero, V.; Forbes, J.; Pegram, M.D.; Pienkowski, T.; Eiermann, W.; von Minckwitz, G.; Roche, H.; Martin, M.; Crown, J.; Mackey, J.R.; Fumoleau, P.; Rolski, J.; Mrsic-Krmpotic, Z.; Jagiello-Gruszfeld, A.; Riva, A.; Buyse, M.; Taupin, H.; Sauter, G.; Press, M.F.; Slamon, D.J. Multicenter phase III randomized trial comparing docetaxel and trastuzumab with docetaxel, carboplatin, and trastuzumab as first-line chemotherapy for patients with HER2-gene-amplified metastatic breast cancer (BCIRG 007 study): Two highly active therapeutic regimens. J. Clin. Oncol., 2011, 29(2), 149-156.
[http://dx.doi.org/10.1200/JCO.2010.28.6450] [PMID: 21115860]
[43]
Yao, H.; He, G.; Yan, S.; Chen, C.; Song, L.; Rosol, T.J.; Deng, X. Triple-negative breast cancer: Is there a treatment on the horizon? Oncotarget, 2017, 8(1), 1913-1924.
[http://dx.doi.org/10.18632/oncotarget.12284] [PMID: 27765921]
[44]
Driscoll, J.J.; Woodle, E.S. Targeting the ubiquitin+proteasome system in solid tumors. Semin. Hematol., 2012, 49(3), 277-283.
[http://dx.doi.org/10.1053/j.seminhematol.2012.04.002] [PMID: 22726552]
[45]
Jakubowiak, A.J. Evolution of carfilzomib dose and schedule in patients with multiple myeloma: A historical overview. Cancer Treat. Rev., 2014, 40(6), 781-790.
[http://dx.doi.org/10.1016/j.ctrv.2014.02.005] [PMID: 24630735]
[46]
Merin, N.M.; Kelly, K.R. Clinical use of proteasome inhibitors in the treatment of multiple myeloma. Pharmaceuticals (Basel), 2014, 8(1), 1-20.
[http://dx.doi.org/10.3390/ph8010001] [PMID: 25545164]
[47]
Kuhn, D.J.; Chen, Q.; Voorhees, P.M.; Strader, J.S.; Shenk, K.D.; Sun, C.M.; Demo, S.D.; Bennett, M.K.; van Leeuwen, F.W.; Chanan-Khan, A.A.; Orlowski, R.Z. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood, 2007, 110(9), 3281-3290.
[http://dx.doi.org/10.1182/blood-2007-01-065888] [PMID: 17591945]
[48]
Albakova, Z.; Armeev, G.A.; Kanevskiy, L.M.; Kovalenko, E.I.; Sapozhnikov, A.M. HSP70 multi-functionality in cancer. Cells, 2020, 9(3), E587.
[http://dx.doi.org/10.3390/cells9030587] [PMID: 32121660]
[49]
Chuma, M.; Sakamoto, M.; Yamazaki, K.; Ohta, T.; Ohki, M.; Asaka, M.; Hirohashi, S. Expression profiling in multistage hepatocarcino-genesis: Identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology, 2003, 37(1), 198-207.
[http://dx.doi.org/10.1053/jhep.2003.50022] [PMID: 12500205]
[50]
Abe, M.; Manola, J.B.; Oh, W.K.; Parslow, D.L.; George, D.J.; Austin, C.L.; Kantoff, P.W. Plasma levels of heat shock protein 70 in patients with prostate cancer: A potential biomarker for prostate cancer. Clin. Prostate Cancer, 2004, 3(1), 49-53.
[http://dx.doi.org/10.3816/CGC.2004.n.013] [PMID: 15279691]
[51]
Hwang, T.S.; Han, H.S.; Choi, H.K.; Lee, Y.J.; Kim, Y.J.; Han, M.Y.; Park, Y.M. Differential, stage-dependent expression of Hsp70, Hsp110 and Bcl-2 in colorectal cancer. J. Gastroenterol. Hepatol., 2003, 18(6), 690-700.
[http://dx.doi.org/10.1046/j.1440-1746.2003.03011.x] [PMID: 12753152]
[52]
Jagadish, N.; Parashar, D.; Gupta, N.; Agarwal, S.; Suri, V.; Kumar, R.; Suri, V.; Sadasukhi, T.C.; Gupta, A.; Ansari, A.S.; Lohiya, N.K.; Suri, A. Heat shock protein 70-2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth. BMC Cancer, 2016, 16, 561.
[http://dx.doi.org/10.1186/s12885-016-2592-7] [PMID: 27473057]
[53]
Lazaris, A.Ch.; Chatzigianni, E.B.; Panoussopoulos, D.; Tzimas, G.N.; Davaris, P.S.; Golematis, B.Ch. Proliferating cell nuclear antigen and heat shock protein 70 immunolocalization in invasive ductal breast cancer not otherwise specified. Breast Cancer Res. Treat., 1997, 43(1), 43-51.
[http://dx.doi.org/10.1023/A:1005706110275] [PMID: 9065598]
[54]
Sari, G.; Okat, Z.; Sahin, A.; Karademir, B. Proteasome inhibitors in cancer therapy and their relation to redox regulation. Curr. Pharm. Des., 2018, 24(44), 5252-5267.
[http://dx.doi.org/10.2174/1381612825666190201120013] [PMID: 30706779]
[55]
Lee, M.S.; Lim, S.H.; Yu, A-R.; Hwang, C.Y.; Kang, I.; Yeo, E-J. Carfilzomib in combination with bortezomib enhances apoptotic cell death in B16-F1 melanoma cells. Biology (Basel), 2021, 10(2), 153.
[http://dx.doi.org/10.3390/biology10020153] [PMID: 33671902]
[56]
Karademir, B.; Sari, G.; Jannuzzi, A.T.; Musunuri, S.; Wicher, G.; Grune, T.; Mi, J.; Hacioglu-Bay, H.; Forsberg-Nilsson, K.; Bergquist, J.; Jung, T. Proteomic approach for understanding milder neurotoxicity of Carfilzomib against Bortezomib. Sci. Rep., 2018, 8(1), 16318.
[http://dx.doi.org/10.1038/s41598-018-34507-3] [PMID: 30397214]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy