Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Mini-Review Article

Review: HCN Channels in the Heart

Author(s): Anne-Sophie Depuydt, Steve Peigneur and Jan Tytgat*

Volume 18, Issue 4, 2022

Published on: 06 April, 2022

Article ID: e040222200836 Pages: 13

DOI: 10.2174/1573403X18666220204142436

Price: $65

Abstract

Pacemaker cells are the basis of rhythm in the heart. Cardiovascular diseases, and in particular, arrhythmias are a leading cause of hospital admissions and have been implicated as a cause of sudden death. The prevalence of people with arrhythmias will increase in the next years due to an increase in the ageing population and risk factors. The current therapies are limited, have a lot of side effects, and thus, are not ideal. Pacemaker channels, also called hyperpolarizationactivated cyclic nucleotide-gated (HCN) channels, are the molecular correlate of the hyperpolarization- activated current, called Ih (from hyperpolarization) or If (from funny), that contribute crucially to the pacemaker activity in cardiac nodal cells and impulse generation and transmission in neurons. HCN channels have emerged as interesting targets for the development of drugs, in particular, to lower the heart rate. Nonetheless, their pharmacology is still rather poorly explored in comparison to many other voltage-gated ion channels or ligand-gated ion channels. Ivabradine is the first and currently the only clinically approved compound that specifically targets HCN channels. The therapeutic indication of ivabradine is the symptomatic treatment of chronic stable angina pectoris in patients with coronary artery disease with a normal sinus rhythm. Several other pharmacological agents have been shown to exert an effect on heart rate, although this effect is not always desired. This review is focused on the pacemaking process taking place in the heart and summarizes the current knowledge on HCN channels.

Keywords: HCN channels, hyperpolarization-activated current, automaticity, sinus node dysfunction, atrial fibrillation, ivabradine.

Graphical Abstract

[1]
Bennett JE, Stevens GA, Mathers CD, et al. NCD Countdown 2030 collaborators. NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet 2018; 392(10152): 1072-88.
[http://dx.doi.org/10.1016/S0140-6736(18)31992-5] [PMID: 30264707]
[2]
Wahl-Schott C, Fenske S, Biel M. HCN channels: new roles in sinoatrial node function. Curr Opin Pharmacol 2014; 15: 83-90.
[http://dx.doi.org/10.1016/j.coph.2013.12.005] [PMID: 24441197]
[3]
Rivolta I, Binda A, Masi A, DiFrancesco JC. Cardiac and neuronal HCN channelopathies. Pflugers Arch 2020; 472(7): 931-51.
[http://dx.doi.org/10.1007/s00424-020-02384-3] [PMID: 32424620]
[4]
Alig J, Marger L, Mesirca P, Ehmke H, Mangoni ME, Isbrandt D. Control of heart rate by cAMP sensitivity of HCN chan-nels. Proc Natl Acad Sci USA 2009; 106(29): 12189-94.
[http://dx.doi.org/10.1073/pnas.0810332106] [PMID: 19570998]
[5]
Wahl-Schott C, Biel M. HCN channels: structure, cellular regulation and physiological function. Cell Mol Life Sci 2009; 66(3): 470-94.
[http://dx.doi.org/10.1007/s00018-008-8525-0] [PMID: 18953682]
[6]
Postea O, Biel M. Exploring HCN channels as novel drug targets. Nat Rev Drug Discov 2011; 10(12): 903-14.
[http://dx.doi.org/10.1038/nrd3576] [PMID: 22094868]
[7]
DiFrancesco D, Borer JS. The funny current: cellular basis for the control of heart rate. Drugs 2007; 67(Suppl. 2): 15-24.
[http://dx.doi.org/10.2165/00003495-200767002-00003] [PMID: 17999560]
[8]
Chaudhary R, Garg J, Krishnamoorthy P, et al. Ivabradine: heart failure and beyond. J Cardiovasc Pharmacol Ther 2016; 21(4): 335-43.
[http://dx.doi.org/10.1177/1074248415624157] [PMID: 26721645]
[9]
Liman ER, Tytgat J, Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of mul-timeric cDNAs. Neuron 1992; 9(5): 861-71.
[http://dx.doi.org/10.1016/0896-6273(92)90239-A] [PMID: 1419000]
[10]
Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL, Heteromultimeric K. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature 1993; 365(6441): 75-9.
[http://dx.doi.org/10.1038/365075a0] [PMID: 8361541]
[11]
Sheng M, Liao YJ, Jan YN, Jan LY. Presynaptic A-current based on heteromultimeric K+ channels detected in vivo. Nature 1993; 365(6441): 72-5.
[http://dx.doi.org/10.1038/365072a0] [PMID: 8361540]
[12]
Lee CH, MacKinnon R. Structures of the human HCN1 hy-perpolarization-activated channel. Cell 2017; 168(1-2): 111-120.e11.
[http://dx.doi.org/10.1016/j.cell.2016.12.023] [PMID: 28086084]
[13]
Ulens C, Tytgat J. Functional heteromerization of HCN1 and HCN2 pacemaker channels. J Biol Chem 2001; 276(9): 6069-72.
[http://dx.doi.org/10.1074/jbc.C000738200] [PMID: 11133998]
[14]
Zagotta WN, Olivier NB, Black KD, Young EC, Olson R, Gouaux E. Structural basis for modulation and agonist speci-ficity of HCN pacemaker channels. Nature 2003; 425(6954): 200-5.
[http://dx.doi.org/10.1038/nature01922] [PMID: 12968185]
[15]
Gauss R, Seifert R, Kaupp UB. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 1998; 393(6685): 583-7.
[http://dx.doi.org/10.1038/31248] [PMID: 9634235]
[16]
Santoro B, Liu DT, Yao H, et al. Identification of a gene en-coding a hyperpolarization-activated pacemaker channel of brain. Cell 1998; 93(5): 717-29.
[http://dx.doi.org/10.1016/S0092-8674(00)81434-8] [PMID: 9630217]
[17]
Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M. A family of hyperpolarization-activated mammalian cation channels. Nature 1998; 393(6685): 587-91.
[http://dx.doi.org/10.1038/31255] [PMID: 9634236]
[18]
Whicher JR, MacKinnon R. Structure of the voltage-gated K⁺ channel Eag1 reveals an alternative voltage sensing mecha-nism. Science 2016; 353(6300): 664-9.
[http://dx.doi.org/10.1126/science.aaf8070] [PMID: 27516594]
[19]
Long SB, Campbell EB, Mackinnon R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 2005; 309(5736): 903-8.
[http://dx.doi.org/10.1126/science.1116270] [PMID: 16002579]
[20]
Long SB, Tao X, Campbell EB, MacKinnon R. Atomic struc-ture of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 2007; 450(7168): 376-82.
[http://dx.doi.org/10.1038/nature06265] [PMID: 18004376]
[21]
Chen J, Mitcheson JS, Lin M, Sanguinetti MC. Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel. J Biol Chem 2000; 275(46): 36465-71.
[http://dx.doi.org/10.1074/jbc.M007034200] [PMID: 10962006]
[22]
Bezanilla F. The voltage sensor in voltage-dependent ion channels. Physiol Rev 2000; 80(2): 555-92.
[http://dx.doi.org/10.1152/physrev.2000.80.2.555] [PMID: 10747201]
[23]
Bell DC, Yao H, Saenger RC, Riley JH, Siegelbaum SA. Changes in local S4 environment provide a voltage-sensing mechanism for mammalian hyperpolarization-activated HCN channels. J Gen Physiol 2004; 123(1): 5-19.
[http://dx.doi.org/10.1085/jgp.200308918] [PMID: 14676285]
[24]
Cowgill J, Klenchin VA, Alvarez-Baron C, Tewari D, Blair A, Chanda B. Bipolar switching by HCN voltage sensor underlies hyperpolarization activation. Proc Natl Acad Sci USA 2019; 116(2): 670-8.
[http://dx.doi.org/10.1073/pnas.1816724116] [PMID: 30587580]
[25]
Ramentol R, Perez ME, Larsson HP. Gating mechanism of hyperpolarization-activated HCN pacemaker channels. Nat Commun 2020; 11(1): 1419.
[http://dx.doi.org/10.1038/s41467-020-15233-9] [PMID: 32184399]
[26]
Flynn GE, Zagotta WN. Insights into the molecular mecha-nism for hyperpolarization-dependent activation of HCN channels. Proc Natl Acad Sci USA 2018; 115(34): E8086-95.
[http://dx.doi.org/10.1073/pnas.1805596115] [PMID: 30076228]
[27]
Brandt MC, Endres-Becker J, Zagidullin N, et al. Effects of KCNE2 on HCN isoforms: distinct modulation of membrane expression and single channel properties. Am J Physiol Heart Circ Physiol 2009; 297(1): H355-63.
[http://dx.doi.org/10.1152/ajpheart.00154.2009] [PMID: 19429827]
[28]
Qu J, Kryukova Y, Potapova IA, et al. MiRP1 modulates HCN2 channel expression and gating in cardiac myocytes. J Biol Chem 2004; 279(42): 43497-502.
[http://dx.doi.org/10.1074/jbc.M405018200] [PMID: 15292247]
[29]
Yu H, Wu J, Potapova I, et al. MinK-related peptide 1: A beta subunit for the HCN ion channel subunit family enhances ex-pression and speeds activation. Circ Res 2001; 88(12): E84-7.
[http://dx.doi.org/10.1161/hh1201.093511] [PMID: 11420311]
[30]
Lussier Y, Fürst O, Fortea E, et al. Disease-linked mutations alter the stoichiometries of HCN-KCNE2 complexes. Sci Rep 2019; 9(1): 9113.
[http://dx.doi.org/10.1038/s41598-019-45592-3] [PMID: 31235733]
[31]
Barbuti A, Scavone A, Mazzocchi N, Terragni B, Baruscotti M, Difrancesco D. A caveolin-binding domain in the HCN4 channels mediates functional interaction with caveolin pro-teins. J Mol Cell Cardiol 2012; 53(2): 187-95.
[http://dx.doi.org/10.1016/j.yjmcc.2012.05.013] [PMID: 22659290]
[32]
Ye B, Balijepalli RC, Foell JD, et al. Caveolin-3 associates with and affects the function of hyperpolarization-activated cyclic nucleotide-gated channel 4. Biochemistry 2008; 47(47): 12312-8.
[http://dx.doi.org/10.1021/bi8009295] [PMID: 19238754]
[33]
Haitin Y. Structural biology: a ‘funny’ cyclic dinucleotide receptor. Nat Chem Biol 2014; 10(6): 413-4.
[http://dx.doi.org/10.1038/nchembio.1530] [PMID: 24838168]
[34]
Gross C, Saponaro A, Santoro B, Moroni A, Thiel G, Hamacher K. Mechanical transduction of cytoplasmic-to-transmembrane-domain movements in a hyperpolarization-activated cyclic nucleotide-gated cation channel. J Biol Chem 2018; 293(33): 12908-18.
[http://dx.doi.org/10.1074/jbc.RA118.002139] [PMID: 29936413]
[35]
Neyton J, Miller C. Potassium blocks barium permeation through a calcium-activated potassium channel. J Gen Physiol 1988; 92(5): 549-67.
[http://dx.doi.org/10.1085/jgp.92.5.549] [PMID: 3235973]
[36]
Macri V, Angoli D, Accili EA. Architecture of the HCN selec-tivity filter and control of cation permeation. Sci Rep 2012; 2(1): 894.
[http://dx.doi.org/10.1038/srep00894] [PMID: 23189243]
[37]
Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 2001; 414(6859): 43-8.
[http://dx.doi.org/10.1038/35102009] [PMID: 11689936]
[38]
DiFrancesco D. A study of the ionic nature of the pace-maker current in calf Purkinje fibres. J Physiol 1981; 314(1): 377-93.
[http://dx.doi.org/10.1113/jphysiol.1981.sp013714] [PMID: 6273534]
[39]
DiFrancesco D, Tortora P. Direct activation of cardiac pace-maker channels by intracellular cyclic AMP. Nature 1991; 351(6322): 145-7.
[http://dx.doi.org/10.1038/351145a0] [PMID: 1709448]
[40]
Wainger BJ, DeGennaro M, Santoro B, Siegelbaum SA, Tibbs GR. Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature 2001; 411(6839): 805-10.
[http://dx.doi.org/10.1038/35081088] [PMID: 11459060]
[41]
Wang J, Chen S, Siegelbaum SA. Regulation of hyperpolariza-tion-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions. J Gen Physiol 2001; 118(3): 237-50.
[http://dx.doi.org/10.1085/jgp.118.3.237] [PMID: 11524455]
[42]
Mistrík P, Mader R, Michalakis S, Weidinger M, Pfeifer A, Biel M. The murine HCN3 gene encodes a hyperpolarization-activated cation channel with slow kinetics and unique re-sponse to cyclic nucleotides. J Biol Chem 2005; 280(29): 27056-61.
[http://dx.doi.org/10.1074/jbc.M502696200] [PMID: 15923185]
[43]
Stieber J, Stöckl G, Herrmann S, Hassfurth B, Hofmann F. Functional expression of the human HCN3 channel. J Biol Chem 2005; 280(41): 34635-43.
[http://dx.doi.org/10.1074/jbc.M502508200] [PMID: 16043489]
[44]
Ulens C, Siegelbaum SA. Regulation of hyperpolarization-activated HCN channels by cAMP through a gating switch in binding domain symmetry. Neuron 2003; 40(5): 959-70.
[http://dx.doi.org/10.1016/S0896-6273(03)00753-0] [PMID: 14659094]
[45]
Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 2012; 338(6114): 1622-6.
[http://dx.doi.org/10.1126/science.1229164] [PMID: 23258894]
[46]
Ng LCT, Putrenko I, Baronas V, Van Petegem F, Accili EA. Cyclic purine and pyrimidine nucleotides bind to the HCN2 ion channel and variably promote C-terminal domain interac-tions and opening. Structure 2016; 24(10): 1629-42.
[http://dx.doi.org/10.1016/j.str.2016.06.024] [PMID: 27568927]
[47]
Lolicato M, Bucchi A, Arrigoni C, et al. Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP respon-siveness. Nat Chem Biol 2014; 10(6): 457-62.
[http://dx.doi.org/10.1038/nchembio.1521] [PMID: 24776929]
[48]
DiFrancesco D. Cardiac pacemaker I(f) current and its inhibi-tion by heart rate-reducing agents. Curr Med Res Opin 2005; 21(7): 1115-22.
[http://dx.doi.org/10.1185/030079905X50543] [PMID: 16004681]
[49]
DiFrancesco D. Serious workings of the funny current. Prog Biophys Mol Biol 2006; 90(1-3): 13-25.
[http://dx.doi.org/10.1016/j.pbiomolbio.2005.05.001] [PMID: 15975637]
[50]
Spinelli V, Sartiani L, Mugelli A, Romanelli MN, Cerbai E. Hyperpolarization-activated cyclic-nucleotide-gated channels: pathophysiological, developmental, and pharmacological in-sights into their function in cellular excitability. Can J Physiol Pharmacol 2018; 96(10): 977-84.
[http://dx.doi.org/10.1139/cjpp-2018-0115] [PMID: 29969572]
[51]
VanSchouwen B, Melacini G. Regulation of HCN ion chan-nels by non-canonical cyclic nucleotides. Handb Exp Pharmacol 2017; 238: 123-33.
[http://dx.doi.org/10.1007/164_2016_5006] [PMID: 28181007]
[52]
Pian P, Bucchi A, Robinson RB, Siegelbaum SA. Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PIP2. J Gen Physiol 2006; 128(5): 593-604.
[http://dx.doi.org/10.1085/jgp.200609648] [PMID: 17074978]
[53]
Zolles G, Klöcker N, Wenzel D, et al. Pacemaking by HCN channels requires interaction with phosphoinositides. Neuron 2006; 52(6): 1027-36.
[http://dx.doi.org/10.1016/j.neuron.2006.12.005] [PMID: 17178405]
[54]
Herrmann S, Schnorr S, Ludwig A. HCN channels--modulators of cardiac and neuronal excitability. Int J Mol Sci 2015; 16(1): 1429-47.
[http://dx.doi.org/10.3390/ijms16011429] [PMID: 25580535]
[55]
Ying S-W, Tibbs GR, Picollo A, et al. PIP2-mediated HCN3 channel gating is crucial for rhythmic burst firing in thalamic intergeniculate leaflet neurons. J Neurosci 2011; 31(28): 10412-23.
[http://dx.doi.org/10.1523/JNEUROSCI.0021-11.2011] [PMID: 21753018]
[56]
Barbuti A, Gravante B, Riolfo M, Milanesi R, Terragni B, DiFrancesco D. Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circ Res 2004; 94(10): 1325-31.
[http://dx.doi.org/10.1161/01.RES.0000127621.54132.AE] [PMID: 15073040]
[57]
Fürst O, D’Avanzo N. Isoform dependent regulation of hu-man HCN channels by cholesterol. Sci Rep 2015; 5: 14270.
[http://dx.doi.org/10.1038/srep14270] [PMID: 26404789]
[58]
Liu D, Song AT, Qi X, et al. Cohesin-protein Shugoshin-1 controls cardiac automaticity via HCN4 pacemaker channel. Nat Commun 2021; 12(1): 2551.
[http://dx.doi.org/10.1038/s41467-021-22737-5] [PMID: 33953173]
[59]
Li CH, Zhang Q, Teng B, Mustafa SJ, Huang JY, Yu HG. Src tyrosine kinase alters gating of hyperpolarization-activated HCN4 pacemaker channel through Tyr531. Am J Physiol Cell Physiol 2008; 294(1): C355-62.
[http://dx.doi.org/10.1152/ajpcell.00236.2007] [PMID: 17977941]
[60]
Yu H-G, Lu Z, Pan Z, Cohen IS. Tyrosine kinase inhibition differentially regulates heterologously expressed HCN chan-nels. Pflugers Arch 2004; 447(4): 392-400.
[http://dx.doi.org/10.1007/s00424-003-1204-y] [PMID: 14634823]
[61]
Zong X, Eckert C, Yuan H, et al. A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase. J Biol Chem 2005; 280(40): 34224-32.
[http://dx.doi.org/10.1074/jbc.M506544200] [PMID: 16079136]
[62]
Arinsburg SS, Cohen IS, Yu H-G. Constitutively active Src tyrosine kinase changes gating of HCN4 channels through di-rect binding to the channel proteins. J Cardiovasc Pharmacol 2006; 47(4): 578-86.
[http://dx.doi.org/10.1097/01.fjc.0000211740.47960.8b] [PMID: 16680072]
[63]
Sartiani L, Romanelli MN, Mugelli A, Cerbai E. Updates on HCN channels in the heart: function, dysfunction and phar-macology. Curr Drug Targets 2015; 16(8): 868-76.
[http://dx.doi.org/10.2174/1389450116666150531152047] [PMID: 26028050]
[64]
Muto T, Ueda N, Opthof T, et al. Aldosterone modulates I(f) current through gene expression in cultured neonatal rat ven-tricular myocytes. Am J Physiol Heart Circ Physiol 2007; 293(5): H2710-8.
[http://dx.doi.org/10.1152/ajpheart.01399.2006] [PMID: 17644563]
[65]
Song T, Yang J, Yao Y, et al. Spironolactone diminishes spontaneous ventricular premature beats by reducing HCN4 protein expression in rats with myocardial infarction. Mol Med Rep 2011; 4(3): 569-73.
[PMID: 21468609]
[66]
Yu HD, Xia S, Zha CQ, Deng SB, Du JL, She Q. Spironolac-tone regulates HCN protein expression through micro-RNA-1 in rats with myocardial infarction. J Cardiovasc Pharmacol 2015; 65(6): 587-92.
[http://dx.doi.org/10.1097/FJC.0000000000000227] [PMID: 26065643]
[67]
Benarroch EE. HCN channels: function and clinical implica-tions. Neurology 2013; 80(3): 304-10.
[http://dx.doi.org/10.1212/WNL.0b013e31827dec42] [PMID: 23319474]
[68]
Herrmann S, Hofmann F, Stieber J, Ludwig A. HCN channels in the heart: lessons from mouse mutants. Br J Pharmacol 2012; 166(2): 501-9.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01798.x] [PMID: 22141457]
[69]
Li N, Csepe TA, Hansen BJ, et al. Molecular mapping of sinoatrial node HCN channel expression in the human heart. Circ Arrhythm Electrophysiol 2015; 8(5): 1219-27.
[http://dx.doi.org/10.1161/CIRCEP.115.003070] [PMID: 26304511]
[70]
Huang X, Yang P, Yang Z, Zhang H, Ma A. Age-associated expression of HCN channel isoforms in rat sinoatrial node. Exp Biol Med (Maywood) 2016; 241(3): 331-9.
[http://dx.doi.org/10.1177/1535370215603515] [PMID: 26341471]
[71]
Stillitano F, Lonardo G, Zicha S, et al. Molecular basis of funny current (If) in normal and failing human heart. J Mol Cell Cardiol 2008; 45(2): 289-99.
[http://dx.doi.org/10.1016/j.yjmcc.2008.04.013] [PMID: 18556018]
[72]
Lezoualc’h F, Steplewski K, Sartiani L, Mugelli A, Fischmeis-ter R, Bril A. Quantitative mRNA analysis of serotonin 5-HT4 receptor isoforms, calcium handling proteins and ion chan-nels in human atrial fibrillation. Biochem Biophys Res Commun 2007; 357(1): 218-24.
[http://dx.doi.org/10.1016/j.bbrc.2007.03.124] [PMID: 17418812]
[73]
DiFrancesco D, Noble D. The funny current has a major pacemaking role in the sinus node. Heart Rhythm 2012; 9(2): 299-301.
[http://dx.doi.org/10.1016/j.hrthm.2011.09.021] [PMID: 21925134]
[74]
Maltsev VA, Lakatta EG. The funny current in the context of the coupled-clock pacemaker cell system. Heart Rhythm 2012; 9(2): 302-7.
[http://dx.doi.org/10.1016/j.hrthm.2011.09.022] [PMID: 21925132]
[75]
Rosen MR, Nargeot J, Salama G. The case for the funny cur-rent and the calcium clock. Heart Rhythm 2012; 9(4): 616-8.
[http://dx.doi.org/10.1016/j.hrthm.2011.10.008] [PMID: 21996036]
[76]
Lakatta EG, DiFrancesco D. What keeps us ticking: a funny current, a calcium clock, or both? J Mol Cell Cardiol 2009; 47(2): 157-70.
[http://dx.doi.org/10.1016/j.yjmcc.2009.03.022] [PMID: 19361514]
[77]
Liu J, Noble PJ, Xiao G, et al. Role of pacemaking current in cardiac nodes: insights from a comparative study of sinoatrial node and atrioventricular node. Prog Biophys Mol Biol 2008; 96(1-3): 294-304.
[http://dx.doi.org/10.1016/j.pbiomolbio.2007.07.009] [PMID: 17905415]
[78]
Marger L, Mesirca P, Alig J, et al. Functional roles of Ca(v)1.3, Ca(v)3.1 and HCN channels in automaticity of mouse atrioventricular cells: insights into the atrioventricular pacemaker mechanism. Channels (Austin) 2011; 5(3): 251-61.
[http://dx.doi.org/10.4161/chan.5.3.15266] [PMID: 21406960]
[79]
Verrier RL, Bonatti R, Silva AFG, et al. If inhibition in the atrioventricular node by ivabradine causes rate-dependent slowing of conduction and reduces ventricular rate during atrial fibrillation. Heart Rhythm 2014; 11(12): 2288-96.
[http://dx.doi.org/10.1016/j.hrthm.2014.08.007] [PMID: 25111327]
[80]
Verrier RL, Silva AFG, Bonatti R, et al. Combined actions of ivabradine and ranolazine reduce ventricular rate during atrial fibrillation. J Cardiovasc Electrophysiol 2015; 26(3): 329-35.
[http://dx.doi.org/10.1111/jce.12569] [PMID: 25346368]
[81]
Cerbai E, Mugelli AI. (f) in non-pacemaker cells: role and pharmacological implications. Pharmacol Res 2006; 53(5): 416-23.
[http://dx.doi.org/10.1016/j.phrs.2006.03.015] [PMID: 16713285]
[82]
Fenske S, Mader R, Scharr A, et al. HCN3 contributes to the ventricular action potential waveform in the murine heart. Circ Res 2011; 109(9): 1015-23.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.246173] [PMID: 21903939]
[83]
Fenske S, Krause SC, Hassan SIH, et al. Sick sinus syndrome in HCN1-deficient mice. Circulation 2013; 128(24): 2585-94.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.003712] [PMID: 24218458]
[84]
Ludwig A, Budde T, Stieber J, et al. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 2003; 22(2): 216-24.
[http://dx.doi.org/10.1093/emboj/cdg032] [PMID: 12514127]
[85]
Oshita K, Itoh M, Hirashima S, et al. Ectopic automaticity induced in ventricular myocytes by transgenic overexpres-sion of HCN2. J Mol Cell Cardiol 2015; 80: 81-9.
[http://dx.doi.org/10.1016/j.yjmcc.2014.12.019] [PMID: 25562801]
[86]
Kuwabara Y, Kuwahara K, Takano M, et al. Increased ex-pression of HCN channels in the ventricular myocardium contributes to enhanced arrhythmicity in mouse failing hearts. J Am Heart Assoc 2013; 2(3): e000150-.
[http://dx.doi.org/10.1161/JAHA.113.000150] [PMID: 23709563]
[87]
Oshita K, Kozasa Y, Nakagawa Y, et al. Overexpression of the HCN2 channel increases the arrhythmogenicity induced by hypokalemia. J Physiol Sci 2019; 69(4): 653-60.
[http://dx.doi.org/10.1007/s12576-019-00684-7] [PMID: 31087220]
[88]
Stieber J, Herrmann S, Feil S, et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci USA 2003; 100(25): 15235-40.
[http://dx.doi.org/10.1073/pnas.2434235100] [PMID: 14657344]
[89]
Herrmann S, Stieber J, Stöckl G, Hofmann F, Ludwig A. HCN4 provides a ‘depolarization reserve’ and is not required for heart rate acceleration in mice. EMBO J 2007; 26(21): 4423-32.
[http://dx.doi.org/10.1038/sj.emboj.7601868] [PMID: 17914461]
[90]
Baruscotti M, Bucchi A, Viscomi C, et al. Deep bradycardia and heart block caused by inducible cardiac-specific knock-out of the pacemaker channel gene Hcn4. Proc Natl Acad Sci USA 2011; 108(4): 1705-10.
[http://dx.doi.org/10.1073/pnas.1010122108] [PMID: 21220308]
[91]
Yampolsky P, Koenen M, Mosqueira M, et al. Augmentation of myocardial If dysregulates calcium homeostasis and causes adverse cardiac remodeling. Nat Commun 2019; 10(1): 3295.
[http://dx.doi.org/10.1038/s41467-019-11261-2] [PMID: 31337768]
[92]
Fuster V, Rydé NLE, Cannom DS. ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrilla-tion. Circulation 2006; 114(7): e257-354.
[PMID: 16908781]
[93]
Li YD, Hong YF, Zhang Y, et al. Association between rever-sal in the expression of hyperpolarization-activated cyclic nu-cleotide-gated (HCN) channel and age-related atrial fibrilla-tion. Med Sci Monit 2014; 20: 2292-7.
[http://dx.doi.org/10.12659/MSM.892505] [PMID: 25404650]
[94]
Saeed Y, Temple IP, Borbas Z, et al. Structural and functional remodeling of the atrioventricular node with aging in rats: The role of hyperpolarization-activated cyclic nucleotide-gated and ryanodine 2 channels. Heart Rhythm 2018; 15(5): 752-60.
[http://dx.doi.org/10.1016/j.hrthm.2017.12.027] [PMID: 29288034]
[95]
Huang X, Zhong N, Zhang H, Ma A, Yuan Z, Guo N. Re-duced expression of HCN channels in the sinoatrial node of streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2017; 95(5): 586-94.
[http://dx.doi.org/10.1139/cjpp-2016-0418] [PMID: 28177679]
[96]
Verkerk AO, Wilders R. Pacemaker activity of the human sinoatrial node: an update on the effects of mutations in HCN4 on the hyperpolarization-activated current. Int J Mol Sci 2015; 16(2): 3071-94.
[http://dx.doi.org/10.3390/ijms16023071] [PMID: 25642760]
[97]
DiFrancesco D. HCN4, sinus bradycardia and atrial fibrilla-tion. Arrhythm Electrophysiol Rev 2015; 4(1): 9-13.
[http://dx.doi.org/10.15420/aer.2015.4.1.9] [PMID: 26835093]
[98]
Möller M, Silbernagel N, Wrobel E, et al. in vitro analyses of novel HCN4 gene mutations. Cell Physiol Biochem 2018; 49(3): 1197-207.
[http://dx.doi.org/10.1159/000493301] [PMID: 30196304]
[99]
Macri V, Mahida SN, Zhang ML, et al. A novel trafficking-defective HCN4 mutation is associated with early-onset atrial fibrillation. Heart Rhythm 2014; 11(6): 1055-62.
[http://dx.doi.org/10.1016/j.hrthm.2014.03.002] [PMID: 24607718]
[100]
Biel S, Aquila M, Hertel B, et al. Mutation in S6 domain of HCN4 channel in patient with suspected Brugada syndrome modifies channel function. Pflugers Arch 2016; 468(10): 1663-71.
[http://dx.doi.org/10.1007/s00424-016-1870-1] [PMID: 27553229]
[101]
Baruscotti M, Bianco E, Bucchi A, DiFrancesco D. Current understanding of the pathophysiological mechanisms respon-sible for inappropriate sinus tachycardia: role of the If “fun-ny” current. J Interv Card Electrophysiol 2016; 46(1): 19-28.
[http://dx.doi.org/10.1007/s10840-015-0097-y] [PMID: 26781742]
[102]
Baruscotti M, Bucchi A, Milanesi R, et al. A gain-of-function mutation in the cardiac pacemaker HCN4 channel increasing cAMP sensitivity is associated with familial Inappropriate Si-nus Tachycardia. Eur Heart J 2017; 38(4): 280-8.
[http://dx.doi.org/10.1093/eurheartj/ehv582] [PMID: 28182231]
[103]
Schweizer PA, Schröter J, Greiner S, et al. The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. J Am Coll Cardiol 2014; 64(8): 757-67.
[http://dx.doi.org/10.1016/j.jacc.2014.06.1155] [PMID: 25145518]
[104]
Weigl I, Geschwill P, Reiss M, et al. The C-terminal HCN4 variant P883R alters channel properties and acts as genetic modifier of atrial fibrillation and structural heart disease. Biochem Biophys Res Commun 2019; 519(1): 141-7.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.150] [PMID: 31481236]
[105]
Nawathe PA, Kryukova Y, Oren RV, et al. An LQTS6 MiRP1 mutation suppresses pacemaker current and is associated with sinus bradycardia. J Cardiovasc Electrophysiol 2013; 24(9): 1021-7.
[http://dx.doi.org/10.1111/jce.12163] [PMID: 23631727]
[106]
Bucchi A, Baruscotti M, Nardini M, et al. Identification of the molecular site of ivabradine binding to HCN4 channels. PLoS One 2013; 8(1): e53132
[http://dx.doi.org/10.1371/journal.pone.0053132] [PMID: 23308150]
[107]
Bucchi A, Tognati A, Milanesi R, Baruscotti M, DiFrancesco D. Properties of ivabradine-induced block of HCN1 and HCN4 pacemaker channels. J Physiol 2006; 572(Pt 2): 335-46.
[http://dx.doi.org/10.1113/jphysiol.2005.100776] [PMID: 16484306]
[108]
Novella Romanelli M, Sartiani L, Masi A, et al. HCN channels modulators: the need for selectivity. Curr Top Med Chem 2016; 16(16): 1764-91.
[http://dx.doi.org/10.2174/1568026616999160315130832] [PMID: 26975509]
[109]
Delpón E, Valenzuela C, Pérez O, et al. Mechanisms of block of a human cloned potassium channel by the enantiomers of a new bradycardic agent: S-16257-2 and S-16260-2. Br J Pharmacol 1996; 117(6): 1293-301.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb16728.x] [PMID: 8882628]
[110]
Haechl N, Ebner J, Hilber K, Todt H, Koenig X. Pharmacolog-ical profile of the bradycardic agent ivabradine on human cardiac ion channels. Cell Physiol Biochem 2019; 53(1): 36-48.
[http://dx.doi.org/10.33594/000000119] [PMID: 31169990]
[111]
Mengesha HG, Tafesse TB, Bule MH. If channel as an emerg-ing therapeutic target for cardiovascular diseases: a review of current evidence and controversies. Front Pharmacol 2017; 8: 874.
[http://dx.doi.org/10.3389/fphar.2017.00874] [PMID: 29225577]
[112]
Fainzilber M, Nakamura T, Lodder JC, Zlotkin E, Kits KS, Burlingame AL. γ-Conotoxin-PnVIIA, a γ-carboxyglutamate-containing peptide agonist of neuronal pacemaker cation currents Biochemistry 1998; 37(6): 1470-7.
[http://dx.doi.org/10.1021/bi971571f] [PMID: 9484216]
[113]
Agarwal A, Kumar T, Ravindranath KS, Bhat P, Manjunath CN, Agarwal N. Sinus node dysfunction complicating viper bite. Asian Cardiovasc Thorac Ann 2015; 23(2): 212-4.
[http://dx.doi.org/10.1177/0218492313501819] [PMID: 24887872]
[114]
Meng QT, Xia ZY, Liu J, Bayliss DA, Chen X. Local anes-thetic inhibits hyperpolarization-activated cationic currents. Mol Pharmacol 2011; 79(5): 866-73.
[http://dx.doi.org/10.1124/mol.110.070227] [PMID: 21303986]
[115]
Putrenko I, Yip R, Schwarz SKW, Accili EA. Cation and volt-age dependence of lidocaine inhibition of the hyperpolariza-tion-activated cyclic nucleotide-gated HCN1 channel. Sci Rep 2017; 7(1): 1281.
[http://dx.doi.org/10.1038/s41598-017-01253-x] [PMID: 28455536]
[116]
Zhang X, Zhao Y, Du Y, et al. Effect of ketamine on mood dysfunction and spatial cognition deficits in PTSD mouse models via HCN1-BDNF signaling. J Affect Disord 2021; 286: 248-58.
[http://dx.doi.org/10.1016/j.jad.2021.02.058] [PMID: 33752039]
[117]
McClure KJ, Maher M, Wu N, et al. Discovery of a novel series of selective HCN1 blockers. Bioorg Med Chem Lett 2011; 21(18): 5197-201.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.051] [PMID: 21824780]
[118]
Cao Y, Chen S, Liang Y, et al. Inhibition of hyperpolariza-tion-activated cyclic nucleotide-gated channels by β-blocker carvedilol. Br J Pharmacol 2018; 175(20): 3963-75.
[http://dx.doi.org/10.1111/bph.14469] [PMID: 30098004]
[119]
Chen S-J, Xu Y, Liang Y-M, et al. Identification and charac-terization of a series of novel HCN channel inhibitors. Acta Pharmacol Sin 2019; 40(6): 746-54.
[http://dx.doi.org/10.1038/s41401-018-0162-z] [PMID: 30315249]
[120]
DiFrancesco D. Some properties of the UL-FS 49 block of the hyperpolarization-activated current (i(f)) in sino-atrial node myocytes. Pflugers Arch 1994; 427(1-2): 64-70.
[http://dx.doi.org/10.1007/BF00585943] [PMID: 8058476]
[121]
Del Lungo M, Melchiorre M, Guandalini L, et al. Novel blockers of hyperpolarization-activated current with isoform selectivity in recombinant cells and native tissue. Br J Pharmacol 2012; 166(2): 602-16.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01782.x] [PMID: 22091830]
[122]
Melchiorre M, Del Lungo M, Guandalini L, et al. Design, synthesis, and preliminary biological evaluation of new iso-form-selective f-current blockers. J Med Chem 2010; 53(18): 6773-7.
[http://dx.doi.org/10.1021/jm1006758] [PMID: 20795648]
[123]
Romanelli MN, Del Lungo M, Guandalini L, et al. EC18 as a tool to understand the role of HCN4 channels in mediating hyperpolarization-activated current in tissues. ACS Med Chem Lett 2019; 10(4): 584-9.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00587] [PMID: 30996800]
[124]
Dini L, Del Lungo M, Resta F, et al. Selective blockade of HCN1/HCN2 channels as a potential pharmacological strategy against pain. Front Pharmacol 2018; 9: 1252.
[http://dx.doi.org/10.3389/fphar.2018.01252] [PMID: 30467478]
[125]
Du Y, Zhang J, Xi Y, et al. β1-Adrenergic blocker bisoprolol reverses down-regulated ion channels in sinoatrial node of heart failure rats J Physiol Biochem 2016; 72(2): 293-302.
[http://dx.doi.org/10.1007/s13105-016-0481-9] [PMID: 26995749]
[126]
Okamoto T, Harnett MT, Morikawa H. Hyperpolarization-activated cation current (Ih) is an ethanol target in midbrain dopamine neurons of mice. J Neurophysiol 2006; 95(2): 619-26.
[http://dx.doi.org/10.1152/jn.00682.2005] [PMID: 16148268]
[127]
Chen Y, Wu P, Fan X, et al. Ethanol enhances human hy-perpolarization-activated cyclic nucleotide-gated currents. Alcohol Clin Exp Res 2012; 36(12): 2036-46.
[http://dx.doi.org/10.1111/j.1530-0277.2012.01826.x] [PMID: 22591131]
[128]
Nakashima K, Nakao K, Matsui H. Discovery of novel HCN4 blockers with unique blocking kinetics and binding proper-ties. SLAS Discov 2021; 26(7): 896-908.
[http://dx.doi.org/10.1177/24725552211013824] [PMID: 34041946]
[129]
Chan MH, Chen HH, Lo YC, Wu SN. Effectiveness in the block by honokiol, a dimerized allylphenol from Magnolia officinalis, of hyperpolarization-activated cation current and delayed-rectifier K+ current. Int J Mol Sci 2020; 21(12): E4260
[http://dx.doi.org/10.3390/ijms21124260] [PMID: 32549398]
[130]
Chen H, Chen Y, Yang J, Wu P, Wang X, Huang C. Effect of Ginkgo biloba extract on pacemaker channels encoded by HCN gene. Herz 2020.
[PMID: 32435840]
[131]
Satoh H. Suppression of pacemaker activity by Ginkgo biloba extract and its main constituent, bilobalide in rat sino-atrial nodal cells. Life Sci 2005; 78(1): 67-73.
[http://dx.doi.org/10.1016/j.lfs.2005.04.081] [PMID: 16182317]
[132]
Satoh H, Nishida S. Electropharmacological actions of Ginkgo biloba extract on vascular smooth and heart muscles. Clin Chim Acta 2004; 342(1-2): 13-22.
[http://dx.doi.org/10.1016/j.cccn.2003.12.014] [PMID: 15026263]
[133]
DiFrancesco D. A brief history of pacemaking. Front Physiol 2020; 10: 1599.
[http://dx.doi.org/10.3389/fphys.2019.01599] [PMID: 32038284]
[134]
Shin KS, Rothberg BS, Yellen G. Blocker state dependence and trapping in hyperpolarization-activated cation channels: evidence for an intracellular activation gate. J Gen Physiol 2001; 117(2): 91-101.
[http://dx.doi.org/10.1085/jgp.117.2.91] [PMID: 11158163]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy