Review Article

氧化还原控制下的先天免疫系统与发热:一项叙述性综述

卷 29, 期 25, 2022

发表于: 25 March, 2022

页: [4324 - 4362] 页: 39

弟呕挨: 10.2174/0929867329666220203122239

价格: $65

摘要

在活细胞中,氧化还原电位对正常的生理过程至关重要,这些生理过程受到抗氧化剂、游离氨基酸和蛋白质的密切调控,这些蛋白质要么具有活性氧和氮捕获能力,要么可以被划分。尽管数以百计的实验支持自由基及其衍生物的调节作用,一些作者继续声称它们只发挥有害和非调节功能。在这篇文章中,我们证明了无数细胞内和细胞外的信号通路直接或间接地与被调控的氧化还原过程相关。我们还简要讨论了人工氧化应激如何可以有重要的治疗潜力和流行的抗氧化补充剂可能的负面影响。接下来,我们提出得到大量研究支持的论点,即先天免疫和发热的许多主要成分本质上与氧化还原过程有关。我们的目标是指出,由于受到干扰的细胞信号通路,过量或不受调控的自由基和活性物质的产生可能是次要过程。然而,药理学研究应考虑氧化还原机制在先天免疫系统和发热中的重要作用。

关键词: 氧化还原调节,先天免疫系统,发热,ROS, RNS, DNA。

[1]
Wang, K.; Dong, Y.; Liu, J.; Qian, L.; Wang, T.; Gao, X.; Wang, K.; Zhou, L. Effects of REDOX in regulating and treatment of metabolic and inflammatory cardiovascular diseases. Oxid. Med. Cell. Longev., 2020, 2020, 5860356.
[http://dx.doi.org/10.1155/2020/5860356] [PMID: 33282111]
[2]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[3]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[4]
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89-96.
[PMID: 23675073]
[5]
Egea, J.; Fabregat, I.; Frapart, Y.M.; Ghezzi, P.; Görlach, A.; Kietzmann, T.; Kubaichuk, K.; Knaus, U.G.; Lopez, M.G.; Olaso-Gonzalez, G.; Petry, A.; Schulz, R.; Vina, J.; Winyard, P.; Abbas, K.; Ademowo, O.S.; Afonso, C.B.; Andreadou, I.; Antelmann, H.; Antunes, F.; Aslan, M.; Bachschmid, M.M.; Barbosa, R.M.; Belousov, V.; Berndt, C.; Bernlohr, D.; Bertrán, E.; Bindoli, A.; Bottari, S.P.; Brito, P.M.; Carrara, G.; Casas, A.I.; Chatzi, A.; Chondrogianni, N.; Conrad, M.; Cooke, M.S.; Costa, J.G.; Cuadrado, A.; My-Chan Dang, P.; De Smet, B.; Debelec-Butuner, B.; Dias, I.H.K.; Dunn, J.D.; Edson, A.J.; El Assar, M.; El-Benna, J.; Ferdinandy, P.; Fernandes, A.S.; Fladmark, K.E.; Förstermann, U.; Giniatullin, R.; Giricz, Z.; Görbe, A.; Griffiths, H.; Hampl, V.; Hanf, A.; Herget, J.; Hernansanz-Agustín, P.; Hillion, M.; Huang, J.; Ilikay, S.; Jansen-Dürr, P.; Jaquet, V.; Joles, J.A.; Kalyanaraman, B.; Kaminskyy, D.; Karbaschi, M.; Kleanthous, M.; Klotz, L.O.; Korac, B.; Korkmaz, K.S.; Koziel, R.; Kračun, D.; Krause, K.H.; Křen, V.; Krieg, T.; Laranjinha, J.; Lazou, A.; Li, H.; Martínez-Ruiz, A.; Matsui, R.; McBean, G.J.; Meredith, S.P.; Messens, J.; Miguel, V.; Mikhed, Y.; Milisav, I.; Milković, L.; Miranda-Vizuete, A.; Mojović, M.; Monsalve, M.; Mouthuy, P.A.; Mulvey, J.; Münzel, T.; Muzykantov, V.; Nguyen, I.T.N.; Oelze, M.; Oliveira, N.G.; Palmeira, C.M.; Papaevgeniou, N.; Pavićević, A.; Pedre, B.; Peyrot, F.; Phylactides, M.; Pircalabioru, G.G.; Pitt, A.R.; Poulsen, H.E.; Prieto, I.; Rigobello, M.P.; Robledinos-Antón, N.; Rodríguez-Mañas, L.; Rolo, A.P.; Rousset, F.; Ruskovska, T.; Saraiva, N.; Sasson, S.; Schröder, K.; Semen, K.; Seredenina, T.; Shakirzyanova, A.; Smith, G.L.; Soldati, T.; Sousa, B.C.; Spickett, C.M.; Stancic, A.; Stasia, M.J.; Steinbrenner, H.; Stepanić, V.; Steven, S.; Tokatlidis, K.; Tuncay, E.; Turan, B.; Ursini, F.; Vacek, J.; Vajnerova, O.; Valentová, K.; Van Breusegem, F.; Varisli, L.; Veal, E.A.; Yalçın, A.S.; Yelisyeyeva, O.; Žarković, N.; Zatloukalová, M.; Zielonka, J.; Touyz, R.M.; Papapetropoulos, A.; Grune, T.; Lamas, S.; Schmidt, H.H.H.W.; Di Lisa, F.; Daiber, A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol., 2017, 13, 94-162.
[http://dx.doi.org/10.1016/j.redox.2017.05.007] [PMID: 28577489]
[6]
Bókkon, I. Recognition of functional roles of free radicals. Curr. Neuropharmacol., 2012, 10(4), 287-288.
[PMID: 23730252]
[7]
Kasai, S.; Shimizu, S.; Tatara, Y.; Mimura, J.; Itoh, K. Regulation of Nrf2 by Mitochondrial reactive oxygen species in physiology and pathology. Biomolecules, 2020, 10(2), 320.
[http://dx.doi.org/10.3390/biom10020320] [PMID: 32079324]
[8]
Kovacic, P.; Jacintho, J.D. Mechanisms of carcinogenesis: Focus on oxidative stress and electron transfer. Curr. Med. Chem., 2001, 8(7), 773-796.
[http://dx.doi.org/10.2174/0929867013373084] [PMID: 11375749]
[9]
Ridnour, L.A.; Thomas, D.D.; Mancardi, D.; Espey, M.G.; Miranda, K.M.; Paolocci, N.; Feelisch, M.; Fukuto, J.; Wink, D.A. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol. Chem., 2004, 385(1), 1-10.
[http://dx.doi.org/10.1515/BC.2004.001] [PMID: 14977040]
[10]
Inai, Y.; Takehara, Y.; Yabuki, M.; Sato, E.F.; Akiyama, J.; Yasuda, T.; Inoue, M.; Horton, A.A.; Utsumi, K. Oxygen-dependent-regulation of Ehrlich ascites tumor cell respiration by nitric oxide. Cell Struct. Funct., 1996, 21(2), 151-157.
[http://dx.doi.org/10.1247/csf.21.151] [PMID: 8790945]
[11]
Daiber, A.; Di Lisa, F.; Oelze, M.; Kröller-Schön, S.; Steven, S.; Schulz, E.; Münzel, T. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br. J. Pharmacol., 2017, 174(12), 1670-1689.
[http://dx.doi.org/10.1111/bph.13403] [PMID: 26660451]
[12]
Dikalov, S. Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med., 2011, 51(7), 1289-1301.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.033] [PMID: 21777669]
[13]
Feissner, R.F.; Skalska, J.; Gaum, W.E.; Sheu, S.S. Crosstalk signaling between mitochondrial Ca2+ and ROS. Front. Biosci., 2009, 14, 1197-1218.
[http://dx.doi.org/10.2741/3303] [PMID: 19273125]
[14]
Gordeeva, A.V.; Zvyagilskaya, R.A.; Labas, Y.A. Cross-talk between reactive oxygen species and calcium in living cells. Biochemistry (Mosc.), 2003, 68(10), 1077-1080.
[http://dx.doi.org/10.1023/A:1026398310003] [PMID: 14616077]
[15]
Bonizzi, G.; Piette, J.; Merville, M.P.; Bours, V. Cell type-specific role for reactive oxygen species in nuclear factor-kappaB activation by interleukin-1. Biochem. Pharmacol., 2000, 59(1), 7-11.
[http://dx.doi.org/10.1016/S0006-2952(99)00290-7] [PMID: 10605929]
[16]
Thannickal, V.J.; Fanburg, B.L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol., 2000, 279(6), L1005-L1028.
[http://dx.doi.org/10.1152/ajplung.2000.279.6.L1005] [PMID: 11076791]
[17]
Luo, M.; He, H.; Kelley, M.R.; Georgiadis, M.M. Redox regulation of DNA repair: Implications for human health and cancer therapeutic development. Antioxid. Redox Signal., 2010, 12(11), 1247-1269.
[http://dx.doi.org/10.1089/ars.2009.2698] [PMID: 19764832]
[18]
Le Rossignol, S.; Ketheesan, N.; Haleagrahara, N. Redox-sensitive transcription factors play a significant role in the development of rheumatoid arthritis. Int. Rev. Immunol., 2017, 12, 1-15.
[PMID: 28898138]
[19]
Trachootham, D.; Lu, W.; Ogasawara, M.A.; Nilsa, R.D.; Huang, P. Redox regulation of cell survival. Antioxid. Redox Signal., 2008, 10(8), 1343-1374.
[http://dx.doi.org/10.1089/ars.2007.1957] [PMID: 18522489]
[20]
Turpaev, K.T. Reactive oxygen species and regulation of gene expression. Biochemistry (Mosc.), 2002, 67(3), 281-292.
[http://dx.doi.org/10.1023/A:1014819832003] [PMID: 11970728]
[21]
Svineng, G.; Ravuri, C.; Rikardsen, O.; Huseby, N.E.; Winberg, J.O. The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect. Tissue Res., 2008, 49(3), 197-202.
[http://dx.doi.org/10.1080/03008200802143166] [PMID: 18661342]
[22]
Figueira, T.R.; Barros, M.H.; Camargo, A.A.; Castilho, R.F.; Ferreira, J.C.; Kowaltowski, A.J.; Sluse, F.E.; Souza-Pinto, N.C.; Vercesi, A.E. Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health. Antioxid. Redox Signal., 2013, 18(16), 2029-2074.
[http://dx.doi.org/10.1089/ars.2012.4729] [PMID: 23244576]
[23]
Lefaki, M.; Papaevgeniou, N.; Chondrogianni, N. Redox regulation of proteasome function. Redox Biol., 2017, 13, 452-458.
[http://dx.doi.org/10.1016/j.redox.2017.07.005] [PMID: 28715730]
[24]
Bolisetty, S.; Jaimes, E.A. Mitochondria and reactive oxygen species: Physiology and pathophysiology. Int. J. Mol. Sci., 2013, 14(3), 6306-6344.
[http://dx.doi.org/10.3390/ijms14036306] [PMID: 23528859]
[25]
Cai, Z.; Yan, L.J. protein oxidative modifications: Beneficial roles in disease and health. J. Biochem. Pharmacol. Res., 2013, 1(1), 15-26.
[PMID: 23662248]
[26]
Navarro-Yepes, J.; Burns, M.; Anandhan, A.; Khalimonchuk, O.; del Razo, L.M.; Quintanilla-Vega, B.; Pappa, A.; Panayiotidis, M.I.; Franco, R. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid. Redox Signal., 2014, 21(1), 66-85.
[http://dx.doi.org/10.1089/ars.2014.5837] [PMID: 24483238]
[27]
Willems, P.H.; Rossignol, R.; Dieteren, C.E.; Murphy, M.P.; Koopman, W.J. Redox homeostasis and mitochondrial dynamics. Cell Metab., 2015, 22(2), 207-218.
[http://dx.doi.org/10.1016/j.cmet.2015.06.006] [PMID: 26166745]
[28]
Son, Y.; Kim, S.; Chung, H.T.; Pae, H.O. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol., 2013, 528, 27-48.
[http://dx.doi.org/10.1016/B978-0-12-405881-1.00002-1] [PMID: 23849857]
[29]
Liu, B.; Chen, Y.; St Clair, D.K. ROS and p53: a versatile partnership. Free Radic. Biol. Med., 2008, 44(8), 1529-1535.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.01.011] [PMID: 18275858]
[30]
Huang, J.; Lam, G.Y.; Brumell, J.H. Autophagy signaling through reactive oxygen species. Antioxid. Redox Signal., 2011, 14(11), 2215-2231.
[http://dx.doi.org/10.1089/ars.2010.3554] [PMID: 20874258]
[31]
Sarsour, E.H.; Kumar, M.G.; Chaudhuri, L.; Kalen, A.L.; Goswami, P.C. Redox control of the cell cycle in health and disease. Antioxid. Redox Signal., 2009, 11(12), 2985-3011.
[http://dx.doi.org/10.1089/ars.2009.2513] [PMID: 19505186]
[32]
Sarsour, E.H.; Kalen, A.L.; Goswami, P.C. Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid. Redox Signal., 2014, 20(10), 1618-1627.
[http://dx.doi.org/10.1089/ars.2013.5303] [PMID: 23590434]
[33]
McCarthy, D.A.; Clark, R.R.; Bartling, T.R.; Trebak, M.; Melendez, J.A. Redox control of the senescence regulator interleukin-1α and the secretory phenotype. J. Biol. Chem., 2013, 288(45), 32149-32159.
[http://dx.doi.org/10.1074/jbc.M113.493841] [PMID: 24062309]
[34]
Goossens, V.; De Vos, K.; Vercammen, D.; Steemans, M.; Vancompernolle, K.; Fiers, W.; Vandenabeele, P.; Grooten, J. Redox regulation of TNF signaling. Biofactors, 1999, 10(2-3), 145-156.
[http://dx.doi.org/10.1002/biof.5520100210] [PMID: 10609876]
[35]
Jin, S.; Ray, R.M.; Johnson, L.R. TNF-alpha/cycloheximide-induced apoptosis in intestinal epithelial cells requires Rac1-regulated reactive oxygen species. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 294(4), G928-G937.
[http://dx.doi.org/10.1152/ajpgi.00219.2007] [PMID: 18218673]
[36]
Haddad, J.J. Redox regulation of pro-inflammatory cytokines and IkappaB-alpha/NF-kappaB nuclear translocation and activation. Biochem. Biophys. Res. Commun., 2002, 296(4), 847-856.
[http://dx.doi.org/10.1016/S0006-291X(02)00947-6] [PMID: 12200125]
[37]
Lorenzen, I.; Mullen, L.; Bekeschus, S.; Hanschmann, E.M. Redox Regulation of inflammatory processes is enzymatically controlled. Oxid. Med. Cell. Longev., 2017, 2017, 8459402.
[http://dx.doi.org/10.1155/2017/8459402]
[38]
Gloire, G.; Piette, J. Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid. Redox Signal., 2009, 11(9), 2209-2222.
[http://dx.doi.org/10.1089/ars.2009.2463] [PMID: 19203223]
[39]
Zmijewski, J.W.; Landar, A.; Watanabe, N.; Dickinson, D.A.; Noguchi, N.; Darley-Usmar, V.M. Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium. Biochem. Soc. Trans., 2005, 33(Pt 6), 1385-1389.
[http://dx.doi.org/10.1042/BST0331385] [PMID: 16246125]
[40]
Wilson, C.; González-Billault, C. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: Implications for neuronal development and trafficking. Front. Cell. Neurosci., 2015, 9, 381.
[http://dx.doi.org/10.3389/fncel.2015.00381] [PMID: 26483635]
[41]
Scholtes, C.; Giguère, V. Transcriptional regulation of ROS homeostasis by the ERR subfamily of nuclear receptors. Antioxidants, 2021, 10(3), 437.
[http://dx.doi.org/10.3390/antiox10030437] [PMID: 33809291]
[42]
Dustin, C.M.; Heppner, D.E.; Lin, M.J.; van der Vliet, A. Redox regulation of tyrosine kinase signalling: More than meets the eye. J. Biochem., 2020, 167(2), 151-163.
[http://dx.doi.org/10.1093/jb/mvz085] [PMID: 31599960]
[43]
Balta, E.; Kramer, J.; Samstag, Y. Redox regulation of the actin cytoskeleton in cell migration and adhesion: On the way to a spatiotemporal view. Front. Cell Dev. Biol., 2021, 8, 618261.
[http://dx.doi.org/10.3389/fcell.2020.618261] [PMID: 33585453]
[44]
Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol., 2020, 21(7), 363-383.
[http://dx.doi.org/10.1038/s41580-020-0230-3] [PMID: 32231263]
[45]
Kalinina, E.; Novichkova, M. Glutathione in protein redox modulation through S-glutathionylation and S-Nitrosylation. Molecules, 2021, 26(2), 435.
[http://dx.doi.org/10.3390/molecules26020435] [PMID: 33467703]
[46]
Sun, Y.; Lu, Y.; Saredy, J.; Wang, X.; Drummer Iv, C.; Shao, Y.; Saaoud, F.; Xu, K.; Liu, M.; Yang, W.Y.; Jiang, X.; Wang, H.; Yang, X. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol., 2020, 37, 101696.
[http://dx.doi.org/10.1016/j.redox.2020.101696] [PMID: 32950427]
[47]
Bao, L.; Avshalumov, M.V.; Patel, J.C.; Lee, C.R.; Miller, E.W.; Chang, C.J.; Rice, M.E. Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling. J. Neurosci., 2009, 29(28), 9002-9010.
[http://dx.doi.org/10.1523/JNEUROSCI.1706-09.2009] [PMID: 19605638]
[48]
Bókkon, I.; Antal, I. Schizophrenia: Redox regulation and volume neurotransmission. Curr. Neuropharmacol., 2011, 9(2), 289-300.
[http://dx.doi.org/10.2174/157015911795596504] [PMID: 22131938]
[49]
Contestabile, A. Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res. Brain Res. Rev., 2000, 32(2-3), 476-509.
[http://dx.doi.org/10.1016/S0165-0173(00)00018-7] [PMID: 10760552]
[50]
Ill-Raga, G.; Tajes, M.; Busquets-García, A.; Ramos-Fernández, E.; Vargas, L.M.; Bosch-Morató, M.; Guivernau, B.; Valls-Comamala, V.; Eraso-Pichot, A.; Guix, F.X.; Fandos, C.; Rosen, M.D.; Rabinowitz, M.H.; Maldonado, R.; Alvarez, A.R.; Ozaita, A.; Muñoz, F.J. Physiological control of nitric oxide in neuronal BACE1 translation by heme-regulated eIF2α kinase HRI induces synaptogenesis. Antioxid. Redox Signal., 2015, 22(15), 1295-1307.
[http://dx.doi.org/10.1089/ars.2014.6080] [PMID: 25706765]
[51]
Kann, O.; Kovács, R. Mitochondria and neuronal activity. Am. J. Physiol. Cell Physiol., 2007, 292(2), C641-C657.
[http://dx.doi.org/10.1152/ajpcell.00222.2006] [PMID: 17092996]
[52]
Kishida, K.T.; Klann, E. Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid. Redox Signal., 2007, 9(2), 233-244.
[http://dx.doi.org/10.1089/ars.2007.9.233] [PMID: 17115936]
[53]
Kishida, K.T.; Pao, M.; Holland, S.M.; Klann, E. NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J. Neurochem., 2005, 94(2), 299-306.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03189.x] [PMID: 15998281]
[54]
Massaad, C.A.; Klann, E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid. Redox Signal., 2011, 14(10), 2013-2054.
[http://dx.doi.org/10.1089/ars.2010.3208] [PMID: 20649473]
[55]
Montague, P.R.; Gancayco, C.D.; Winn, M.J.; Marchase, R.B.; Friedlander, M.J. Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex. Science, 1994, 263(5149), 973-977.
[http://dx.doi.org/10.1126/science.7508638] [PMID: 7508638]
[56]
Prozorovski, T.; Schneider, R.; Berndt, C.; Hartung, H.P.; Aktas, O. Redox-regulated fate of neural stem progenitor cells. Biochim. Biophys. Acta, 2015, 1850(8), 1543-1554.
[http://dx.doi.org/10.1016/j.bbagen.2015.01.022] [PMID: 25662818]
[57]
Tejada-Simon, M.V.; Serrano, F.; Villasana, L.E.; Kanterewicz, B.I.; Wu, G.Y.; Quinn, M.T.; Klann, E. Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol. Cell. Neurosci., 2005, 29(1), 97-106.
[http://dx.doi.org/10.1016/j.mcn.2005.01.007] [PMID: 15866050]
[58]
Thiels, E.; Urban, N.N.; Gonzalez-Burgos, G.R.; Kanterewicz, B.I.; Barrionuevo, G.; Chu, C.T.; Oury, T.D.; Klann, E. Impairment of long-term potentiation and associative memory in mice that overexpress extracellular superoxide dismutase. J. Neurosci., 2000, 20(20), 7631-7639.
[http://dx.doi.org/10.1523/JNEUROSCI.20-20-07631.2000] [PMID: 11027223]
[59]
Thiels, E.; Klann, E. Hippocampal memory and plasticity in superoxide dismutase mutant mice. Physiol. Behav., 2002, 77(4-5), 601-605.
[http://dx.doi.org/10.1016/S0031-9384(02)00900-9] [PMID: 12527006]
[60]
Volterra, A.; Trotti, D.; Tromba, C.; Floridi, S.; Racagni, G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci., 1994, 14(5 Pt 1), 2924-2932.
[http://dx.doi.org/10.1523/JNEUROSCI.14-05-02924.1994] [PMID: 7910203]
[61]
Langie, S.A.; Kowalczyk, P.; Tomaszewski, B.; Vasilaki, A.; Maas, L.M.; Moonen, E.J.; Palagani, A.; Godschalk, R.W.; Tudek, B.; van Schooten, F.J.; Berghe, W.V.; Zabielski, R.; Mathers, J.C. Redox and epigenetic regulation of the APE1 gene in the hippocampus of piglets: The effect of early life exposures. DNA Repair (Amst.), 2014, 18, 52-62.
[http://dx.doi.org/10.1016/j.dnarep.2014.03.011] [PMID: 24794400]
[62]
Tay, E.X.Y.; Chia, K.; Ong, D.S.T. Epigenetic plasticity and redox regulation of neural stem cell state and fate. Free Radic. Biol. Med., 2021, 170, 116-130.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.02.030] [PMID: 33684459]
[63]
van Leeuwen, E.; Hampton, M.B.; Smyth, L.C.D. Redox signalling and regulation of the blood-brain barrier. Int. J. Biochem. Cell Biol., 2020, 125, 105794.
[http://dx.doi.org/10.1016/j.biocel.2020.105794] [PMID: 32562769]
[64]
Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med., 2020, 52(2), 192-203.
[http://dx.doi.org/10.1038/s12276-020-0384-2] [PMID: 32060354]
[65]
Kim, J.; Kim, J.; Bae, J.S. ROS homeostasis and metabolism: A critical liaison for cancer therapy. Exp. Mol. Med., 2016, 48(11), e269.
[http://dx.doi.org/10.1038/emm.2016.119] [PMID: 27811934]
[66]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta, 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[67]
Davison, C.A.; Durbin, S.M.; Thau, M.R.; Zellmer, V.R.; Chapman, S.E.; Diener, J.; Wathen, C.; Leevy, W.M.; Schafer, Z.T. Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix. Cancer Res., 2013, 73(12), 3704-3715.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2482] [PMID: 23771908]
[68]
Yang, H.; Villani, R.M.; Wang, H.; Simpson, M.J.; Roberts, M.S.; Tang, M.; Liang, X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res., 2018, 37(1), 266.
[http://dx.doi.org/10.1186/s13046-018-0909-x] [PMID: 30382874]
[69]
Cen, J.; Zhang, L.; Liu, F.; Zhang, F.; Ji, B.S. Long-term alteration of reactive oxygen species led to multidrug resistance in MCF-7 cells. Oxid. Med. Cell. Longev., 2016, 2016, 7053451.
[http://dx.doi.org/10.1155/2016/7053451] [PMID: 28058088]
[70]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[71]
Nakamura, H.; Takada, K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci., 2021, 112(10), 3945-3952.
[http://dx.doi.org/10.1111/cas.15068] [PMID: 34286881]
[72]
Ruiz-Torres, V.; Forsythe, N.; Pérez-Sánchez, A.; Van Schaeybroeck, S.; Barrajón-Catalán, E.; Micol, V. A nudibranch marine extract selectively chemosensitizes colorectal cancer cells by inducing ROS-mediated endoplasmic reticulum stress. Front. Pharmacol., 2021, 12, 625946.
[http://dx.doi.org/10.3389/fphar.2021.625946] [PMID: 34456713]
[73]
Lee, Y.J.; Park, K.S.; Nam, H.S.; Cho, M.K.; Lee, S.H. Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells. Korean J. Physiol. Pharmacol., 2020, 24(6), 493-502.
[http://dx.doi.org/10.4196/kjpp.2020.24.6.493] [PMID: 33093271]
[74]
Ruiz-Torres, V.; Rodríguez-Pérez, C.; Herranz-López, M.; Martín-García, B.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A.; Barrajón-Catalán, E.; Micol, V. Marine invertebrate extracts induce colon cancer cell death via ROS-mediated DNA oxidative damage and mitochondrial impairment. Biomolecules, 2019, 9(12), 771.
[http://dx.doi.org/10.3390/biom9120771] [PMID: 31771155]
[75]
Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J., 2017, 14(1), 89-96.
[http://dx.doi.org/10.1111/iwj.12557] [PMID: 26688157]
[76]
MacLeod, A.S.; Mansbridge, J.N. The innate immune system in acute and chronic wounds. Adv. Wound Care (New Rochelle), 2016, 5(2), 65-78.
[http://dx.doi.org/10.1089/wound.2014.0608] [PMID: 26862464]
[77]
Sen, C.K.; Roy, S. Redox signals in wound healing. Biochim. Biophys. Acta, 2008, 1780(11), 1348-1361.
[http://dx.doi.org/10.1016/j.bbagen.2008.01.006] [PMID: 18249195]
[78]
Yu, C.; Xu, Z.X.; Hao, Y.H.; Gao, Y.B.; Yao, B.W.; Zhang, J.; Wang, B.; Hu, Z.Q.; Peng, R.Y. A novel microcurrent dressing for wound healing in a rat skin defect model. Mil. Med. Res., 2019, 6(1), 22.
[http://dx.doi.org/10.1186/s40779-019-0213-x] [PMID: 31331385]
[79]
Tur, E.; Bolton, L.; Constantine, B.E. Topical hydrogen peroxide treatment of ischemic ulcers in the guinea pig: Blood recruitment in multiple skin sites. J. Am. Acad. Dermatol., 1995, 33(2 Pt 1), 217-221.
[http://dx.doi.org/10.1016/0190-9622(95)90238-4] [PMID: 7622648]
[80]
Kranke, P.; Bennett, M.H.; Martyn-St James, M.; Schnabel, A.; Debus, S.E.; Weibel, S. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst. Rev., 2015, 2015(6), CD004123.
[PMID: 26106870]
[81]
Yang, Z.; Hu, X.; Zhou, L.; He, Y.; Zhang, X.; Yang, J.; Ju, Z.; Liou, Y.C.; Shen, H.M.; Luo, G.; Hamblin, M.R.; He, W.; Yin, R. Photodynamic therapy accelerates skin wound healing through promoting re-epithelialization. Burns Trauma, 2021, 9, tkab008.
[http://dx.doi.org/10.1093/burnst/tkab008]
[82]
Bienert, G.P.; Schjoerring, J.K.; Jahn, T.P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta, 2006, 1758(8), 994-1003.
[http://dx.doi.org/10.1016/j.bbamem.2006.02.015] [PMID: 16566894]
[83]
van der Vliet, A.; Janssen-Heininger, Y.M. Hydrogen peroxide as a damage signal in tissue injury and inflammation: Murderer, mediator, or messenger? J. Cell. Biochem., 2014, 115(3), 427-435.
[http://dx.doi.org/10.1002/jcb.24683] [PMID: 24122865]
[84]
Klyubin, I.V.; Kirpichnikova, K.M.; Gamaley, I.A. Hydrogen peroxide-induced chemotaxis of mouse peritoneal neutrophils. Eur. J. Cell Biol., 1996, 70(4), 347-351.
[PMID: 8864663]
[85]
Marinho, H.S.; Real, C.; Cyrne, L.; Soares, H.; Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol., 2014, 2, 535-562.
[http://dx.doi.org/10.1016/j.redox.2014.02.006] [PMID: 24634836]
[86]
Chuang, Y.Y.; Chen, Y.; Gadisetti, ; Chandramouli, V.R.; Cook, J.A.; Coffin, D.; Tsai, M.H.; DeGraff, W.; Yan, H.; Zhao, S.; Russo, A.; Liu, E.T.; Mitchell, J.B. Gene expression after treatment with hydrogen peroxide, menadione, or t-butyl hydroperoxide in breast cancer cells. Cancer Res., 2002, 62(21), 6246-6254.
[PMID: 12414654]
[87]
Niethammer, P.; Grabher, C.; Look, A.T.; Mitchison, T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 2009, 459(7249), 996-999.
[http://dx.doi.org/10.1038/nature08119] [PMID: 19494811]
[88]
Roy, S.; Khanna, S.; Nallu, K.; Hunt, T.K.; Sen, C.K. Dermal wound healing is subject to redox control. Mol. Ther., 2006, 13(1), 211-220.
[http://dx.doi.org/10.1016/j.ymthe.2005.07.684] [PMID: 16126008]
[89]
Loo, A.E.; Halliwell, B. Effects of hydrogen peroxide in a keratinocyte-fibroblast co-culture model of wound healing. Biochem. Biophys. Res. Commun., 2012, 423(2), 253-258.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.100] [PMID: 22634311]
[90]
Thom, S.R. Hyperbaric oxygen: Its mechanisms and efficacy. Plast. Reconstr. Surg., 2011, 127(Suppl. 1), 131S-141S.
[http://dx.doi.org/10.1097/PRS.0b013e3181fbe2bf] [PMID: 21200283]
[91]
Gill, A.L.; Bell, C.N. Hyperbaric oxygen: Its uses, mechanisms of action and outcomes. QJM, 2004, 97(7), 385-395.
[http://dx.doi.org/10.1093/qjmed/hch074] [PMID: 15208426]
[92]
Hajhosseini, B.; Kuehlmann, B.A.; Bonham, C.A.; Kamperman, K.J.; Gurtner, G.C. Hyperbaric oxygen therapy: Descriptive review of the technology and current application in chronic wounds. Plast. Reconstr. Surg. Glob. Open, 2020, 8(9), e3136.
[http://dx.doi.org/10.1097/GOX.0000000000003136] [PMID: 33133975]
[93]
Weaver, L.K.; Hopkins, R.O.; Chan, K.J.; Churchill, S.; Elliott, C.G.; Clemmer, T.P.; Orme, J.F., Jr; Thomas, F.O.; Morris, A.H. Hyperbaric oxygen for acute carbon monoxide poisoning. N. Engl. J. Med., 2002, 347(14), 1057-1067.
[http://dx.doi.org/10.1056/NEJMoa013121] [PMID: 12362006]
[94]
Bennett, M.H.; Feldmeier, J.; Hampson, N.B.; Smee, R.; Milross, C. Hyperbaric oxygen therapy for late radiation tissue injury. Cochrane Database Syst. Rev., 2016, 4, CD005005.
[http://dx.doi.org/10.1002/14651858.CD005005.pub4] [PMID: 27123955]
[95]
Lam, G.; Fontaine, R.; Ross, F.L.; Chiu, E.S. Hyperbaric oxygen therapy: Exploring the clinical evidence. Adv. Skin Wound Care, 2017, 30(4), 181-190.
[http://dx.doi.org/10.1097/01.ASW.0000513089.75457.22] [PMID: 28301358]
[96]
Levitan, D.M.; Hitt, M.; Geiser, D.R.; Lyman, R. Rationale for hyperbaric oxygen therapy in traumatic injury and wound care in small animal veterinary practice. J. Small Anim. Pract., 2021, 62(9), 719-729.
[http://dx.doi.org/10.1111/jsap.13356] [PMID: 34018618]
[97]
Kim, M.; Jung, H.Y.; Park, H.J. Topical PDT in the treatment of benign skin diseases: Principles and new applications. Int. J. Mol. Sci., 2015, 16(10), 23259-23278.
[http://dx.doi.org/10.3390/ijms161023259] [PMID: 26404243]
[98]
Celli, J.P.; Spring, B.Q.; Rizvi, I.; Evans, C.L.; Samkoe, K.S.; Verma, S.; Pogue, B.W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev., 2010, 110(5), 2795-2838.
[http://dx.doi.org/10.1021/cr900300p] [PMID: 20353192]
[99]
Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[100]
V.; Lera-Nonose. D.S.S.L.; Oyama, J.; Silva-Lalucci, M.P.P.; Demarchi, I.G.; Aristides, S.M.A.; Teixeira, J.J.V.; Silveira, T.G.V.; Lonardoni, M.V.C. Contribution of photodynamic therapy in wound healing: A systematic review. Photodiagn. Photodyn. Ther., 2018, 21, 294-305.
[101]
Plaetzer, K.; Krammer, B.; Berlanda, J.; Berr, F.; Kiesslich, T. Photophysics and photochemistry of photodynamic therapy: Fundamental aspects. Lasers Med. Sci., 2009, 24(2), 259-268.
[http://dx.doi.org/10.1007/s10103-008-0539-1] [PMID: 18247081]
[102]
Hu, T.; Wang, Z.; Shen, W.; Liang, R.; Yan, D.; Wei, M. Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics, 2021, 11(7), 3278-3300.
[http://dx.doi.org/10.7150/thno.54227] [PMID: 33537087]
[103]
Finger, S.; Piccolino, M.; Stahnisch, F.W. Alexander von Humboldt: galvanism, animal electricity, and self-experimentation part 2: The electric eel, animal electricity, and later years. J. Hist. Neurosci., 2013, 22(4), 327-352.
[http://dx.doi.org/10.1080/0964704X.2012.732728] [PMID: 23581510]
[104]
Tai, G.; Tai, M.; Zhao, M. Electrically stimulated cell migration and its contribution to wound healing. Burns Trauma, 2018, 6, 20.
[http://dx.doi.org/10.1186/s41038-018-0123-2] [PMID: 30003115]
[105]
Martin-Granados, C.; McCaig, C.D. Harnessing the electric spark of life to cure skin wounds. Adv. Wound Care (New Rochelle), 2014, 3(2), 127-138.
[http://dx.doi.org/10.1089/wound.2013.0451] [PMID: 24761353]
[106]
Zhao, M.; Forrester, J.V.; McCaig, C.D. A small, physiological electric field orients cell division. Proc. Natl. Acad. Sci. USA, 1999, 96(9), 4942-4946.
[http://dx.doi.org/10.1073/pnas.96.9.4942] [PMID: 10220398]
[107]
Zhao, H.; Steiger, A.; Nohner, M.; Ye, H. Specific intensity direct current (DC) electric field improves neural stem cell migration and enhances differentiation towards βIII-Tubulin+ neurons. PLoS One, 2015, 10(6), e0129625.
[http://dx.doi.org/10.1371/journal.pone.0129625] [PMID: 26068466]
[108]
Wu, S.Y.; Hou, H.S.; Sun, Y.S.; Cheng, J.Y.; Lo, K.Y. Correlation between cell migration and reactive oxygen species under electric field stimulation. Biomicrofluidics, 2015, 9(5), 054120.
[http://dx.doi.org/10.1063/1.4932662] [PMID: 26487906]
[109]
Sun, Y.S.; Peng, S.W.; Lin, K.H.; Cheng, J.Y. Electrotaxis of lung cancer cells in ordered three-dimensional scaffolds. Biomicrofluidics, 2012, 6(1), 14102-1410214.
[http://dx.doi.org/10.1063/1.3671399] [PMID: 22288000]
[110]
Park, H.H.; Jo, S.; Seo, C.H.; Jeong, J.H.; Yoo, Y.E.; Lee, D.H. An indirect electric field-induced control in directional migration of rat mesenchymal stem cells. Appl. Phys. Lett., 2014, 105, 244109.
[http://dx.doi.org/10.1063/1.4904801]
[111]
Rajendran, S.B.; Challen, K.; Wright, K.L.; Hardy, J.G. Electrical stimulation to enhance wound healing. J. Funct. Biomater., 2021, 12(2), 40.
[http://dx.doi.org/10.3390/jfb12020040] [PMID: 34205317]
[112]
Tochhawng, L.; Deng, S.; Pervaiz, S.; Yap, C.T. Redox regulation of cancer cell migration and invasion. Mitochondrion, 2013, 13(3), 246-253.
[http://dx.doi.org/10.1016/j.mito.2012.08.002] [PMID: 22960576]
[113]
Mishra, S.; Stierman, B.; Gahche, J.J.; Potischman, N. Dietary supplement use among adults: United States, 2017–2018. NCHS Data Brief No. 399, February 2021. 2021. Available from: https://www.cdc.gov/nchs/products/databriefs/db399.htm
[114]
Jeeva, J.S.; Sunitha, J.; Ananthalakshmi, R.; Rajkumari, S.; Ramesh, M.; Krishnan, R. Enzymatic antioxidants and its role in oral diseases. J. Pharm. Bioallied Sci., 2015, 7(Suppl. 2), S331-S333.
[http://dx.doi.org/10.4103/0975-7406.163438] [PMID: 26538872]
[115]
Ighodaro, O.M.; Akinloy, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med., 2018, 54, 287-293.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[116]
Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J., 2016, 15(1), 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[117]
Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci., 2018, 63(1), 68-78.
[http://dx.doi.org/10.1016/j.advms.2017.05.005] [PMID: 28822266]
[118]
Wołonciej, M.; Milewska, E.; Roszkowska-Jakimiec, W. Trace elements as an activator of antioxidant enzymes. Postepy Hig. Med. Dosw., 2016, 70(0), 1483-1498.
[http://dx.doi.org/10.5604/17322693.1229074] [PMID: 28100855]
[119]
Cannas, D.; Loi, E.; Serra, M.; Firinu, D.; Valera, P.; Zavattari, P. Relevance of essential trace elements in nutrition and drinking water for human health and autoimmune disease risk. Nutrients, 2020, 12(7), 2074.
[http://dx.doi.org/10.3390/nu12072074] [PMID: 32668647]
[120]
Salehi, B.; Martorell, M.; Arbiser, J.L.; Sureda, A.; Martins, N.; Maurya, P.K.; Sharifi-Rad, M.; Kumar, P.; Sharifi-Rad, J. Antioxidants: Positive or negative actors? Biomolecules, 2018, 8(4), 124.
[http://dx.doi.org/10.3390/biom8040124] [PMID: 30366441]
[121]
Zahra, K.F.; Lefter, R.; Ali, A.; Abdellah, E.C.; Trus, C.; Ciobica, A.; Timofte, D. The involvement of the oxidative stress status in cancer pathology: A double view on the role of the antioxidants. Oxid. Med. Cell. Longev., 2021, 2021, 9965916.
[http://dx.doi.org/10.1155/2021/9965916] [PMID: 34394838]
[122]
Park, Y.; Spiegelman, D.; Hunter, D.J.; Albanes, D.; Bergkvist, L.; Buring, J.E.; Freudenheim, J.L.; Giovannucci, E.; Goldbohm, R.A.; Harnack, L.; Kato, I.; Krogh, V.; Leitzmann, M.F.; Limburg, P.J.; Marshall, J.R.; McCullough, M.L.; Miller, A.B.; Rohan, T.E.; Schatzkin, A.; Shore, R.; Sieri, S.; Stampfer, M.J.; Virtamo, J.; Weijenberg, M.; Willett, W.C.; Wolk, A.; Zhang, S.M.; Smith-Warner, S.A. Intakes of vitamins A, C, and E and use of multiple vitamin supplements and risk of colon cancer: a pooled analysis of prospective cohort studies. Cancer Causes Control, 2010, 21(11), 1745-1757.
[http://dx.doi.org/10.1007/s10552-010-9549-y] [PMID: 20820901]
[123]
Czernichow, S.; Vergnaud, A.C.; Galan, P.; Arnaud, J.; Favier, A.; Faure, H.; Huxley, R.; Hercberg, S.; Ahluwalia, N. Effects of long-term antioxidant supplementation and association of serum antioxidant concentrations with risk of metabolic syndrome in adults. Am. J. Clin. Nutr., 2009, 90(2), 329-335.
[http://dx.doi.org/10.3945/ajcn.2009.27635] [PMID: 19491388]
[124]
Sayin, V.I.; Ibrahim, M.X.; Larsson, E.; Nilsson, J.A.; Lindahl, P.; Bergo, M.O. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med., 2014, 6(221), 221ra15.
[http://dx.doi.org/10.1126/scitranslmed.3007653] [PMID: 24477002]
[125]
Omenn, G.S.; Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Glass, A.; Keogh, J.P.; Meyskens, F.L.; Valanis, B.; Williams, J.H.; Barnhart, S.; Hammar, S. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med., 1996, 334(18), 1150-1155.
[http://dx.doi.org/10.1056/NEJM199605023341802] [PMID: 8602180]
[126]
Mursu, J.; Robien, K.; Harnack, L.J.; Park, K.; Jacobs, D.R., Jr Dietary supplements and mortality rate in older women: The Iowa Women’s Health Study. Arch. Intern. Med., 2011, 171(18), 1625-1633.
[http://dx.doi.org/10.1001/archinternmed.2011.445] [PMID: 21987192]
[127]
Hercberg, S.; Ezzedine, K.; Guinot, C.; Preziosi, P.; Galan, P.; Bertrais, S.; Estaquio, C.; Briançon, S.; Favier, A.; Latreille, J.; Malvy, D. Antioxidant supplementation increases the risk of skin cancers in women but not in men. J. Nutr., 2007, 137(9), 2098-2105.
[http://dx.doi.org/10.1093/jn/137.9.2098] [PMID: 17709449]
[128]
Myung, S.K.; Kim, Y.; Ju, W.; Choi, H.J.; Bae, W.K. Effects of antioxidant supplements on cancer prevention: Meta-analysis of randomized controlled trials. Ann. Oncol., 2010, 21(1), 166-179.
[http://dx.doi.org/10.1093/annonc/mdp286] [PMID: 19622597]
[129]
Halliwell, B. The antioxidant paradox: Less paradoxical now? Br. J. Clin. Pharmacol., 2013, 75(3), 637-644.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04272.x] [PMID: 22420826]
[130]
Bonnefont-Rousselot, D.; Raji, B.; Walrand, S.; Gardès-Albert, M.; Jore, D.; Legrand, A.; Peynet, J.; Vasson, M.P. An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism, 2003, 52(5), 586-589.
[http://dx.doi.org/10.1053/meta.2003.50093] [PMID: 12759888]
[131]
Dal, S.; Sigrist, S. The protective effect of antioxidants consumption on diabetes and vascular complications. Diseases, 2016, 4(3), 24.
[http://dx.doi.org/10.3390/diseases4030024] [PMID: 28933404]
[132]
Jideani, A.I.O.; Silungwe, H.; Takalani, T.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-rich natural fruit and vegetable products and human health. Int. J. Food Prop., 2021, 24, 41-67.
[http://dx.doi.org/10.1080/10942912.2020.1866597]
[133]
Dundar, Y.; Aslan, R. Antioxidative stress. East. J. Med., 2000, 5, 45-47.
[134]
Poljsak, B.; Kovač, V.; Milisav, I. Antioxidants, food processing and health. Antioxidants, 2021, 10(3), 433.
[http://dx.doi.org/10.3390/antiox10030433] [PMID: 33799844]
[135]
Gonçalves, S.; Moreira, E.; Grosso, C.; Andrade, P.B.; Valentão, P.; Romano, A. Phenolic profile, antioxidant activity and enzyme inhibitory activities of extracts from aromatic plants used in Mediterranean diet. J. Food Sci. Technol., 2017, 54(1), 219-227.
[http://dx.doi.org/10.1007/s13197-016-2453-z] [PMID: 28242919]
[136]
Tanase, C.; Coșarcă, S.; Muntean, D.L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules, 2019, 24(6), 1182.
[http://dx.doi.org/10.3390/molecules24061182] [PMID: 30917556]
[137]
Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr., 2018, 5, 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[138]
Huyut, Z.; Beydemir, Ş.; Gülçin, İ. Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochem. Res. Int., 2017, 2017, 7616791.
[http://dx.doi.org/10.1155/2017/7616791] [PMID: 29158919]
[139]
Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines (Basel), 2018, 5(3), 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[140]
Číž, M.; Dvořáková, A.; Skočková, V.; Kubala, L. The Role of dietary phenolic compounds in epigenetic modulation involved in inflammatory processes. Antioxidants, 2020, 9(8), 691.
[http://dx.doi.org/10.3390/antiox9080691] [PMID: 32756302]
[141]
Ayissi, V.B.; Ebrahimi, A.; Schluesenner, H. Epigenetic effects of natural polyphenols: A focus on SIRT1-mediated mechanisms. Mol. Nutr. Food Res., 2014, 58(1), 22-32.
[http://dx.doi.org/10.1002/mnfr.201300195] [PMID: 23881751]
[142]
Kim, H.S.; Quon, M.J.; Kim, J.A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol., 2014, 2, 187-195.
[http://dx.doi.org/10.1016/j.redox.2013.12.022] [PMID: 24494192]
[143]
Kwon, J.H.; Kim, S.B.; Park, K.H.; Lee, M.W. Antioxidative and anti-inflammatory effects of phenolic compounds from the roots of Ulmus macrocarpa. Arch. Pharm. Res., 2011, 34(9), 1459-1466.
[http://dx.doi.org/10.1007/s12272-011-0907-4] [PMID: 21975807]
[144]
Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J., 2016, 15(1), 99.
[http://dx.doi.org/10.1186/s12937-016-0217-2] [PMID: 27903278]
[145]
Albensi, B.C. What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion? Front. Cell Dev. Biol., 2019, 7, 154.
[http://dx.doi.org/10.3389/fcell.2019.00154] [PMID: 31448275]
[146]
Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[147]
Hano, C.; Tungmunnithum, D. Plant polyphenols, more than just simple natural antioxidants: Oxidative stress, aging and age-related diseases. Medicines (Basel), 2020, 7(5), 26.
[http://dx.doi.org/10.3390/medicines7050026] [PMID: 32397520]
[148]
Singh, A.; Yau, Y.F.; Leung, K.S.; El-Nezami, H.; Lee, J.C. Interaction of polyphenols as antioxidant and anti-inflammatory compounds in brain-liver-gut axis. Antioxidants, 2020, 9(8), 669.
[http://dx.doi.org/10.3390/antiox9080669] [PMID: 32722619]
[149]
Kanner, J. Polyphenols by generating H2O2, affect cell redox signaling, inhibit PTPs and activate Nrf2 axis for adaptation and cell surviving: In vitro, in vivo and human health. Antioxidants, 2020, 9(9), 797.
[http://dx.doi.org/10.3390/antiox9090797] [PMID: 32867057]
[150]
Cheng, H.C.; Qi, R.Z.; Paudel, H.; Zhu, H.J. Regulation and function of protein kinases and phosphatases. Enzyme Res., 2011, 2011, 794089.
[http://dx.doi.org/10.4061/2011/794089] [PMID: 22195276]
[151]
Poljsak, B. Strategies for reducing or preventing the generation of oxidative stress. Oxid. Med. Cell. Longev., 2011, 2011, 194586.
[http://dx.doi.org/10.1155/2011/194586] [PMID: 22191011]
[152]
Li, Q.; Spencer, N.Y.; Oakley, F.D.; Buettner, G.R.; Engelhardt, J.F. Endosomal Nox2 facilitates redox-dependent induction of NF-kappaB by TNF-alpha. Antioxid. Redox Signal., 2009, 11(6), 1249-1263.
[http://dx.doi.org/10.1089/ars.2008.2407] [PMID: 19113817]
[153]
Oakley, F.D.; Abbott, D.; Li, Q.; Engelhardt, J.F. Signaling components of redox active endosomes: The redoxosomes. Antioxid. Redox Signal., 2009, 11(6), 1313-1333.
[http://dx.doi.org/10.1089/ars.2008.2363] [PMID: 19072143]
[154]
Shahin, W.S.; Engelhardt, J.F. Isolation of redox-active endosomes (Redoxosomes) and assessment of NOX activity. Methods Mol. Biol., 2019, 1982, 461-472.
[http://dx.doi.org/10.1007/978-1-4939-9424-3_27] [PMID: 31172489]
[155]
Spencer, N.Y.; Engelhardt, J.F. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry, 2014, 53(10), 1551-1564.
[http://dx.doi.org/10.1021/bi401719r] [PMID: 24555469]
[156]
Medzhitov, R.; Janeway, C., Jr. Innate immunity. N. Engl. J. Med., 2000, 343(5), 338-344.
[http://dx.doi.org/10.1056/NEJM200008033430506] [PMID: 10922424]
[157]
Newton, K.; Dixit, V.M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol., 2012, 4(3), a006049.
[http://dx.doi.org/10.1101/cshperspect.a006049] [PMID: 22296764]
[158]
Basset, C.; Holton, J.; O’Mahony, R.; Roitt, I. Innate immunity and pathogen-host interaction. Vaccine, 2003, 21(2)(Suppl. 2), S12-S23.
[http://dx.doi.org/10.1016/S0264-410X(03)00195-6] [PMID: 12763678]
[159]
Hato, T.; Dagher, P.C. How the innate immune system senses trouble and causes trouble. Clin. J. Am. Soc. Nephrol., 2015, 10(8), 1459-1469.
[http://dx.doi.org/10.2215/CJN.04680514] [PMID: 25414319]
[160]
Korabecna, M.; Zinkova, A.; Brynychova, I.; Chylikova, B.; Prikryl, P.; Sedova, L.; Neuzil, P.; Seda, O. Cell-free DNA in plasma as an essential immune system regulator. Sci. Rep., 2020, 10(1), 17478.
[http://dx.doi.org/10.1038/s41598-020-74288-2] [PMID: 33060738]
[161]
Ma, Y.J.; Garred, P. Pentraxins in complement activation and regulation. Front. Immunol., 2018, 9, 3046.
[http://dx.doi.org/10.3389/fimmu.2018.03046] [PMID: 30619374]
[162]
Weismann, D.; Binder, C.J. The innate immune response to products of phospholipid peroxidation. Biochim. Biophys. Acta, 2012, 1818(10), 2465-2475.
[http://dx.doi.org/10.1016/j.bbamem.2012.01.018] [PMID: 22305963]
[163]
Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34.
[http://dx.doi.org/10.3109/08830185.2010.529976] [PMID: 21235323]
[164]
Kawai, T.; Akira, S. Regulation of innate immune signalling pathways by the tripartite motif (TRIM) family proteins. EMBO Mol. Med., 2011, 3(9), 513-527.
[http://dx.doi.org/10.1002/emmm.201100160] [PMID: 21826793]
[165]
Souza-Fonseca-Guimaraes, F.; Adib-Conquy, M.; Cavaillon, J.M. Natural killer (NK) cells in antibacterial innate immunity: Angels or devils? Mol. Med., 2012, 18, 270-285.
[http://dx.doi.org/10.2119/molmed.2011.00201] [PMID: 22105606]
[166]
Elliott, D.E.; Siddique, S.S.; Weinstock, J.V. Innate immunity in disease. Clin. Gastroenterol. Hepatol., 2014, 12(5), 749-755.
[http://dx.doi.org/10.1016/j.cgh.2014.03.007] [PMID: 24632348]
[167]
Nathan, C.; Shiloh, M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 8841-8848.
[http://dx.doi.org/10.1073/pnas.97.16.8841] [PMID: 10922044]
[168]
Diamond, G.; Kaiser, V.; Rhodes, J.; Russell, J.P.; Bevins, C.L. Transcriptional regulation of beta-defensin gene expression in tracheal epithelial cells. Infect. Immun., 2000, 68(1), 113-119.
[http://dx.doi.org/10.1128/IAI.68.1.113-119.2000] [PMID: 10603376]
[169]
Kościuczuk, E.M.; Lisowski, P.; Jarczak, J.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Cathelicidins: family of antimicrobial peptides. A review. Mol. Biol. Rep., 2012, 39(12), 10957-10970.
[http://dx.doi.org/10.1007/s11033-012-1997-x] [PMID: 23065264]
[170]
De Andrea, M.; Gariglio, M.; Gioia, D.; Landolfo, S.; Ravera, R. The interferon system: an overview. Eur. J. Paediatr. Neurol., 2002, 6(Suppl A), A41-A58.
[http://dx.doi.org/10.1053/ejpn.2002.0573]
[171]
Muralidharan, S.; Mandrekar, P. Cellular stress response and innate immune signaling: Integrating pathways in host defense and inflammation. J. Leukoc. Biol., 2013, 94(6), 1167-1184.
[http://dx.doi.org/10.1189/jlb.0313153] [PMID: 23990626]
[172]
Fukata, M.; Vamadevan, A.S.; Abreu, M.T. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin. Immunol., 2009, 21(4), 242-253.
[http://dx.doi.org/10.1016/j.smim.2009.06.005] [PMID: 19748439]
[173]
Evans, S.S.; Repasky, E.A.; Fisher, D.T. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol., 2015, 15(6), 335-349.
[http://dx.doi.org/10.1038/nri3843] [PMID: 25976513]
[174]
Sun, L.; Wang, X.; Saredy, J.; Yuan, Z.; Yang, X.; Wang, H. Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biol., 2020, 37, 101759.
[http://dx.doi.org/10.1016/j.redox.2020.101759] [PMID: 33086106]
[175]
Jauneau, A.C.; Ischenko, A.; Chan, P.; Fontaine, M. Complement component anaphylatoxins upregulate chemokine expression by human astrocytes. FEBS Lett., 2003, 537(1-3), 17-22.
[http://dx.doi.org/10.1016/S0014-5793(03)00060-7] [PMID: 12606024]
[176]
Erdei, A.; Molnár, E.; Csomor, E.; Bajtay, Z.; Prechl, J. Coordination of Adaptive Immune Responses by C3. In: The Complement System; Szebeni, J., Ed.; Springer: Boston, MA, 2004; pp. 77-96.
[http://dx.doi.org/10.1007/1-4020-8056-5_5]
[177]
Dixon, L.J.; Barnes, M.; Tang, H.; Pritchard, M.T.; Nagy, L.E. Kupffer cells in the liver. Compr. Physiol., 2013, 3(2), 785-797.
[http://dx.doi.org/10.1002/cphy.c120026] [PMID: 23720329]
[178]
Elsner, J.; Oppermann, M.; Czech, W.; Dobos, G.; Schöpf, E.; Norgauer, J.; Kapp, A. C3a activates reactive oxygen radical species production and intracellular calcium transients in human eosinophils. Eur. J. Immunol., 1994, 24(3), 518-522.
[http://dx.doi.org/10.1002/eji.1830240304] [PMID: 8125125]
[179]
Elsner, J.; Oppermann, M.; Czech, W.; Kapp, A. C3a activates the respiratory burst in human polymorphonuclear neutrophilic leukocytes via pertussis toxin-sensitive G-proteins. Blood, 1994, 83(11), 3324-3331.
[http://dx.doi.org/10.1182/blood.V83.11.3324.3324] [PMID: 8193368]
[180]
Blanchin, S.; Estienne, V.; Durand-Gorde, J.M.; Carayon, P.; Ruf, J. Complement activation by direct C4 binding to thyroperoxidase in Hashimoto’s thyroiditis. Endocrinology, 2003, 144(12), 5422-5429.
[http://dx.doi.org/10.1210/en.2003-0918] [PMID: 12960013]
[181]
Yang, J.; Ahn, H.N.; Chang, M.; Narasimhan, P.; Chan, P.H.; Song, Y.S. Complement component 3 inhibition by an antioxidant is neuroprotective after cerebral ischemia and reperfusion in mice. J. Neurochem., 2013, 124(4), 523-535.
[http://dx.doi.org/10.1111/jnc.12111] [PMID: 23199288]
[182]
Aichem, A.; Masilamani, M.; Illges, H. Redox regulation of CD21 shedding involves signaling via PKC and indicates the formation of a juxtamembrane stalk. J. Cell Sci., 2006, 119(Pt 14), 2892-2902.
[http://dx.doi.org/10.1242/jcs.02984] [PMID: 16803874]
[183]
Cohen, J.I.; Chen, X.; Nagy, L.E. Redox signaling and the innate immune system in alcoholic liver disease. Antioxid. Redox Signal., 2011, 15(2), 523-534.
[http://dx.doi.org/10.1089/ars.2010.3746] [PMID: 21126203]
[184]
Perricone, C.; De Carolis, C.; Giacomelli, R.; Greco, E.; Cipriani, P.; Ballanti, E.; Novelli, L.; Perricone, R. Inhibition of the complement system by glutathione: Molecular mechanisms and potential therapeutic implications. Int. J. Immunopathol. Pharmacol., 2011, 24(1), 63-68.
[http://dx.doi.org/10.1177/039463201102400108] [PMID: 21496388]
[185]
Detsika, M.G.; Lianos, E.A. Regulation of complement activation by Heme Oxygenase-1 (HO-1) in kidney injury. Antioxidants, 2021, 10(1), 60.
[http://dx.doi.org/10.3390/antiox10010060] [PMID: 33418934]
[186]
Hou, L.; Wang, K.; Zhang, C.; Sun, F.; Che, Y.; Zhao, X.; Zhang, D.; Li, H.; Wang, Q. Complement receptor 3 mediates NADPH oxidase activation and dopaminergic neurodegeneration through a Src-Erk-dependent pathway. Redox Biol., 2018, 14, 250-260.
[http://dx.doi.org/10.1016/j.redox.2017.09.017] [PMID: 28978491]
[187]
Armento, A.; Honisch, S.; Panagiotakopoulou, V.; Sonntag, I.; Jacob, A.; Bolz, S.; Kilger, E.; Deleidi, M.; Clark, S.; Ueffing, M. Loss of Complement Factor H impairs antioxidant capacity and energy metabolism of human RPE cells. Sci. Rep., 2020, 10(1), 10320.
[http://dx.doi.org/10.1038/s41598-020-67292-z] [PMID: 32587311]
[188]
Anderson, D.H.; Radeke, M.J.; Gallo, N.B.; Chapin, E.A.; Johnson, P.T.; Curletti, C.R.; Hancox, L.S.; Hu, J.; Ebright, J.N.; Malek, G.; Hauser, M.A.; Rickman, C.B.; Bok, D.; Hageman, G.S.; Johnson, L.V. The pivotal role of the complement system in aging and age-related macular degeneration: Hypothesis re-visited. Prog. Retin. Eye Res., 2010, 29(2), 95-112.
[http://dx.doi.org/10.1016/j.preteyeres.2009.11.003] [PMID: 19961953]
[189]
Trakkides, T.O.; Schäfer, N.; Reichenthaler, M.; Kühn, K.; Brandwijk, R.J.M.G.E.; Toonen, E.J.M.; Urban, F.; Wegener, J.; Enzmann, V.; Pauly, D. Enzmann. V.; Pauly, D. Oxidative stress increases endogenous complement-dependent inflammatory and angiogenic responses in retinal pigment epithelial cells independently of exogenous complement sources. Antioxidants, 2019, 8(11), 548.
[http://dx.doi.org/10.3390/antiox8110548] [PMID: 31766295]
[190]
Rondina, M.T.; Garraud, O. Emerging evidence for platelets as immune and inflammatory effector cells. Front. Immunol., 2014, 5, 653.
[http://dx.doi.org/10.3389/fimmu.2014.00653] [PMID: 25566264]
[191]
Eisinger, F.; Patzelt, J.; Langer, H.F. The platelet response to tissue injury. Front. Med. (Lausanne), 2018, 5, 317.
[http://dx.doi.org/10.3389/fmed.2018.00317] [PMID: 30483508]
[192]
Hottz, E.D.; Bozza, F.A.; Bozza, P.T. Platelets in immune response to virus and immunopathology of viral infections. Front. Med. (Lausanne), 2018, 5, 121.
[http://dx.doi.org/10.3389/fmed.2018.00121] [PMID: 29761104]
[193]
Masselli, E.; Pozzi, G.; Vaccarezza, M.; Mirandola, P.; Galli, D.; Vitale, M.; Carubbi, C.; Gobbi, G. ROS in platelet biology: Functional aspects and methodological insights. Int. J. Mol. Sci., 2020, 21(14), 4866.
[http://dx.doi.org/10.3390/ijms21144866] [PMID: 32660144]
[194]
Hayashi, T.; Tanaka, S.; Hori, Y.; Hirayama, F.; Sato, E.F.; Inoue, M. Role of mitochondria in the maintenance of platelet function during in vitro storage. Transfus. Med., 2011, 21(3), 166-174.
[http://dx.doi.org/10.1111/j.1365-3148.2010.01065.x] [PMID: 21208306]
[195]
André-Lévigne, D.; Modarressi, A.; Pepper, M.S.; Pittet-Cuénod, B. Reactive oxygen species and NOX enzymes are emerging as key players in cutaneous wound repair. Int. J. Mol. Sci., 2017, 18(10), E2149.
[http://dx.doi.org/10.3390/ijms18102149] [PMID: 29036938]
[196]
Görlach, A. Redox regulation of the coagulation cascade. Antioxid. Redox Signal., 2005, 7(9-10), 1398-1404.
[http://dx.doi.org/10.1089/ars.2005.7.1398] [PMID: 16115045]
[197]
Miricescu, D.; Badoiu, S.C.; Stanescu-Spinu, I.I.; Totan, A.R.; Stefani, C.; Greabu, M. Growth factors, reactive oxygen species, and metformin-promoters of the wound healing process in burns? Int. J. Mol. Sci., 2021, 22(17), 9512.
[http://dx.doi.org/10.3390/ijms22179512] [PMID: 34502429]
[198]
Schäfer, M.; Werner, S. Oxidative stress in normal and impaired wound repair. Pharmacol. Res., 2008, 58(2), 165-171.
[http://dx.doi.org/10.1016/j.phrs.2008.06.004] [PMID: 18617006]
[199]
Nauta, T.D.; van Hinsbergh, V.W.; Koolwijk, P. Hypoxic signaling during tissue repair and regenerative medicine. Int. J. Mol. Sci., 2014, 15(11), 19791-19815.
[http://dx.doi.org/10.3390/ijms151119791] [PMID: 25365172]
[200]
Salvemini, D.; Botting, R. Modulation of platelet function by free radicals and free-radical scavengers. Trends Pharmacol. Sci., 1993, 14(2), 36-42.
[http://dx.doi.org/10.1016/0165-6147(93)90028-I] [PMID: 8480372]
[201]
Görlach, A.; Brandes, R.P.; Bassus, S.; Kronemann, N.; Kirchmaier, C.M.; Busse, R.; Schini-Kerth, V.B. Oxidative stress and expression of p22phox are involved in the up-regulation of tissue factor in vascular smooth muscle cells in response to activated platelets. FASEB J., 2000, 14(11), 1518-1528.
[PMID: 10928986]
[202]
Sundaresan, M.; Yu, Z.X.; Ferrans, V.J.; Irani, K.; Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science, 1995, 270(5234), 296-299.
[http://dx.doi.org/10.1126/science.270.5234.296] [PMID: 7569979]
[203]
Tonnesen, M.G.; Feng, X.; Clark, R.A. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc., 2000, 5(1), 40-46.
[http://dx.doi.org/10.1046/j.1087-0024.2000.00014.x] [PMID: 11147674]
[204]
Werner, S.; Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev., 2003, 83(3), 835-870.
[http://dx.doi.org/10.1152/physrev.2003.83.3.835] [PMID: 12843410]
[205]
Ushio-Fukai, M.; Nakamura, Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett., 2008, 266(1), 37-52.
[http://dx.doi.org/10.1016/j.canlet.2008.02.044] [PMID: 18406051]
[206]
Cho, M.; Hunt, T.K.; Hussain, M.Z. Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am. J. Physiol. Heart Circ. Physiol., 2001, 280(5), H2357-H2363.
[http://dx.doi.org/10.1152/ajpheart.2001.280.5.H2357] [PMID: 11299242]
[207]
Forsythe, J.A.; Jiang, B.H.; Iyer, N.V.; Agani, F.; Leung, S.W.; Koos, R.D.; Semenza, G.L. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol., 1996, 16(9), 4604-4613.
[http://dx.doi.org/10.1128/MCB.16.9.4604] [PMID: 8756616]
[208]
Frank, S.; Stallmeyer, B.; Kämpfer, H.; Kolb, N.; Pfeilschifter, J. Nitric oxide triggers enhanced induction of vascular endothelial growth factor expression in cultured keratinocytes (HaCaT) and during cutaneous wound repair. FASEB J., 1999, 13(14), 2002-2014.
[http://dx.doi.org/10.1096/fasebj.13.14.2002] [PMID: 10544183]
[209]
Arbiser, J.L.; Petros, J.; Klafter, R.; Govindajaran, B.; McLaughlin, E.R.; Brown, L.F.; Cohen, C.; Moses, M.; Kilroy, S.; Arnold, R.S.; Lambeth, J.D. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc. Natl. Acad. Sci. USA, 2002, 99(2), 715-720.
[http://dx.doi.org/10.1073/pnas.022630199] [PMID: 11805326]
[210]
Peus, D.; Vasa, R.A.; Meves, A.; Pott, M.; Beyerle, A.; Squillace, K.; Pittelkow, M.R. H2O2 is an important mediator of UVB-induced EGF-receptor phosphorylation in cultured keratinocytes. J. Invest. Dermatol., 1998, 110(6), 966-971.
[http://dx.doi.org/10.1046/j.1523-1747.1998.00210.x] [PMID: 9620307]
[211]
Marchese, C.; Maresca, V.; Cardinali, G.; Belleudi, F.; Ceccarelli, S.; Bellocci, M.; Frati, L.; Torrisi, M.R.; Picardo, M. UVB-induced activation and internalization of keratinocyte growth factor receptor. Oncogene, 2003, 22(16), 2422-2431.
[http://dx.doi.org/10.1038/sj.onc.1206301] [PMID: 12717419]
[212]
Savaraj, N.; Wei, Y.; Unate, H.; Liu, P.M.; Wu, C.J.; Wangpaichitr, M.; Xia, D.; Xu, H.J.; Hu, S.X.; Tien Kuo, M. Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radic. Res., 2005, 39(4), 373-381.
[http://dx.doi.org/10.1080/10715760400029694] [PMID: 16032782]
[213]
Kar, S.; Subbaram, S.; Carrico, P.M.; Melendez, J.A. Redox-control of matrix metalloproteinase-1: A critical link between free radicals, matrix remodeling and degenerative disease. Respir. Physiol. Neurobiol., 2010, 174(3), 299-306.
[http://dx.doi.org/10.1016/j.resp.2010.08.019] [PMID: 20804863]
[214]
Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther., 2021, 6(1), 94.
[http://dx.doi.org/10.1038/s41392-020-00443-w] [PMID: 33637672]
[215]
Das, U.N. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review. J. Adv. Res., 2018, 11, 57-66.
[http://dx.doi.org/10.1016/j.jare.2018.01.001] [PMID: 30034876]
[216]
Heller, A.; Koch, T.; Schmeck, J.; van Ackern, K. Lipid mediators in inflammatory disorders. Drugs, 1998, 55(4), 487-496.
[http://dx.doi.org/10.2165/00003495-199855040-00001] [PMID: 9561339]
[217]
Tallima, H.; El Ridi, R. Arachidonic acid: Physiological roles and potential health benefits - A review. J. Adv. Res., 2017, 11, 33-41.
[http://dx.doi.org/10.1016/j.jare.2017.11.004] [PMID: 30034874]
[218]
Dias, I.H.K.; Milic, I.; Heiss, C.; Ademowo, O.S.; Polidori, M.C.; Devitt, A.; Griffiths, H.R. Inflammation, lipid (per)oxidation, and redox regulation. Antioxid. Redox Signal., 2020, 33(3), 166-190.
[http://dx.doi.org/10.1089/ars.2020.8022] [PMID: 31989835]
[219]
Huang, Y.H.; Sharifpanah, F.; Becker, S.; Wartenberg, M.; Sauer, H. Impact of arachidonic acid and the leukotriene signaling pathway on vasculogenesis of mouse embryonic stem cells. Cells Tissues Organs, 2016, 201(5), 319-332.
[http://dx.doi.org/10.1159/000445680] [PMID: 27198524]
[220]
Yang, B.; Fritsche, K.L.; Beversdorf, D.Q.; Gu, Z.; Lee, J.C.; Folk, W.R.; Greenlief, C.M.; Sun, G.Y. Yin-Yang mechanisms regulating lipid peroxidation of docosahexaenoic acid and arachidonic acid in the central nervous system. Front. Neurol., 2019, 10, 642.
[http://dx.doi.org/10.3389/fneur.2019.00642] [PMID: 31275232]
[221]
Higdon, A.; Diers, A.R.; Oh, J.Y.; Landar, A.; Darley-Usmar, V.M. Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem. J., 2012, 442(3), 453-464.
[http://dx.doi.org/10.1042/BJ20111752] [PMID: 22364280]
[222]
Groeger, A.L.; Cipollina, C.; Cole, M.P.; Woodcock, S.R.; Bonacci, G.; Rudolph, T.K.; Rudolph, V.; Freeman, B.A.; Schopfer, F.J.; Schopfer, F.J. Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat. Chem. Biol., 2010, 6(6), 433-441.
[http://dx.doi.org/10.1038/nchembio.367] [PMID: 20436486]
[223]
Landar, A.; Giles, N.; Zmijewski, J.; Watanabe, N.; Oh, J.Y.; Darley-Usmar, V. Modification of lipids by reactive oxygen and nitrogen species: The oxy-nitroxy-lipidome and its role in redox cell signaling. Future Lipidol., 2006, 1, 203-211.
[http://dx.doi.org/10.2217/17460875.1.2.203]
[224]
Vazdar, K.; Škulj, S.; Bakarić, D.; Margetić, D.; Vazdar, M. Chemistry and reactivity of 4-hydroxy-2-nonenal (HNE) in model biological systems. Mini Rev. Med. Chem., 2021, 21(12), 1394-1405.
[http://dx.doi.org/10.2174/1389557521666210105110538] [PMID: 33402082]
[225]
Jakovčević, A.; Žarković, K.; Jakovčević, D.; Rakušić, Z.; Prgomet, D.; Waeg, G.; Šunjić, S.B.; Žarković, N. The Appearance of 4-Hydroxy-2-Nonenal (HNE) in squamous cell carcinoma of the oropharynx. Molecules, 2020, 25(4), 868.
[http://dx.doi.org/10.3390/molecules25040868] [PMID: 32079077]
[226]
Esterbauer, H. Cytotoxicity and genotoxicity of lipid-oxidation products. Am. J. Clin. Nutr., 1993, 57(5)(Suppl.), 779S-785S.
[http://dx.doi.org/10.1093/ajcn/57.5.779S] [PMID: 8475896]
[227]
Csala, M.; Kardon, T.; Legeza, B.; Lizák, B.; Mandl, J.; Margittai, É.; Puskás, F.; Száraz, P.; Szelényi, P.; Bánhegyi, G. On the role of 4-hydroxynonenal in health and disease. Biochim. Biophys. Acta, 2015, 1852(5), 826-838.
[http://dx.doi.org/10.1016/j.bbadis.2015.01.015] [PMID: 25643868]
[228]
Yang, Y.; Sharma, R.; Sharma, A.; Awasthi, S.; Awasthi, Y.C. Lipid peroxidation and cell cycle signaling: 4-hydroxynonenal, a key molecule in stress mediated signaling. Acta Biochim. Pol., 2003, 50(2), 319-336.
[http://dx.doi.org/10.18388/abp.2003_3689] [PMID: 12833161]
[229]
Chen, Z.H.; Niki, E. 4-hydroxynonenal (4-HNE) has been widely accepted as an inducer of oxidative stress. Is this the whole truth about it or can 4-HNE also exert protective effects? IUBMB Life, 2006, 58(5-6), 372-373.
[http://dx.doi.org/10.1080/15216540600686896] [PMID: 16754333]
[230]
Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014, 2014, 360438.
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[231]
Huang, Y.; Li, W.; Kong, A.N. Anti-oxidative stress regulator NF-E2-related factor 2 mediates the adaptive induction of antioxidant and detoxifying enzymes by lipid peroxidation metabolite 4-hydroxynonenal. Cell Biosci., 2012, 2(1), 40.
[http://dx.doi.org/10.1186/2045-3701-2-40] [PMID: 23190551]
[232]
Marantos, C.; Mukaro, V.; Ferrante, J.; Hii, C.; Ferrante, A. Inhibition of the lipopolysaccharide-induced stimulation of the members of the MAPK family in human monocytes/macrophages by 4-hydroxynonenal, a product of oxidized omega-6 fatty acids. Am. J. Pathol., 2008, 173(4), 1057-1066.
[http://dx.doi.org/10.2353/ajpath.2008.071150] [PMID: 18772336]
[233]
Ramesh, G.; MacLean, A.G.; Philipp, M.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm., 2013, 2013, 480739.
[http://dx.doi.org/10.1155/2013/480739] [PMID: 23997430]
[234]
Sozzani, S.; Bosisio, D.; Mantovani, A.; Ghezzi, P. Linking stress, oxidation and the chemokine system. Eur. J. Immunol., 2005, 35(11), 3095-3098.
[http://dx.doi.org/10.1002/eji.200535489] [PMID: 16276481]
[235]
Saccani, A.; Saccani, S.; Orlando, S.; Sironi, M.; Bernasconi, S.; Ghezzi, P.; Mantovani, A.; Sica, A. Redox regulation of chemokine receptor expression. Proc. Natl. Acad. Sci. USA, 2000, 97(6), 2761-2766.
[http://dx.doi.org/10.1073/pnas.97.6.2761] [PMID: 10716998]
[236]
Jaramillo, M.; Olivier, M. Hydrogen peroxide induces murine macrophage chemokine gene transcription via extracellular signal-regulated kinase- and cyclic adenosine 5′-monophosphate (cAMP)-dependent pathways: Involvement of NF-kappa B, activator protein 1, and cAMP response element binding protein. J. Immunol., 2002, 169(12), 7026-7038.
[http://dx.doi.org/10.4049/jimmunol.169.12.7026] [PMID: 12471138]
[237]
Lakshminarayanan, V.; Beno, D.W.; Costa, R.H.; Roebuck, K.A. Differential regulation of interleukin-8 and intercellular adhesion molecule-1 by H2O2 and TNF-α in endothelial and epithelial cells. J. Biol. Chem., 1997, 272, 32910.
[http://dx.doi.org/10.1074/jbc.272.52.32910] [PMID: 9407069]
[238]
Kilgore, K.S.; Imlay, M.M.; Szaflarski, J.P.; Silverstein, F.S.; Malani, A.N.; Evans, V.M.; Warren, J.S. Neutrophils and reactive oxygen intermediates mediate glucan-induced pulmonary granuloma formation through the local induction of monocyte chemoattractant protein-1. Lab. Invest., 1997, 76(2), 191-201.
[PMID: 9042155]
[239]
Zhang, X.; Chen, X.; Song, H.; Chen, H.Z.; Rovin, B.H. Activation of the Nrf2/antioxidant response pathway increases IL-8 expression. Eur. J. Immunol., 2005, 35(11), 3258-3267.
[http://dx.doi.org/10.1002/eji.200526116] [PMID: 16220540]
[240]
Szabó, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov., 2007, 6(8), 662-680.
[http://dx.doi.org/10.1038/nrd2222] [PMID: 17667957]
[241]
Vanhoutte, P.M.; Zhao, Y.; Xu, A.; Leung, S.W. Thirty years of saying NO: Sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ. Res., 2016, 119(2), 375-396.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.306531] [PMID: 27390338]
[242]
Barker, C.E.; Thompson, S.; O’Boyle, G.; Lortat-Jacob, H.; Sheerin, N.S.; Ali, S.; Kirby, J.A. CCL2 nitration is a negative regulator of chemokine-mediated inflammation. Sci. Rep., 2017, 7, 44384.
[http://dx.doi.org/10.1038/srep44384] [PMID: 28290520]
[243]
Thompson, S.; Martínez-Burgo, B.; Sepuru, K.M.; Rajarathnam, K.; Kirby, J.A.; Sheerin, N.S.; Ali, S. Regulation of chemokine function: The roles of GAG-binding and post-translational nitration. Int. J. Mol. Sci., 2017, 18(8), E1692.
[http://dx.doi.org/10.3390/ijms18081692] [PMID: 28771176]
[244]
Martinon, F.; Mayor, A.; Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol., 2009, 27, 229-265.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132715] [PMID: 19302040]
[245]
Nakahira, K.; Haspel, J.A.; Rathinam, V.A.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; Fitzgerald, K.A.; Ryter, S.W.; Choi, A.M. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 2011, 12(3), 222-230.
[http://dx.doi.org/10.1038/ni.1980] [PMID: 21151103]
[246]
Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329), 221-225.
[http://dx.doi.org/10.1038/nature09663] [PMID: 21124315]
[247]
Yang, D.; Elner, S.G.; Bian, Z.M.; Till, G.O.; Petty, H.R.; Elner, V.M. Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp. Eye Res., 2007, 85(4), 462-472.
[http://dx.doi.org/10.1016/j.exer.2007.06.013] [PMID: 17765224]
[248]
Soucy-Faulkner, A.; Mukawera, E.; Fink, K.; Martel, A.; Jouan, L.; Nzengue, Y.; Lamarre, D.; Vande Velde, C.; Grandvaux, N. Requirement of NOX2 and reactive oxygen species for efficient RIG-I-mediated antiviral response through regulation of MAVS expression. PLoS Pathog., 2010, 6(6), e1000930.
[http://dx.doi.org/10.1371/journal.ppat.1000930] [PMID: 20532218]
[249]
Yoneyama, M.; Fujita, T. Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity, 2008, 29(2), 178-181.
[http://dx.doi.org/10.1016/j.immuni.2008.07.009] [PMID: 18701081]
[250]
McDermott, J.E.; Vartanian, K.B.; Mitchell, H.; Stevens, S.L.; Sanfilippo, A.; Stenzel-Poore, M.P. Identification and validation of Ifit1 as an important innate immune bottleneck. PLoS One, 2012, 7(6), e36465.
[http://dx.doi.org/10.1371/journal.pone.0036465] [PMID: 22745654]
[251]
Yanai, H.; Negishi, H.; Taniguchi, T. The IRF family of transcription factors: Inception, impact and implications in oncogenesis. OncoImmunology, 2012, 1(8), 1376-1386.
[http://dx.doi.org/10.4161/onci.22475] [PMID: 23243601]
[252]
Li, X.; Fang, P.; Sun, Y.; Shao, Y.; Yang, W.Y.; Jiang, X.; Wang, H.; Yang, X. Anti-inflammatory cytokines IL-35 and IL-10 block atherogenic lysophosphatidylcholine-induced, mitochondrial ROS-mediated innate immune activation, but spare innate immune memory signature in endothelial cells. Redox Biol., 2020, 28, 101373.
[http://dx.doi.org/10.1016/j.redox.2019.101373] [PMID: 31731100]
[253]
Oosting, M.; Cheng, S.C.; Bolscher, J.M.; Vestering-Stenger, R.; Plantinga, T.S.; Verschueren, I.C.; Arts, P.; Garritsen, A.; van Eenennaam, H.; Sturm, P.; Kullberg, B.J.; Hoischen, A.; Adema, G.J.; van der Meer, J.W.; Netea, M.G.; Joosten, L.A. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc. Natl. Acad. Sci. USA, 2014, 111(42), E4478-E4484.
[http://dx.doi.org/10.1073/pnas.1410293111] [PMID: 25288745]
[254]
Krieg, A.M.; Vollmer, J. Toll-like receptors 7, 8, and 9: Linking innate immunity to autoimmunity. Immunol. Rev., 2007, 220, 251-269.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00572.x] [PMID: 17979852]
[255]
Lester, S.N.; Li, K. Toll-like receptors in antiviral innate immunity. J. Mol. Biol., 2014, 426(6), 1246-1264.
[http://dx.doi.org/10.1016/j.jmb.2013.11.024] [PMID: 24316048]
[256]
Takeda, K.; Akira, S. Toll-like receptors. Curr Protoc Immunol., 2015, 109, 14121-141210.
[http://dx.doi.org/10.1002/0471142735.im1412s109] [PMID: 25845562]
[257]
Park, H.S.; Jung, H.Y.; Park, E.Y.; Kim, J.; Lee, W.J.; Bae, Y.S. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J. Immunol., 2004, 173(6), 3589-3593.
[http://dx.doi.org/10.4049/jimmunol.173.6.3589] [PMID: 15356101]
[258]
Asehnoune, K.; Strassheim, D.; Mitra, S.; Kim, J.Y.; Abraham, E. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J. Immunol., 2004, 172(4), 2522-2529.
[http://dx.doi.org/10.4049/jimmunol.172.4.2522] [PMID: 14764725]
[259]
Ryan, K.A.; Smith, M.F., Jr; Sanders, M.K.; Ernst, P.B. Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression. Infect. Immun., 2004, 72(4), 2123-2130.
[http://dx.doi.org/10.1128/IAI.72.4.2123-2130.2004] [PMID: 15039334]
[260]
Wang, S.; Song, X.; Zhang, K.; Deng, S.; Jiao, P.; Qi, M.; Lian, Z.; Yao, Y. Overexpression of Toll-like receptor 4 affects autophagy, oxidative stress, and inflammatory responses in monocytes of transgenic sheep. Front. Cell Dev. Biol., 2020, 8, 248.
[http://dx.doi.org/10.3389/fcell.2020.00248] [PMID: 32432106]
[261]
Lee, J.H.; Joo, J.H.; Kim, J.; Lim, H.J.; Kim, S.; Curtiss, L.; Seong, J.K.; Cui, W.; Yabe-Nishimura, C.; Bae, Y.S. Interaction of NADPH oxidase 1 with Toll-like receptor 2 induces migration of smooth muscle cells. Cardiovasc. Res., 2013, 99(3), 483-493.
[http://dx.doi.org/10.1093/cvr/cvt107] [PMID: 23749776]
[262]
Latorre, E.; Mendoza, C.; Layunta, E.; Alcalde, A.I.; Mesonero, J.E. TLR2, TLR3, and TLR4 activation specifically alters the oxidative status of intestinal epithelial cells. Cell Stress Chaperones, 2014, 19(2), 289-293.
[http://dx.doi.org/10.1007/s12192-013-0461-8] [PMID: 24068346]
[263]
Wong, S.W.; Kwon, M.J.; Choi, A.M.; Kim, H.P.; Nakahira, K.; Hwang, D.H. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J. Biol. Chem., 2009, 284(40), 27384-27392.
[http://dx.doi.org/10.1074/jbc.M109.044065] [PMID: 19648648]
[264]
Fan, J.; Frey, R.S.; Malik, A.B. TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase. J. Clin. Invest., 2003, 112(8), 1234-1243.
[http://dx.doi.org/10.1172/JCI18696] [PMID: 14561708]
[265]
Xiang, M.; Fan, J.; Fan, J. Association of Toll-like receptor signaling and reactive oxygen species: A potential therapeutic target for posttrauma acute lung injury. Mediators Inflamm., 2010, 2010, 916425.
[http://dx.doi.org/10.1155/2010/916425] [PMID: 20706658]
[266]
Li, Y.; Deng, S.L.; Lian, Z.X.; Yu, K. Roles of Toll-like receptors in nitroxidative stress in mammals. Cells, 2019, 8(6), 576.
[http://dx.doi.org/10.3390/cells8060576] [PMID: 31212769]
[267]
Kim, J.Y.; Choi, G.E.; Yoo, H.J.; Kim, H.S. Interferon potentiates Toll-Like receptor-induced Prostaglandin D2 production through positive feedback regulation between signal transducer and activators of transcription 1 and reactive oxygen species. Front. Immunol., 2017, 8, 1720.
[http://dx.doi.org/10.3389/fimmu.2017.01720] [PMID: 29255467]
[268]
Zhao, G.; Yu, R.; Deng, J.; Zhao, Q.; Li, Y.; Joo, M.; van Breemen, R.B.; Christman, J.W.; Xiao, L. Pivotal role of reactive oxygen species in differential regulation of lipopolysaccharide-induced prostaglandins production in macrophages. Mol. Pharmacol., 2013, 83(1), 167-178.
[http://dx.doi.org/10.1124/mol.112.080762] [PMID: 23071105]
[269]
Sivamani, R.K. Eicosanoids and keratinocytes in wound healing. Adv. Wound Care (New Rochelle), 2014, 3(7), 476-481.
[http://dx.doi.org/10.1089/wound.2014.0523] [PMID: 25032067]
[270]
Hu, Y.P.; Peng, Y.B.; Zhang, Y.F.; Wang, Y.; Yu, W.R.; Yao, M.; Fu, X.J. Reactive oxygen species mediated Prostaglandin E2 Contributes to acute response of epithelial injury. Oxid. Med. Cell. Longev., 2017, 2017, 4123854.
[http://dx.doi.org/10.1155/2017/4123854] [PMID: 28280524]
[271]
Oeste, C.L.; Pérez-Sala, D. Modification of cysteine residues by cyclopentenone prostaglandins: interplay with redox regulation of protein function. Mass Spectrom. Rev., 2014, 33(2), 110-125.
[http://dx.doi.org/10.1002/mas.21383] [PMID: 23818260]
[272]
Szewczuk, L.M.; Forti, L.; Stivala, L.A.; Penning, T.M. Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: A mechanistic approach to the design of COX-1 selective agents. J. Biol. Chem., 2004, 279(21), 22727-22737.
[http://dx.doi.org/10.1074/jbc.M314302200] [PMID: 15020596]
[273]
Candelario-Jalil, E.; de Oliveira, A.C.; Gräf, S.; Bhatia, H.S.; Hüll, M.; Muñoz, E.; Fiebich, B.L. Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J. Neuroinflammation, 2007, 4, 25.
[http://dx.doi.org/10.1186/1742-2094-4-25] [PMID: 17927823]
[274]
Wang, T.; Qin, L.; Liu, B.; Liu, Y.; Wilson, B.; Eling, T.E.; Langenbach, R.; Taniura, S.; Hong, J.S. Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J. Neurochem., 2004, 88(4), 939-947.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02242.x] [PMID: 14756815]
[275]
Rossi, S.P.; Windschüttl, S.; Matzkin, M.E.; Rey-Ares, V.; Terradas, C.; Ponzio, R.; Puigdomenech, E.; Levalle, O.; Calandra, R.S.; Mayerhofer, A.; Frungieri, M.B. Reactive oxygen species (ROS) production triggered by prostaglandin D2 (PGD2) regulates lactate dehydrogenase (LDH) expression/activity in TM4 Sertoli cells. Mol. Cell. Endocrinol., 2016, 434, 154-165.
[http://dx.doi.org/10.1016/j.mce.2016.06.021] [PMID: 27329155]
[276]
Junprung, W.; Supungul, P.; Tassanakajon, A. Structure, gene expression, and putative functions of crustacean heat shock proteins in innate immunity. Dev. Comp. Immunol., 2021, 115, 103875.
[http://dx.doi.org/10.1016/j.dci.2020.103875] [PMID: 32987013]
[277]
Shan, Q.; Ma, F.; Wei, J.; Li, H.; Ma, H.; Sun, P. Physiological functions of heat shock proteins. Curr. Protein Pept. Sci., 2020, 21(8), 751-760.
[http://dx.doi.org/10.2174/1389203720666191111113726] [PMID: 31713482]
[278]
Calderwood, S.K.; Xie, Y.; Wang, X.; Khaleque, M.A.; Chou, S.D.; Murshid, A.; Prince, T.; Zhang, Y. Signal transduction pathways leading to heat shock transcription. Signal Transduct. Insights, 2010, 2, 13-24.
[http://dx.doi.org/10.4137/STI.S3994] [PMID: 21687820]
[279]
Gomez-Pastor, R.; Burchfiel, E.T.; Thiele, D.J. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat. Rev. Mol. Cell Biol., 2018, 19(1), 4-19.
[http://dx.doi.org/10.1038/nrm.2017.73] [PMID: 28852220]
[280]
Åkerfelt, M.; Trouillet, D.; Mezger, V.; Sistonen, L. Heat shock factors at a crossroad between stress and development. Ann. N.Y. Acad. Sci., 2007, 1113(1), 15-27.
[http://dx.doi.org/10.1196/annals.1391.005] [PMID: 17483205]
[281]
Anckar, J.; Sistonen, L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem., 2011, 80, 1089-1115.
[http://dx.doi.org/10.1146/annurev-biochem-060809-095203] [PMID: 21417720]
[282]
Zitka, O.; Skalickova, S.; Gumulec, J.; Masarik, M.; Adam, V.; Hubalek, J.; Trnkova, L.; Kruseova, J.; Eckschlager, T.; Kizek, R. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol. Lett., 2012, 4(6), 1247-1253.
[http://dx.doi.org/10.3892/ol.2012.931] [PMID: 23205122]
[283]
Guo, S.; Wharton, W.; Moseley, P.; Shi, H. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones, 2007, 12(3), 245-254.
[http://dx.doi.org/10.1379/CSC-265.1] [PMID: 17915557]
[284]
Graf, P.C.; Martinez-Yamout, M.; VanHaerents, S.; Lilie, H.; Dyson, H.J.; Jakob, U. Activation of the redox-regulated chaperone Hsp33 by domain unfolding. J. Biol. Chem., 2004, 279(19), 20529-20538.
[http://dx.doi.org/10.1074/jbc.M401764200] [PMID: 15023991]
[285]
Sulzbacher, M.M.; Ludwig, M.S.; Heck, T.G. Oxidative stress and decreased tissue HSP70 are involved in the genesis of sepsis: HSP70 as a therapeutic target. Rev. Bras. Ter. Intensiva, 2020, 32(4), 585-591.
[PMID: 33263705]
[286]
Reeg, S.; Jung, T.; Castro, J.P.; Davies, K.J.A.; Henze, A.; Grune, T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic. Biol. Med., 2016, 99, 153-166.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.08.002] [PMID: 27498116]
[287]
Szyller, J.; Bil-Lula, I. Heat shock proteins in oxidative stress and ischemia/reperfusion injury and benefits from physical exercises: A review to the current knowledge. Oxid. Med. Cell. Longev., 2021, 2021, 6678457.
[http://dx.doi.org/10.1155/2021/6678457] [PMID: 33603951]
[288]
Ikwegbue, P.C.; Masamba, P.; Oyinloye, B.E.; Kappo, A.P. Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals (Basel), 2017, 11(1), 2.
[http://dx.doi.org/10.3390/ph11010002] [PMID: 29295496]
[289]
Miller, D.J.; Fort, P.E. Heat shock proteins regulatory role in neurodevelopment. Front. Neurosci., 2018, 12, 821.
[http://dx.doi.org/10.3389/fnins.2018.00821] [PMID: 30483047]
[290]
Dowell, J.; Elser, B.A.; Schroeder, R.E.; Stevens, H.E. Cellular stress mechanisms of prenatal maternal stress: Heat shock factors and oxidative stress. Neurosci. Lett., 2019, 709, 134368.
[http://dx.doi.org/10.1016/j.neulet.2019.134368] [PMID: 31299286]
[291]
Samanta, D.; Semenza, G.L. Maintenance of redox homeostasis by hypoxia-inducible factors. Redox Biol., 2017, 13, 331-335.
[http://dx.doi.org/10.1016/j.redox.2017.05.022] [PMID: 28624704]
[292]
Lee, P.; Chandel, N.S.; Simon, M.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol., 2020, 21(5), 268-283.
[http://dx.doi.org/10.1038/s41580-020-0227-y] [PMID: 32144406]
[293]
Bell, E.L.; Klimova, T.A.; Eisenbart, J.; Schumacker, P.T.; Chandel, N.S. Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol. Cell. Biol., 2007, 27(16), 5737-5745.
[http://dx.doi.org/10.1128/MCB.02265-06] [PMID: 17562866]
[294]
Guzy, R.D.; Hoyos, B.; Robin, E.; Chen, H.; Liu, L.; Mansfield, K.D.; Simon, M.C.; Hammerling, U.; Schumacker, P.T. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab., 2005, 1(6), 401-408.
[http://dx.doi.org/10.1016/j.cmet.2005.05.001] [PMID: 16054089]
[295]
Fandrey, J.; Frede, S.; Jelkmann, W. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem. J., 1994, 303(Pt 2), 507-510.
[http://dx.doi.org/10.1042/bj3030507] [PMID: 7980410]
[296]
Vaux, E.C.; Metzen, E.; Yeates, K.M.; Ratcliffe, P.J. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood, 2001, 98(2), 296-302.
[http://dx.doi.org/10.1182/blood.V98.2.296] [PMID: 11435296]
[297]
Srinivas, V.; Leshchinsky, I.; Sang, N.; King, M.P.; Minchenko, A.; Caro, J. Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J. Biol. Chem., 2001, 276(25), 21995-21998.
[http://dx.doi.org/10.1074/jbc.C100177200] [PMID: 11342528]
[298]
Haddad, J.J.; Land, S.C. A non-hypoxic, ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1alpha. FEBS Lett., 2001, 505(2), 269-274.
[http://dx.doi.org/10.1016/S0014-5793(01)02833-2] [PMID: 11566189]
[299]
Li, H.S.; Zhou, Y.N.; Li, L.; Li, S.F.; Long, D.; Chen, X.L.; Zhang, J.B.; Feng, L.; Li, Y.P. HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol., 2019, 25, 101109.
[http://dx.doi.org/10.1016/j.redox.2019.101109] [PMID: 30686776]
[300]
Semenza, G.L. The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim. Biophys. Acta, 2016, 1863(3), 382-391.
[http://dx.doi.org/10.1016/j.bbamcr.2015.05.036] [PMID: 26079100]
[301]
Qutub, A.A.; Popel, A.S. Reactive oxygen species regulate hypoxia-inducible factor 1alpha differentially in cancer and ischemia. Mol. Cell. Biol., 2008, 28(16), 5106-5119.
[http://dx.doi.org/10.1128/MCB.00060-08] [PMID: 18559422]
[302]
Briehl, M.M. Oxygen in human health from life to death--An approach to teaching redox biology and signaling to graduate and medical students. Redox Biol., 2015, 5(5), 124-139.
[http://dx.doi.org/10.1016/j.redox.2015.04.002] [PMID: 25912168]
[303]
Holmström, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 411-421.
[http://dx.doi.org/10.1038/nrm3801] [PMID: 24854789]
[304]
Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol., 2015, 6, 260-271.
[http://dx.doi.org/10.1016/j.redox.2015.08.010] [PMID: 26296072]
[305]
Fuhrmann, D.C.; Brüne, B. Mitochondrial composition and function under the control of hypoxia. Redox Biol., 2017, 12, 208-215.
[http://dx.doi.org/10.1016/j.redox.2017.02.012] [PMID: 28259101]
[306]
Cho, H.; Du, X.; Rizzi, J.P.; Liberzon, E.; Chakraborty, A.A.; Gao, W.; Carvo, I.; Signoretti, S.; Bruick, R.K.; Josey, J.A.; Wallace, E.M.; Kaelin, W.G. On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature, 2016, 539(7627), 107-111.
[http://dx.doi.org/10.1038/nature19795] [PMID: 27595393]
[307]
Tang, C.M.; Yu, J. Hypoxia-inducible factor-1 as a therapeutic target in cancer. J. Gastroenterol. Hepatol., 2013, 28(3), 401-405.
[http://dx.doi.org/10.1111/jgh.12038] [PMID: 23173651]
[308]
Li, H.Y.; Yuan, Y.; Fu, Y.H.; Wang, Y.; Gao, X.Y. Hypoxia-inducible factor-1α: A promising therapeutic target for vasculopathy in diabetic retinopathy. Pharmacol. Res., 2020, 159, 104924.
[http://dx.doi.org/10.1016/j.phrs.2020.104924] [PMID: 32464323]
[309]
Zheng, J.; Chen, P.; Zhong, J.; Cheng, Y.; Chen, H.; He, Y.; Chen, C. HIF‑1α in myocardial ischemia‑reperfusion injury (Review). Mol. Med. Rep., 2021, 23(5), 352. [Review].
[http://dx.doi.org/10.3892/mmr.2021.11991] [PMID: 33760122]
[310]
Markopoulos, G.S.; Roupakia, E.; Tokamani, M.; Alabasi, G.; Sandaltzopoulos, R.; Marcu, K.B.; Kolettas, E. Roles of NF-κB signaling in the regulation of miRNAs impacting on inflammation in cancer. Biomedicines, 2018, 6(2), 40.
[http://dx.doi.org/10.3390/biomedicines6020040] [PMID: 29601548]
[311]
Cray, C. Acute phase proteins in animals. Prog. Mol. Biol. Transl. Sci., 2012, 105, 113-150.
[http://dx.doi.org/10.1016/B978-0-12-394596-9.00005-6] [PMID: 22137431]
[312]
Cray, C.; Zaias, J.; Altman, N.H. Acute phase response in animals: a review. Comp. Med., 2009, 59(6), 517-526.
[PMID: 20034426]
[313]
Baumann, H.; Gauldie, J. The acute phase response. Immunol. Today, 1994, 15(2), 74-80.
[http://dx.doi.org/10.1016/0167-5699(94)90137-6] [PMID: 7512342]
[314]
Roth, J.; Rummel, C.; Barth, S.W.; Gerstberger, R.; Hübschle, T. Molecular aspects of fever and hyperthermia. Immunol. Allergy Clin. North Am., 2009, 29(2), 229-245.
[http://dx.doi.org/10.1016/j.iac.2009.02.005] [PMID: 19389579]
[315]
Moltz, H. Fever: causes and consequences. Neurosci. Biobehav. Rev., 1993, 17(3), 237-269.
[http://dx.doi.org/10.1016/S0149-7634(05)80009-0] [PMID: 8272282]
[316]
Ogoina, D. Fever, fever patterns and diseases called ‘fever’--a review. J. Infect. Public Health, 2011, 4(3), 108-124.
[http://dx.doi.org/10.1016/j.jiph.2011.05.002] [PMID: 21843857]
[317]
Eskilsson, A.; Matsuwaki, T.; Shionoya, K.; Mirrasekhian, E.; Zajdel, J.; Schwaninger, M.; Engblom, D.; Blomqvist, A. Immune-induced fever is dependent on local but not generalized prostaglandin E2 synthesis in the brain. J. Neurosci., 2017, 37(19), 5035-5044.
[http://dx.doi.org/10.1523/JNEUROSCI.3846-16.2017] [PMID: 28438967]
[318]
Engström, L.; Ruud, J.; Eskilsson, A.; Larsson, A.; Mackerlova, L.; Kugelberg, U.; Qian, H.; Vasilache, A.M.; Larsson, P.; Engblom, D.; Sigvardsson, M.; Jönsson, J.I.; Blomqvist, A. Lipopolysaccharide-induced fever depends on prostaglandin E2 production specifically in brain endothelial cells. Endocrinology, 2012, 153(10), 4849-4861.
[http://dx.doi.org/10.1210/en.2012-1375] [PMID: 22872578]
[319]
Nishio, A.; Kanoh, S. Development changes in the febrile response to endotoxin in rabbit. Jpn. J. Physiol., 1980, 30(4), 645-653.
[http://dx.doi.org/10.2170/jjphysiol.30.645] [PMID: 7007697]
[320]
LeMay, D.R.; LeMay, L.G.; Kluger, M.J.; D’Alecy, L.G. Plasma profiles of IL-6 and TNF with fever-inducing doses of lipopolysaccharide in dogs. Am. J. Physiol., 1990, 259(1 Pt 2), R126-R132.
[PMID: 2197879]
[321]
Klir, J.J.; Roth, J.; Szelényi, Z.; McClellan, J.L.; Kluger, M.J. Role of hypothalamic interleukin-6 and tumor necrosis factor-alpha in LPS fever in rat. Am. J. Physiol., 1993, 265(3 Pt 2), R512-R517.
[PMID: 8214140]
[322]
Romanovsky, A.A. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(1), R37-R46.
[http://dx.doi.org/10.1152/ajpregu.00668.2006] [PMID: 17008453]
[323]
Morrison, S.F.; Nakamura, K.; Madden, C.J. Central control of thermogenesis in mammals. Exp. Physiol., 2008, 93(7), 773-797.
[http://dx.doi.org/10.1113/expphysiol.2007.041848] [PMID: 18469069]
[324]
Blatteis, C.M.; Li, S.; Li, Z.; Feleder, C.; Perlik, V. Cytokines, PGE2 and endotoxic fever: A re-assessment. Prostaglandins Lipid Mediat., 2005, 76(1-4), 1-18.
[http://dx.doi.org/10.1016/j.prostaglandins.2005.01.001] [PMID: 15967158]
[325]
Berridge, C.W.; Waterhouse, B.D. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev., 2003, 42(1), 33-84.
[http://dx.doi.org/10.1016/S0165-0173(03)00143-7] [PMID: 12668290]
[326]
Feleder, C.; Perlik, V.; Blatteis, C.M. Preoptic norepinephrine mediates the febrile response of guinea pigs to lipopolysaccharide. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 293(3), R1135-R1143.
[http://dx.doi.org/10.1152/ajpregu.00067.2007] [PMID: 17584956]
[327]
Almeida, M.C.; Steiner, A.A.; Coimbra, N.C.; Branco, L.G. Thermoeffector neuronal pathways in fever: A study in rats showing a new role of the locus coeruleus. J. Physiol., 2004, 558(Pt 1), 283-294.
[http://dx.doi.org/10.1113/jphysiol.2004.066654] [PMID: 15146040]
[328]
Linthorst, A.C.; Flachskamm, C.; Holsboer, F.; Reul, J.M. Intraperitoneal administration of bacterial endotoxin enhances noradrenergic neurotransmission in the rat preoptic area: relationship with body temperature and hypothalamic--pituitary--adrenocortical axis activity. Eur. J. Neurosci., 1995, 7(12), 2418-2430.
[http://dx.doi.org/10.1111/j.1460-9568.1995.tb01040.x] [PMID: 8845947]
[329]
Blatteis, C.M. The onset of fever: New insights into its mechanism. Prog. Brain Res., 2007, 162, 3-14.
[http://dx.doi.org/10.1016/S0079-6123(06)62001-3] [PMID: 17645911]
[330]
Naganawa, S.; Taoka, T.; Kawai, H.; Yamazaki, M.; Suzuki, K. Appearance of the organum vasculosum of the lamina terminalis on contrast-enhanced MR imaging. Magn. Reson. Med. Sci., 2018, 17(2), 132-137.
[http://dx.doi.org/10.2463/mrms.mp.2017-0088] [PMID: 28966303]
[331]
Kao, C.H.; Kao, T.Y.; Huang, W.T.; Lin, M.T. Lipopolysaccharide- and glutamate-induced hypothalamic hydroxyl radical elevation and fever can be suppressed by N-methyl-D-aspartate-receptor antagonists. J. Pharmacol. Sci., 2007, 104(2), 130-136.
[http://dx.doi.org/10.1254/jphs.FP0070272] [PMID: 17538230]
[332]
Huang, W.T.; Lin, M.T.; Chang, C.P. An NMDA receptor-dependent hydroxyl radical pathway in the rabbit hypothalamus may mediate lipopolysaccharide fever. Neuropharmacology, 2006, 50(4), 504-511.
[http://dx.doi.org/10.1016/j.neuropharm.2005.10.012] [PMID: 16406085]
[333]
Haddad, J.J.; Saadé, N.E.; Safieh-Garabedian, B. Redox regulation of TNF-alpha biosynthesis: Augmentation by irreversible inhibition of gamma-glutamylcysteine synthetase and the involvement of an IkappaB-alpha/NF-kappaB-independent pathway in alveolar epithelial cells. Cell. Signal., 2002, 14(3), 211-218.
[http://dx.doi.org/10.1016/S0898-6568(01)00233-9] [PMID: 11812649]
[334]
Wrotek, S.; Jędrzejewski, T.; Nowakowska, A.; Kozak, W. Glutathione deficiency attenuates endotoxic fever in rats. Int. J. Hyperthermia, 2015, 31(7), 793-799.
[http://dx.doi.org/10.3109/02656736.2015.1067333] [PMID: 26367316]
[335]
Riedel, W.; Lang, U.; Oetjen, U.; Schlapp, U.; Shibata, M. Inhibition of oxygen radical formation by methylene blue, aspirin, or alpha-lipoic acid, prevents bacterial-lipopolysaccharide-induced fever. Mol. Cell. Biochem., 2003, 247(1-2), 83-94.
[http://dx.doi.org/10.1023/A:1024142400835] [PMID: 12841635]
[336]
Magnusson, K.R.; Brim, B.L.; Das, S.R. Selective vulnerabilities of N-methyl-D-aspartate (NMDA) receptors during brain aging. Front. Aging Neurosci., 2010, 2, 11.
[http://dx.doi.org/10.3389/fnagi.2010.00011] [PMID: 20552049]
[337]
Riedel, W.; Maulik, G. Fever: An integrated response of the central nervous system to oxidative stress. Mol. Cell. Biochem., 1999, 196(1-2), 125-132.
[http://dx.doi.org/10.1023/A:1006936111474] [PMID: 10448911]
[338]
Rouault, T.A.; Tong, W.H. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat. Rev. Mol. Cell Biol., 2005, 6(4), 345-351.
[http://dx.doi.org/10.1038/nrm1620] [PMID: 15803140]
[339]
Aisen, P.; Enns, C.; Wessling-Resnick, M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol., 2001, 33(10), 940-959.
[http://dx.doi.org/10.1016/S1357-2725(01)00063-2] [PMID: 11470229]
[340]
Hammer, N.D.; Skaar, E.P. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu. Rev. Microbiol., 2011, 65, 129-147.
[http://dx.doi.org/10.1146/annurev-micro-090110-102851] [PMID: 21639791]
[341]
Cassat, J.E.; Skaar, E.P. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Semin. Immunopathol., 2012, 34(2), 215-235.
[http://dx.doi.org/10.1007/s00281-011-0294-4] [PMID: 22048835]
[342]
Bullen, J.J. The significance of iron in infection. Rev. Infect. Dis., 1981, 3(6), 1127-1138.
[http://dx.doi.org/10.1093/clinids/3.6.1127] [PMID: 7043704]
[343]
Jurado, R.L. Iron, infections, and anemia of inflammation. Clin. Infect. Dis., 1997, 25(4), 888-895.
[http://dx.doi.org/10.1086/515549] [PMID: 9356804]
[344]
Kluger, M.J.; Rothenburg, B.A. Fever and reduced iron: Their interaction as a host defense response to bacterial infection. Science, 1979, 203(4378), 374-376.
[http://dx.doi.org/10.1126/science.760197] [PMID: 760197]
[345]
Kokhan, I.V. Role of iron in bacterial infections and microelement immunity. Mikrobiol. Z., 2010, 72(5), 59-69.
[PMID: 21117298]
[346]
Perotti, C.A.; Nogueira, M.S.; Antunes-Rodrigues, J.; Cárnio, E.C. Effects of a neuronal nitric oxide synthase inhibitor on lipopolysaccharide-induced fever. Braz. J. Med. Biol. Res., 1999, 32(11), 1381-1387.
[http://dx.doi.org/10.1590/S0100-879X1999001100008] [PMID: 10559839]
[347]
Riedel, W. Role of nitric oxide in the control of the hypothalamic-pituitary-adrenocortical axis. Z. Rheumatol., 2000, 59(2), II/36-42.
[http://dx.doi.org/10.1007/s003930070016]
[348]
Feleder, C.; Perlik, V.; Blatteis, C.M. Preoptic alpha 1- and alpha 2-noradrenergic agonists induce, respectively, PGE2-independent and PGE2-dependent hyperthermic responses in guinea pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 286(6), R1156-R1166.
[http://dx.doi.org/10.1152/ajpregu.00486.2003] [PMID: 14962823]
[349]
Feleder, C.; Perlik, V.; Blatteis, C.M. Preoptic nitric oxide attenuates endotoxic fever in guinea pigs by inhibiting the POA release of norepinephrine. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 293(3), R1144-R1151.
[http://dx.doi.org/10.1152/ajpregu.00068.2007] [PMID: 17584955]
[350]
Steiner, A.A.; Branco, L.G. Nitric oxide in the regulation of body temperature and fever. J. Therm. Biol., 2001, 26(4), 325-330.
[http://dx.doi.org/10.1016/S0306-4565(01)00038-9]
[351]
Steiner, A.A.; Antunes-Rodrigues, J.; McCann, S.M.; Branco, L.G. Antipyretic role of the NO-cGMP pathway in the anteroventral preoptic region of the rat brain. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 282(2), R584-R593.
[http://dx.doi.org/10.1152/ajpregu.00391.2001] [PMID: 11792670]
[352]
Hou, C.C.; Lin, H.; Chang, C.P.; Huang, W.T.; Lin, M.T. Oxidative stress and pyrogenic fever pathogenesis. Eur. J. Pharmacol., 2011, 667(1-3), 6-12.
[http://dx.doi.org/10.1016/j.ejphar.2011.05.075] [PMID: 21669194]
[353]
Ma, L.L.; Liu, H.M.; Luo, C.H.; He, Y.N.; Wang, F.; Huang, H.Z.; Han, L.; Yang, M.; Xu, R.C.; Zhang, D.K. Fever and antipyretic supported by traditional chinese medicine: A multi-pathway regulation. Front. Pharmacol., 2021, 12, 583279.
[http://dx.doi.org/10.3389/fphar.2021.583279] [PMID: 33828481]
[354]
Polderman, K.H. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet, 2008, 371(9628), 1955-1969.
[http://dx.doi.org/10.1016/S0140-6736(08)60837-5] [PMID: 18539227]
[355]
Belon, L.; Skidmore, P.; Mehra, R.; Walter, E. Effect of a fever in viral infections - the ‘Goldilocks’ phenomenon? World J. Clin. Cases, 2021, 9(2), 296-307.
[http://dx.doi.org/10.12998/wjcc.v9.i2.296] [PMID: 33521098]
[356]
N, P.; Ss, A.; Pv, M. Comprehensive biology of antipyretic pathways. Cytokine, 2019, 116, 120-127.
[http://dx.doi.org/10.1016/j.cyto.2019.01.008] [PMID: 30711851]
[357]
El-Radhi, A.S. Fever management: Evidence vs current practice. World J. Clin. Pediatr., 2012, 1(4), 29-33.
[http://dx.doi.org/10.5409/wjcp.v1.i4.29] [PMID: 25254165]
[358]
Gunduz, S.; Usak, E.; Koksal, T.; Canbal, M. Why fever phobia is still common? Iran. Red Crescent Med. J., 2016, 18(8), e23827.
[http://dx.doi.org/10.5812/ircmj.23827] [PMID: 27781110]
[359]
Crocetti, M.; Moghbeli, N.; Serwint, J. Fever phobia revisited: have parental misconceptions about fever changed in 20 years? Pediatrics, 2001, 107(6), 1241-1246.
[http://dx.doi.org/10.1542/peds.107.6.1241] [PMID: 11389237]
[360]
Arias, D.; Chen, T.F.; Moles, R.J. Educational interventions on fever management in children: A scoping review. Nurs. Open, 2019, 6(3), 713-721.
[http://dx.doi.org/10.1002/nop2.294] [PMID: 31367392]
[361]
Schmitt, B.D.; Offit, P.A. Could fever improve COVID-19 outcomes? Contemp. PEDS J., 2020, 37, 7.
[362]
Wrotek, S.; LeGrand, E.K.; Dzialuk, A.; Alcock, J. Let fever do its job: The meaning of fever in the pandemic era. Evol. Med. Public Health, 2020, 9(1), 26-35.
[http://dx.doi.org/10.1093/emph/eoaa044] [PMID: 33738101]
[363]
Steiner, A.A. Should we let fever run its course in the early stages of COVID-19? J. R. Soc. Med., 2020, 113(10), 407-409.
[http://dx.doi.org/10.1177/0141076820951544] [PMID: 32930066]
[364]
Motozaki, W.; Nagatani, Y.; Kimura, Y.; Endo, K.; Takemura, T.; Kurmaev, E.Z.; Moewes, A. Evaluation of antioxidant activity and electronic structure of aspirin and paracetamol. J. Mol. Struct., 2011, 985, 63-69.
[http://dx.doi.org/10.1016/j.molstruc.2010.10.021]
[365]
Aronoff, D.M.; Neilson, E.G. Antipyretics: Mechanisms of action and clinical use in fever suppression. Am. J. Med., 2001, 111(4), 304-315.
[http://dx.doi.org/10.1016/S0002-9343(01)00834-8] [PMID: 11566461]
[366]
Greisman, L.A.; Mackowiak, P.A. Fever: Beneficial and detrimental effects of antipyretics. Curr. Opin. Infect. Dis., 2002, 15(3), 241-245.
[http://dx.doi.org/10.1097/00001432-200206000-00005] [PMID: 12015457]
[367]
Shi, X.; Ding, M.; Dong, Z.; Chen, F.; Ye, J.; Wang, S.; Leonard, S.S.; Castranova, V.; Vallyathan, V. Antioxidant properties of aspirin: Characterization of the ability of aspirin to inhibit silica-induced lipid peroxidation, DNA damage, NF-kappaB activation, and TNF-alpha production. Mol. Cell. Biochem., 1999, 199(1-2), 93-102.
[http://dx.doi.org/10.1023/A:1006934612368] [PMID: 10544957]
[368]
Nuttall, S.L.; Khan, J.N.; Thorpe, G.H.; Langford, N.; Kendall, M.J. The impact of therapeutic doses of paracetamol on serum total antioxidant capacity. J. Clin. Pharm. Ther., 2003, 28(4), 289-294.
[http://dx.doi.org/10.1046/j.1365-2710.2003.00493.x] [PMID: 12911681]
[369]
Trebak, M.; Ginnan, R.; Singer, H.A.; Jourd’heuil, D. Interplay between calcium and reactive oxygen/nitrogen species: An essential paradigm for vascular smooth muscle signaling. Antioxid. Redox Signal., 2010, 12(5), 657-674.
[http://dx.doi.org/10.1089/ars.2009.2842] [PMID: 19719386]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy