Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Immune Response Studies Based on P2X7 Receptors: A Mini-Review

Author(s): Ying Deng, Mengting Zhou, Xingtao Zhao, Xinyan Xue, Li Liao, Jing Wang and Yunxia Li*

Volume 28, Issue 12, 2022

Published on: 03 March, 2022

Page: [993 - 999] Pages: 7

DOI: 10.2174/1381612828666220131091325

Price: $65

Abstract

Inflammation, as a complex immunopathological process, is the organism's natural defense response against harmful, foreign, and destructive immune or non-immune factors. It is the main pathological form of various diseases, such as tumors, neurodegenerative diseases, periodontitis, alcoholic steatohepatitis, asthma, and other diseases. The P2X7 receptor (P2X7R) is widely distributed in vivo and up-regulated in various inflammatory pathological states. Studies have shown that milder chronic inflammation is related to a deficiency or inhibition of P2X7R, which is an indispensable part of the pro-inflammatory mechanism in vivo. P2X7R, a unique subtype of seven purinergic P2X receptors, is an ATP-gated non-selective cationic channel. P2X7R will promote the influx of Ca2+ and the outflow of K+ after being stimulated. The influx of Ca2+ is essential for activating the body's innate immune response and inducing the production of inflammatory factors. This paper reviews the regulation of P2X7R in inflammation from the perspectives of innate immunity and adaptive immunity.

Keywords: P2X7 receptor, innate immunity, adaptive immunity, signal pathways, inflammation, immunopathological process.

« Previous
[1]
Tedgui A. Focus on inflammation. Arterioscler Thromb Vasc Biol 2011; 31(5): 958-9.
[http://dx.doi.org/10.1161/ATVBAHA.111.227355] [PMID: 21508341]
[2]
Yangi B, Cengiz Ustuner M, Dincer M, et al. Propolis protects endotoxin induced acute lung and liver inflammation through attenuating inflammatory responses and oxidative stress. J Med Food 2018; 21(11): 1096-105.
[http://dx.doi.org/10.1089/jmf.2017.0151] [PMID: 29719160]
[3]
Kumar V. Innate lymphoid cells. Immunoregulatory cells of mucosal inflammation. Eur J Inflamm 2014; 12: 9.
[4]
Choi JW, Fujii T, Fujii N. Diagnostic accuracy of plasma neutrophil gelatinase-associated lipocalin (NGAL) as an inflammatory biomarker for low-grade inflammation. Biomedical Research-India 2017; 28: 6406-11.
[5]
Rossi J-F, Lu ZY, Massart C, Levon K. Dynamic immune/inflammation precision medicine: The good and the bad inflammation in infection and cancer. Front Immunol 2021; 12:595722.
[http://dx.doi.org/10.3389/fimmu.2021.595722] [PMID: 33708198]
[6]
Dahiya DS, Kichloo A, Singh J, Albosta M, Lekkala M. Current immunotherapy in gastrointestinal malignancies A Review. J Investig Med 2021; 69(3): 689-96.
[http://dx.doi.org/10.1136/jim-2020-001654] [PMID: 33443046]
[7]
Cao Y, Li Q, Liu H, He X, Huang F, Wang Y. Role of Tim-3 in regulating tumorigenesis, inflammation, and antitumor immunity therapy. Cancer Biomark 2021; 32(2): 237-48.
[http://dx.doi.org/10.3233/CBM-210114] [PMID: 34092621]
[8]
Nakata E, Fujiwara T, Kunisada T, Ito T, Takihira S, Ozaki T. Immunotherapy for sarcomas. Jpn J Clin Oncol 2021; 51(4): 523-37.
[http://dx.doi.org/10.1093/jjco/hyab005] [PMID: 33611603]
[9]
Pabla S, Seager RJ, Van Roey E, et al. Integration of tumor inflammation, cell proliferation, and traditional biomarkers improves prediction of immunotherapy resistance and response. Biomark Res 2021; 9(1): 56.
[http://dx.doi.org/10.1186/s40364-021-00308-6] [PMID: 34233760]
[10]
Kaboli PJ, Zhang L, Xiang S, et al. Molecular markers of regulatory T cells in cancer immunotherapy with special focus on acute myeloid leukemia (AML) - A systematic review. Curr Med Chem 2020; 27(28): 4673-98.
[http://dx.doi.org/10.2174/0929867326666191004164041] [PMID: 31584362]
[11]
Figliuolo VR, Savio LEB, Safya H, et al. P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863(6): 1183-94.
[http://dx.doi.org/10.1016/j.bbadis.2017.03.004] [PMID: 28286160]
[12]
Huang C, Yu W, Cui H, et al. P2X7 blockade attenuates mouse liver fibrosis. Mol Med Rep 2014; 9(1): 57-62.
[http://dx.doi.org/10.3892/mmr.2013.1807] [PMID: 24247209]
[13]
Kurashima Y, Amiya T, Nochi T, et al. Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 2012; 3: 1034.
[http://dx.doi.org/10.1038/ncomms2023] [PMID: 22948816]
[14]
Xu XY, He XT, Wang J, et al. Role of the P2X7 receptor in inflammation-mediated changes in the osteogenesis of periodontal ligament stem cells. Cell Death Dis 2019; 10(1): 20.
[http://dx.doi.org/10.1038/s41419-018-1253-y] [PMID: 30622236]
[15]
Yushuang X, Yongfen B, Zhe T, et al. Relationship between P2X7 receptor and disease. Chemistry of Life 2020; 40: 57-63.
[16]
Sun C, Heid ME, Keyel PA, Salter RD. The second transmembrane domain of P2X7 contributes to dilated pore formation. PLoS One 2013; 8(4):e61886.
[http://dx.doi.org/10.1371/journal.pone.0061886] [PMID: 23613968]
[17]
Christian F, Smith EL, Carmody RJ. The regulation of NF-κB subunits by phosphorylation. Cells 2016; 5(1): 12.
[http://dx.doi.org/10.3390/cells5010012] [PMID: 26999213]
[18]
Chen S-P, Qin T, Seidel JL, et al. Inhibition of the P2X7-PANX1 complex suppresses spreading depolarization and neuroinflammation. Brain 2017; 140(6): 1643-56.
[http://dx.doi.org/10.1093/brain/awx085] [PMID: 28430869]
[19]
Kopp R, Krautloher A, Ramírez-Fernández A, Nicke A. P2X7 interactions and signaling - making head or tail of it. Front Mol Neurosci 2019; 12: 183.
[http://dx.doi.org/10.3389/fnmol.2019.00183] [PMID: 31440138]
[20]
Cao SH, Yuan SP, Hou Q. Advance in the research on P2X7 and inflammatory respiratory diseases. Yao Xue Xue Bao 2013; 48(8): 1183-8.
[PMID: 24187823]
[21]
Fan L, Yan-lu F, Yin-ping G, et al. Research progress of P2X7 receptors involved in pain regulation. Zhongguo Yaolixue Tongbao 2019; 35: 1629-33.
[22]
Shu-ping L, Yun-fang Z, Xiao-xiang P, et al. Recent progress on the relationship between P2X7R and breast cancer. J Med Postgraduates 2019; 32: 760-4.
[23]
Wen Z, Mei B, Li H, et al. P2X7 participates in intracerebral hemorrhage-induced secondary brain injury in rats via MAPKs signaling pathways. Neurochem Res 2017; 42(8): 2372-83.
[http://dx.doi.org/10.1007/s11064-017-2257-1] [PMID: 28488233]
[24]
Potucek YD, Crain JM, Watters JJ. Purinergic receptors modulate MAP kinases and transcription factors that control microglial inflammatory gene expression. Neurochem Int 2006; 49(2): 204-14.
[http://dx.doi.org/10.1016/j.neuint.2006.04.005] [PMID: 16735081]
[25]
Campbell JS, Argast GM, Yuen SY, Hayes B, Fausto N. Inactivation of p38 MAPK during liver regeneration. Int J Cell Biol 2011; 43(2): 180-8.
[http://dx.doi.org/10.1016/j.biocel.2010.08.002] [PMID: 20708092]
[26]
Moens U, Kostenko S, Sveinbjørnsson B. The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes (Basel) 2013; 4(2): 101-33.
[http://dx.doi.org/10.3390/genes4020101] [PMID: 24705157]
[27]
Sekar P, Huang D-Y, Hsieh S-L, Chang SF, Lin WW. AMPK-dependent and independent actions of P2X7 in regulation of mitochondrial and lysosomal functions in microglia. Cell Commun Signal 2018; 16(1): 83.
[http://dx.doi.org/10.1186/s12964-018-0293-3] [PMID: 30458799]
[28]
Munoz FM, Patel PA, Gao X, et al. Reactive oxygen species play a role in P2X7 receptor-mediated IL-6 production in spinal astrocytes. Purinergic Signal 2020; 16(1): 97-107.
[http://dx.doi.org/10.1007/s11302-020-09691-5] [PMID: 32146607]
[29]
Kawano A, Tsukimoto M, Mori D, et al. Regulation of P2X7-dependent inflammatory functions by P2X4 receptor in mouse macrophages. Biochem Biophys Res Commun 2012; 420(1): 102-7.
[http://dx.doi.org/10.1016/j.bbrc.2012.02.122] [PMID: 22405772]
[30]
Martel-Gallegos G, Casas-Pruneda G, Ortega-Ortega F, et al. Oxidative stress induced by P2X7 receptor stimulation in murine macrophages is mediated by c-Src/Pyk2 and ERK1/2. Biochim Biophys Acta 2013; 1830(10): 4650-9.
[http://dx.doi.org/10.1016/j.bbagen.2013.05.023] [PMID: 23711511]
[31]
Kim EA, Cho CH, Kim J, et al. The azetidine derivative, KHG26792 protects against ATP-induced activation of NFAT and MAPK pathways through P2X7 receptor in microglia. Neurotoxicology 2015; 51: 198-206.
[http://dx.doi.org/10.1016/j.neuro.2015.10.013] [PMID: 26522449]
[32]
Ortega F, Pérez-Sen R, Delicado EG, Teresa Miras-Portugal M. ERK1/2 activation is involved in the neuroprotective action of P2Y13 and P2X7 receptors against glutamate excitotoxicity in cerebellar granule neurons. Neuropharmacology 2011; 61(8): 1210-21.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.010] [PMID: 21798274]
[33]
Toki Y, Takenouchi T, Harada H, et al. Extracellular ATP induces P2X7 receptor activation in mouse Kupffer cells, leading to release of IL-1β HMGB1, and PGE2, decreased MHC class I expression and necrotic cell death. Biochem Biophys Res Commun 2015; 458(4): 771-6.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.011] [PMID: 25681768]
[34]
Gendron JTN. Fernand-Pierre, Theiss Patty M, Sun Grace Y. Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells. Translational Physiology 2003; 284: 10.
[35]
Wang XH, Xie X, Luo XG, Shang H, He ZY. Inhibiting purinergic P2X7 receptors with the antagonist brilliant blue G is neuroprotective in an intranigral lipopolysaccharide animal model of Parkinson’s disease. Mol Med Rep 2017; 15(2): 768-76.
[http://dx.doi.org/10.3892/mmr.2016.6070] [PMID: 28035410]
[36]
Barberà-Cremades M, Gómez AI, Baroja-Mazo A, et al. P2X7 receptor induces tumor necrosis factor-α converting enzyme activation and release to boost TNF-α production. Front Immunol 2017; 8: 862.
[http://dx.doi.org/10.3389/fimmu.2017.00862] [PMID: 28791020]
[37]
Scott AJ, O’Dea KP, O’Callaghan D, et al. Reactive oxygen species and p38 mitogen-activated protein kinase mediate tumor necrosis factor α-converting enzyme (TACE/ADAM-17) activation in primary human monocytes. J Biol Chem 2011; 286(41): 35466-76.
[http://dx.doi.org/10.1074/jbc.M111.277434] [PMID: 21865167]
[38]
Friedle SA, Brautigam VM, Nikodemova M, Wright ML, Watters JJ. The P2X7-Egr pathway regulates nucleotide-dependent inflammatory gene expression in microglia. Glia 2011; 59(1): 1-13.
[http://dx.doi.org/10.1002/glia.21071] [PMID: 20878769]
[39]
Xubiao P, Xiangyu L, Zhixin W, et al. Progress in the research of NLRP3-(Caspase-1)/IL-1β signal pathway. China Medical Herald 2019; 16: 41-4.
[40]
Shuang J. P2x7R-mediated NLRP3 inflammasome regulates alcoholic fatty liver and liver fibrosis. 2017.
[41]
Dan-Lu J, Yang-Yang L, Ru-Yu S, et al. NLRP3 inflammasome and its role in inflammation-related diseases. Chinese Bulletin of Life Sciences 2017; 29: 898-907.
[42]
Wan-Tai D, Jing-Guo Z, Wen-Guang X, et al. Mechanism of NLRP3 inflammasome in inflammatory response with gouty arthritis. Chin J Microbiol Immunol 2014; 30: 373-82.
[43]
Yunfang Z, Mingxuan L, Xiaoxiang P, et al. P2X7 receptor and inflammation-related diseases. Chinese J Cell Biology 2019; 41: 955-60.
[44]
Jiang L-H, Roger S. Targeting the P2X7 receptor in microglial cells to prevent brain inflammation. Neural Regen Res 2020; 15(7): 1245-6.
[http://dx.doi.org/10.4103/1673-5374.272575] [PMID: 31960804]
[45]
Piccini A, Carta S, Tassi S, Lasiglié D, Fossati G, Rubartelli A. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1β and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 2008; 105(23): 8067-72.
[http://dx.doi.org/10.1073/pnas.0709684105] [PMID: 18523012]
[46]
Giuliani AL, Sarti AC, Falzoni S, Di Virgilio F. The P2X7 Receptor-Interleukin-1 Liaison. Front Pharmacol 2017; 8: 123.
[http://dx.doi.org/10.3389/fphar.2017.00123] [PMID: 28360855]
[47]
Mitra S, Sarkar A. Microparticulate P2X7 and GSDM-D mediated regulation of functional IL-1β release. Purinergic Signal 2019; 15(1): 119-23.
[http://dx.doi.org/10.1007/s11302-018-9640-5] [PMID: 30547277]
[48]
Sakaki H, Fujiwaki T, Tsukimoto M, Kawano A, Harada H, Kojima S. P2X4 receptor regulates P2X7 receptor-dependent IL-1β and IL-18 release in mouse bone marrow-derived dendritic cells. Biochem Biophys Res Commun 2013; 432(3): 406-11.
[http://dx.doi.org/10.1016/j.bbrc.2013.01.135] [PMID: 23428419]
[49]
Franceschini A, Capece M, Chiozzi P, et al. The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB J 2015; 29(6): 2450-61.
[http://dx.doi.org/10.1096/fj.14-268714] [PMID: 25690658]
[50]
Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E, Di Virgilio F. The P2X7 receptor: A main player in inflammation. Biochem Pharmacol 2018; 151: 234-44.
[http://dx.doi.org/10.1016/j.bcp.2017.12.021] [PMID: 29288626]
[51]
Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 receptor in infection and inflammation. Immunity 2017; 47(1): 15-31.
[http://dx.doi.org/10.1016/j.immuni.2017.06.020] [PMID: 28723547]
[52]
Chen Z, Jin H, Hou Y, et al. Activated P2X7 receptor upregulates the expression levels of NALP3 in P388D1 murine macrophage-like cells. Mol Med Rep 2015; 11(2): 1542-6.
[http://dx.doi.org/10.3892/mmr.2014.2776] [PMID: 25351950]
[53]
Cisneros-Mejorado A, Gottlieb M, Cavaliere F, et al. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage. J Cereb Blood Flow Metab 2015; 35(5): 843-50.
[http://dx.doi.org/10.1038/jcbfm.2014.262] [PMID: 25605289]
[54]
Parzych K, Zetterqvist AV, Wright WR, Kirkby NS, Mitchell JA, Paul-Clark MJ. Differential role of pannexin-1/ATP/P2X7 axis in IL-1β release by human monocytes. FASEB J 2017; 31(6): 2439-45.
[http://dx.doi.org/10.1096/fj.201600256] [PMID: 28246166]
[55]
Maldifassi MC, Momboisse F, Guerra MJ, et al. The interplay between α7 nicotinic acetylcholine receptors, pannexin-1 channels and P2X7 receptors elicit exocytosis in chromaffin cells. J Neurochem 2021; 157(6): 1789-808.
[http://dx.doi.org/10.1111/jnc.15186] [PMID: 32931038]
[56]
Wang W, Hu D, Feng Y, et al. Paxillin mediates ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. BMC Biol 2020; 18(1): 182.
[http://dx.doi.org/10.1186/s12915-020-00918-w] [PMID: 33243234]
[57]
Moreira-Souza ACA, Almeida-da-Silva CLC, Rangel TP, et al. The P2X7 receptor mediates Toxoplasma gondii control in macrophages through canonical NLRP3 inflammasome activation and reactive oxygen species production. Front Immunol 2017; 8: 1257.
[http://dx.doi.org/10.3389/fimmu.2017.01257] [PMID: 29075257]
[58]
Homerin G, Jawhara S, Dezitter X, et al. Pyroglutamide-based P2X7 receptor antagonists targeting inflammatory bowel disease. J Med Chem 2020; 63(5): 2074-94.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00584] [PMID: 31525963]
[59]
Zhu Y, Chen X, Lu Y, et al. Diphenyleneiodonium enhances P2X7 dependent non-opsonized phagocytosis and suppresses inflammasome activation via blocking CX43-mediated ATP leakage. Pharmacol Res 2021; 166:105470.
[http://dx.doi.org/10.1016/j.phrs.2021.105470] [PMID: 33529751]
[60]
Kim WI, Ryu HJ, Kim J-E, et al. Differential nuclear factor-kappa B phosphorylation induced by lipopolysaccharide in the hippocampus of P2X7 receptor knockout mouse. Neurol Res 2013; 35(4): 369-81.
[http://dx.doi.org/10.1179/1743132812Y.0000000137] [PMID: 23540405]
[61]
Wu L-Y, Ye Z-N, Zhou C-H, et al. Roles of pannexin-1 channels in inflammatory response through the TLRs/NF-Kappa B signaling pathway following experimental subarachnoid hemorrhage in rats. Front Mol Neurosci 2017; 10: 175.
[http://dx.doi.org/10.3389/fnmol.2017.00175] [PMID: 28634441]
[62]
Liu Y, Xiao Y, Li Z. P2X7 receptor positively regulates MyD88-dependent NF-κB activation. Cytokine 2011; 55(2): 229-36.
[http://dx.doi.org/10.1016/j.cyto.2011.05.003] [PMID: 21621419]
[63]
Mishra A, Behura A, Kumar A, et al. Soybean lectin induces autophagy through P2RX7 dependent activation of NF-κB-ROS pathway to kill intracellular mycobacteria. Biochim Biophys Acta, Gen Subj 2021; 1865(2):129806.
[http://dx.doi.org/10.1016/j.bbagen.2020.129806] [PMID: 33253803]
[64]
Jin-lei W, Cheng-de L, Hong-wei S, et al. Astragalus polysaccharide regulates NF-κB/MAPK signaling pathway andattenuates airway inflammation in OVA-induced asthmatic rats. Zhongguo Yaolixue Tongbao 2016; 32: 489-93.
[65]
Marinho Y, Marques-da-Silva C, Santana PT, et al. MSU Crystals induce sterile IL-1β secretion via P2X7 receptor activation and HMGB1 release. Biochim Biophys Acta, Gen Subj 2020; 1864(1):129461.
[http://dx.doi.org/10.1016/j.bbagen.2019.129461] [PMID: 31676289]
[66]
Hisaoka-Nakashima K, Azuma H, Ishikawa F, et al. Corticosterone induces HMGB1 release in primary cultured rat cortical astrocytes: Involvement of pannexin-1 and P2X7 receptor-dependent mechanisms. Cells 2020; 9(5): 1068.
[http://dx.doi.org/10.3390/cells9051068] [PMID: 32344830]
[67]
De-e X, Li H, Jian-ming L. P2X7 receptor and inflammation cytokine. Chinese Journal of Mycology 2014; 9: 252-6.
[68]
Li R, Wang J, Li R, et al. ATP/P2X7-NLRP3 axis of dendritic cells participates in the regulation of airway inflammation and hyper-responsiveness in asthma by mediating HMGB1 expression and secretion. Exp Cell Res 2018; 366(1): 1-15.
[http://dx.doi.org/10.1016/j.yexcr.2018.03.002] [PMID: 29545090]
[69]
Draganov D, Gopalakrishna-Pillai S, Chen Y-R, et al. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep 2015; 5: 16222.
[http://dx.doi.org/10.1038/srep16222] [PMID: 26552848]
[70]
Shuang-shuang D, Fu Y, Feng W, et al. Mangiferin inhibits neuronal apoptosis and inflammatory response in rats with hypoxic-ischemic brain injury via PI3K/Akt/mTOR pathway. Progress in Modern Biomedicine 2020; 20: 1820-96.
[71]
Youliang W, Aifang Z, Yueming L, et al. Effect of shRNA mediated P2X7R silencing on cell proliferation,apoptosis andsignal pathways of PI3K/Akt and Wnt/β-catenin in nasopharyngeal carcinoma. Linchuang Zhongliuxue Zazhi 2016; 21: 769-74.
[72]
Xu P, Xu Y, Hu B, et al. Extracellular ATP enhances radiation-induced brain injury through microglial activation and paracrine signaling via P2X7 receptor. Brain Behav Immun 2015; 50: 87-100.
[http://dx.doi.org/10.1016/j.bbi.2015.06.020] [PMID: 26122280]
[73]
Jacques-Silva MC, Rodnight R, Lenz G, et al. P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br J Pharmacol 2004; 141(7): 1106-17.
[http://dx.doi.org/10.1038/sj.bjp.0705685] [PMID: 15023862]
[74]
Grol MW, Zelner I, Dixon SJ. P2X₇-mediated calcium influx triggers a sustained, PI3K-dependent increase in metabolic acid production by osteoblast-like cells. Am J Physiol Endocrinol Metab 2012; 302(5): E561-75.
[http://dx.doi.org/10.1152/ajpendo.00209.2011] [PMID: 22185840]
[75]
Xiejing S, Li H. The regulatory roles of P2X7 receptor in inflammation. Immunol J 2013; 29: 70-3.
[76]
Amoroso F, Capece M, Rotondo A, et al. The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene 2015; 34(41): 5240-51.
[http://dx.doi.org/10.1038/onc.2014.444] [PMID: 25619831]
[77]
Mochizuki K, He S, Zhang Y. Notch and inflammatory T-cell response: new developments and challenges. Immunotherapy 2011; 3(11): 1353-66.
[http://dx.doi.org/10.2217/imt.11.126] [PMID: 22053886]
[78]
Li M, Yang C, Wang Y, et al. The expression of P2X7 receptor on Th1, Th17, and regulatory T cells in Patients with systemic lupus erythematosus or rheumatoid arthritis and its correlations with active disease. J Immunol 2020; 205(7): 1752-62.
[http://dx.doi.org/10.4049/jimmunol.2000222] [PMID: 32868411]
[79]
Tripathy A, Padhan P, Swain N, Raghav SK, Gupta B. Increased extracellular ATP in plasma of rheumatoid arthritis patients activates CD8+T cells. Arch Med Res 2021; 52(4): 423-33.
[http://dx.doi.org/10.1016/j.arcmed.2020.12.010] [PMID: 33541740]
[80]
Oneill R, Du W, Alquassim E, et al. Immune checkpoint function of T cell-derived CD70 in inflammatory T cell responses. J Immunol 2017; 198: 3700-10.
[http://dx.doi.org/10.4049/jimmunol.1700380] [PMID: 29046346]
[81]
Srenathan U, Steel K, Taams LS. IL-17+ CD8+ T cells: Differentiation, phenotype and role in inflammatory disease. Immunol Lett 2016; 178: 20-6.
[http://dx.doi.org/10.1016/j.imlet.2016.05.001] [PMID: 27173097]
[82]
Cuthbertson P, Geraghty NJ, Adhikary SR, Casolin S, Watson D, Sluyter R. P2X7 receptor antagonism increases regulatory T cells and reduces clinical and histological graft-versus-host disease in a humanised mouse model. Clin Sci (Lond) 2021; 135(3): 495-513.
[http://dx.doi.org/10.1042/CS20201352] [PMID: 33463682]
[83]
Shaw DM, Merien F, Braakhuis A, Dulson D. T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine 2018; 104: 136-42.
[http://dx.doi.org/10.1016/j.cyto.2017.10.001] [PMID: 29021092]
[84]
Peng C, Jameson SC. The relationship between CD4+ follicular helper T cells and CD8+ resident memory T cells: sisters or distant cousins? Int Immunol 2020; 32(9): 583-7.
[http://dx.doi.org/10.1093/intimm/dxaa045] [PMID: 32620009]
[85]
Borges da Silva H, Peng C, Wang H, et al. Sensing of ATP via the purinergic receptor P2RX7 promotes CD8+ Trm cell generation by enhancing their sensitivity to the cytokine TGF-β. Immunity 2020; 53(1): 158-171.e6.
[http://dx.doi.org/10.1016/j.immuni.2020.06.010] [PMID: 32640257]
[86]
Vardam-Kaur T, Sun J, Borges da Silva H. Metabolic regulation of tissue-resident memory CD8+ T cells. Curr Opin Pharmacol 2021; 57: 117-24.
[http://dx.doi.org/10.1016/j.coph.2021.02.004] [PMID: 33714873]
[87]
Dudek M, Pfister D, Donakonda S, et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 2021; 592(7854): 444-9.
[http://dx.doi.org/10.1038/s41586-021-03233-8] [PMID: 33762736]
[88]
Shan-shan Q, Bo F, Chang-shui X. Potential roles and therapeutic applications of P2X7 receptor in inflammation and pain. Zhongguo Yaolixue Tongbao 2014; 30: 908-11.
[89]
Arulkumaran N, Unwin RJ, Tam FW. A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin Investig Drugs 2011; 20(7): 897-915.
[http://dx.doi.org/10.1517/13543784.2011.578068] [PMID: 21510825]
[90]
Danquah W, Meyer-Schwesinger C, Rissiek B, et al. Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Sci Transl Med 2016; 8(366):366ra162.
[http://dx.doi.org/10.1126/scitranslmed.aaf8463] [PMID: 27881823]
[91]
Wang W, Huang F, Jiang W, Wang W, Xiang J. Brilliant blue G attenuates neuro-inflammation via regulating MAPKs and NF-κB signaling pathways in lipopolysaccharide-induced BV2 microglia cells. Exp Ther Med 2020; 20(5): 116.
[http://dx.doi.org/10.3892/etm.2020.9244] [PMID: 33005242]
[92]
Santiago-Carvalho I, de Almeida-Santos G, Bomfim CCB, et al. P2x7 receptor signaling blockade reduces lung inflammation and necrosis during severe experimental tuberculosis. Front Cell Infect Microbiol 2021; 11:672472.
[http://dx.doi.org/10.3389/fcimb.2021.672472] [PMID: 34026666]
[93]
Bautista-Pérez R, Pérez-Méndez O, Cano-Martínez A, et al. The role of P2X7 purinergic receptors in the renal inflammation associated with angiotensin II-induced hypertension. Int J Mol Sci 2020; 21(11): 4041.
[http://dx.doi.org/10.3390/ijms21114041] [PMID: 32516946]
[94]
Li Z, Huang Z, Zhang H, et al. P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF-κB/NLRP3 crosstalk. Oxid Med Cell Longev 2021; 2021:8868361.
[http://dx.doi.org/10.1155/2021/8868361] [PMID: 33532039]
[95]
Teixeira JM, Pimentel RM, Abdalla HB, et al. P2X7-induced nociception in the temporomandibular joint of rats depends on inflammatory mechanisms and C-fibres sensitization. Eur J Pain 2021; 25(5): 1107-18.
[http://dx.doi.org/10.1002/ejp.1732] [PMID: 33455058]
[96]
Qian Y, Qian C, Xie K, et al. P2X7 receptor signaling promotes inflammation in renal parenchymal cells suffering from ischemia-reperfusion injury. Cell Death Dis 2021; 12(1): 132.
[http://dx.doi.org/10.1038/s41419-020-03384-y] [PMID: 33504771]
[97]
Gui X, Wang H, Wu L, et al. Botulinum toxin type A promotes microglial M2 polarization and suppresses chronic constriction injury-induced neuropathic pain through the P2X7 receptor. Cell Biosci 2020; 10: 45.
[http://dx.doi.org/10.1186/s13578-020-00405-3] [PMID: 32211150]
[98]
Bhattacharya A, Ceusters M. Targeting neuroinflammation with brain penetrant P2X7 antagonists as novel therapeutics for neuropsychiatric disorders. Neuropsychopharmacology 2020; 45(1): 234-5.
[http://dx.doi.org/10.1038/s41386-019-0502-9] [PMID: 31477815]
[99]
Wang M, Deng X, Xie Y, Chen Y. Astaxanthin attenuates neuroinflammation in status epilepticus rats by regulating the ATPP2X7R signal. Drug Des Devel Ther 2020; 14: 1651-62.
[http://dx.doi.org/10.2147/DDDT.S249162] [PMID: 32431490]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy