Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

基于随机森林算法的基本特征以及血清和成像生物标志物在诊断轻度认知障碍中的应用

卷 19, 期 1, 2022

发表于: 28 January, 2022

页: [76 - 83] 页: 8

弟呕挨: 10.2174/1567205019666220128120927

open access plus

摘要

背景:轻度认知障碍(MCI)被认为是阿尔茨海默病(AD)的早期阶段。我们研究的目的是分析 MCI 患者诊断的基本特征以及血清和影像学生物标志物,作为一种更客观和准确的方法。 方法:蒙特利尔认知测试用于测试 119 名年龄≥65 岁的患者。这些血清生物标志物被检测为餐前血糖、甘油三酯、总胆固醇、Aβ1-40、Aβ1-42 和 P-tau。所有受试者均使用 1.5T MRI (GE Healthcare, WI, USA) 进行扫描以获得 DWI、DTI 和 ASL 图像。 DTI用于计算各向异性分数(FA),DWI用于计算表观扩散系数(ADC),ASL用于计算脑血流量(CBF)。然后将所有图像注册到蒙特利尔神经病学研究所(MNI)的空间。在 116 个脑区中,通过自动解剖标记提取了 FA、ADC 和 CBF 的中位数。基本特征包括性别、文化程度、既往有高血压、糖尿病、冠心病病史。数据被随机分为训练集和测试集。将递归随机森林算法应用于MCI患者的诊断,采用递归特征消除(RFE)方法筛选显着的基本特征和血清及影像学标志物。分别计算了总体准确性、敏感性和特异性,以及测试集的 ROC 曲线和曲线下面积 (AUC)。 结果:当MCI诊断模型的变量为影像生物标志物时,随机森林的训练准确率为100%,检验正确率为86.23%,敏感性为78.26%,特异性为100%。结合基本特征、血清和影像学标志物作为MCI诊断模型的变量,随机森林的训练准确率为100%;检验准确率为97.23%,敏感性为94.44%,特异性为100%。 RFE分析显示,年龄、Aβ1-40和小脑_4_6分别是最重要的基本特征、血清生物标志物、影像生物标志物。 结论:影像生物标志物可有效诊断MCI。 MCI的基本性状生物标志物或血清生物标志物的诊断能力有限,但它们与影像生物标志物的结合可以提高诊断能力,如我们模型中94.44%的敏感性和100%的特异性所示。作为一种机器学习方法,随机森林在筛选重要影响因素的同时,可以帮助有效诊断 MCI。

关键词: 机器学习、算法、认知功能障碍、诊断工具、轻度认知障碍、筛查

[1]
Farina FR, Pragulbickaitė G, Bennett M, et al. Contralateral Delay Activity is not a robust marker of cognitive function in older adults at risk of Mild Cognitive Impairment. Eur J Neurosci 2020; 51(12): 2367-75.
[http://dx.doi.org/10.1111/ejn.14652] [PMID: 31856354]
[2]
Galasko D, Xiao M, Xu D, et al. Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer’s disease. Alzheimers Dement (N Y) 2019; 5(1): 871-82.
[http://dx.doi.org/10.1016/j.trci.2019.11.002] [PMID: 31853477]
[3]
Hao X, Bao Y, Guo Y, et al. Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease. Med Image Anal 2020; 60: 101625.
[http://dx.doi.org/10.1016/j.media.2019.101625] [PMID: 31841947]
[4]
Knezevic D, Mizrahi R. Molecular imaging of neuroinflammation in Alzheimer's disease and mild cognitive impairment. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80(Pt B): 123-31.
[http://dx.doi.org/10.1016/j.pnpbp.2017.05.007] [PMID: 28533150]
[5]
Shen T, Li Y, Wu P, Zuo C, Yan Z. Decision supporting model for one-year conversion probability from MCI to AD using CNN and SVM. Annu Int Conf IEEE Eng Med Biol Soc 2018; 2018: 738-41.
[http://dx.doi.org/10.1109/EMBC.2018.8512398] [PMID: 30440502]
[6]
Wang T, Xiao S, Chen K, et al. Prevalence, incidence, risk and protective factors of amnestic mild cognitive impairment in the elderly in Shanghai. Curr Alzheimer Res 2017; 14(4): 460-6.
[http://dx.doi.org/10.2174/1567205013666161122094208] [PMID: 27875948]
[7]
Hernandez JV. Prevalence of mild cognitive impairment and dementia in a population of adults over 60 years old in el salvador. J Alzheimer’s Assoc 2017; 13(7): 842.
[http://dx.doi.org/10.1016/j.jalz.2017.06.1183]
[8]
Wong MYZ, Tan CS, Venketasubramanian N, et al. Prevalence and risk factors for cognitive impairment and dementia in Indians: A multiethnic perspective from a singaporean study. J Alzheimers Dis 2019; 71(1): 341-51.
[http://dx.doi.org/10.3233/JAD-190610] [PMID: 31381520]
[9]
Miyake Y, Tanaka K, Senba H, et al. Hearing impairment and prevalence of mild cognitive impairment in Japan: Baseline data from the aidai cohort study in Yawatahama and Uchiko. Ear Hear 2020; 41(2): 254-8.
[http://dx.doi.org/10.1097/AUD.0000000000000773] [PMID: 31356389]
[10]
Sanford AM. Mild cognitive impairment. Clin Geriatr Med 2017; 33(3): 325-37.
[http://dx.doi.org/10.1016/j.cger.2017.02.005] [PMID: 28689566]
[11]
Raj V, Opie M, Arnold AC. Cognitive and psychological issues in postural tachycardia syndrome. Auton Neurosci 2018; 215: 46-55.
[http://dx.doi.org/10.1016/j.autneu.2018.03.004] [PMID: 29628432]
[12]
Crawford TJ, Taylor S, Mardanbegi D, et al. The effects of previous error and success in Alzheimer’s disease and mild cognitive impairment. Sci Rep 2019; 9(1): 20204.
[http://dx.doi.org/10.1038/s41598-019-56625-2] [PMID: 31882919]
[13]
Perrotte M, Haddad M, Le Page A, Frost EH, Fulöp T, Ramassamy C. Profile of pathogenic proteins in total circulating extracellular vesicles in mild cognitive impairment and during the progression of Alzheimer’s disease. Neurobiol Aging 2020; 86: 102-11.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.10.010] [PMID: 31883770]
[14]
Soldan A, Pettigrew C, Zhu Y, et al. White matter hyperintensities and CSF Alzheimer disease biomarkers in preclinical Alzheimer disease. Neurology 2020; 94(9): e950-60.
[http://dx.doi.org/10.1212/WNL.0000000000008864] [PMID: 31888969]
[15]
Chiti A, Cecchi P, Pesaresi I, et al. Functional magnetic resonance imaging with encoding task in patients with mild cognitive impairment and different severity of leukoaraiosis. Psychiatry Res Neuroimaging 2018; 282: 126-31.
[http://dx.doi.org/10.1016/j.pscychresns.2018.06.012] [PMID: 30539733]
[16]
Marmarelis VZ, Shin DC, Tarumi T, Zhang R. Comparing model-based cerebrovascular physiomarkers with DTI biomarkers in MCI patients. Brain Behav 2019; 9(8): e01356.
[http://dx.doi.org/10.1002/brb3.1356] [PMID: 31286695]
[17]
Gyebnár G, Szabó Á, Sirály E, et al. What can DTI tell about early cognitive impairment? - Differentiation between MCI subtypes and healthy controls by diffusion tensor imaging. Psychiatry Res Neuroimaging 2018; 272: 46-57.
[http://dx.doi.org/10.1016/j.pscychresns.2017.10.007] [PMID: 29126669]
[18]
Lo Buono V, Palmeri R, Corallo F, et al. Diffusion tensor imaging of white matter degeneration in early stage of Alzheimer’s disease: A review. Int J Neurosci 2020; 130(3): 243-50.
[http://dx.doi.org/10.1080/00207454.2019.1667798] [PMID: 31549530]
[19]
Tu MC, Lo CP, Huang CF, Huang WH, Deng JF, Hsu YH. Visual attention performances and related cerebral microstructural integrity among subjects with subjective cognitive decline and mild cognitive impairment. Front Aging Neurosci 2018; 10: 268.
[http://dx.doi.org/10.3389/fnagi.2018.00268] [PMID: 30245626]
[20]
Ray KM, Wang H, Chu Y, et al. Mild cognitive impairment: Apparent diffusion coefficient in regional gray matter and white matter structures. Radiology 2006; 241(1): 197-205.
[http://dx.doi.org/10.1148/radiol.2411051051] [PMID: 16990677]
[21]
Nir TM, Jahanshad N, Toga AW, et al. Connectivity network measures predict volumetric atrophy in mild cognitive impairment. Neurobiol Aging 2015; 36(1): S113-20.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.04.038] [PMID: 25444606]
[22]
Kim CM, Alvarado RL, Stephens K, et al. Associations between cerebral blood flow and structural and functional brain imaging measures in individuals with neuropsychologically defined mild cognitive impairment. Neurobiol Aging 2020; 86: 64-74.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.10.023] [PMID: 31813626]
[23]
Daianu M, Jahanshad N, Nir TM, et al. Rich club analysis in the Alzheimer’s disease connectome reveals a relatively undisturbed structural core network. Hum Brain Mapp 2015; 36(8): 3087-103.
[http://dx.doi.org/10.1002/hbm.22830] [PMID: 26037224]
[24]
Liu Y, Zhong X, Shen J, et al. Elevated serum TC and LDL-C levels in Alzheimer’s disease and mild cognitive impairment: A meta-analysis study. Brain Res 2020; 1727: 146554.
[http://dx.doi.org/10.1016/j.brainres.2019.146554] [PMID: 31765631]
[25]
Bahrami A, Barreto GE, Lombardi G, Pirro M, Sahebkar A. Emerging roles for high-density lipoproteins in neurodegenerative disorders. Biofactors 2019; 45(5): 725-39.
[http://dx.doi.org/10.1002/biof.1541] [PMID: 31301192]
[26]
Jiang Y, Zhu Z, Shi J, et al. Metabolomics in the development and progression of dementia: A systematic review. Front Neurosci 2019; 13: 343.
[http://dx.doi.org/10.3389/fnins.2019.00343] [PMID: 31031585]
[27]
Koch M, DeKosky ST, Goodman M, et al. High-density lipoprotein and its apolipoprotein-defined subspecies and risk of dementia. J Lipid Res 2020; 61(3): 445-54.
[http://dx.doi.org/10.1194/jlr.P119000473] [PMID: 31892526]
[28]
Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer’s disease in the Middle East and its shared pathological mediators. Saudi J Biol Sci 2020; 27(2): 736-50.
[http://dx.doi.org/10.1016/j.sjbs.2019.12.028] [PMID: 32210695]
[29]
Carbonell F, Zijdenbos AP, Bedell BJ. Spatially distributed amyloid-β reduces glucose metabolism in mild cognitive impairment. J Alzheimers Dis 2020; 73(2): 543-57.
[http://dx.doi.org/10.3233/JAD-190560] [PMID: 31796668]
[30]
Nebel RA, Aggarwal NT, Barnes LL, et al. Understanding the impact of sex and gender in Alzheimer’s disease: A call to action. Alzheimers Dement 2018; 14(9): 1171-83.
[http://dx.doi.org/10.1016/j.jalz.2018.04.008] [PMID: 29907423]
[31]
Ibrahim A, Singh DKA, Shahar S. ‘Timed Up and Go’ test: Age, gender and cognitive impairment stratified normative values of older adults. PLoS One 2017; 12(10): e0185641.
[http://dx.doi.org/10.1371/journal.pone.0185641] [PMID: 28972994]
[32]
Ramanan VK, Castillo AM, Knopman DS, et al. Association of apolipoprotein E ɛ4, educational level, and sex with Tau deposition and tau-mediated metabolic dysfunction in older adults. JAMA Netw Open 2019; 2(10): e1913909.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.13909] [PMID: 31642932]
[33]
Liu A, Sun Z, McDade EM, Hughes TF, Ganguli M, Chang CH. Blood pressure and memory: Novel approaches to modeling nonlinear effects in longitudinal studies. Alzheimer Dis Assoc Disord 2019; 33(4): 291-8.
[http://dx.doi.org/10.1097/WAD.0000000000000346] [PMID: 31567145]
[34]
Carson N, Leach L, Murphy KJ. A re-examination of Montreal Cognitive Assessment (MoCA) cutoff scores. Int J Geriatr Psychiatry 2018; 33(2): 379-88.
[http://dx.doi.org/10.1002/gps.4756] [PMID: 28731508]
[35]
Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 2008; 12(1): 26-41.
[http://dx.doi.org/10.1016/j.media.2007.06.004] [PMID: 17659998]
[36]
Rolls ET, Joliot M, Tzourio-Mazoyer N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 2015; 122: 1-5.
[http://dx.doi.org/10.1016/j.neuroimage.2015.07.075] [PMID: 26241684]
[37]
Deng W, Zhang K, Busov V, Wei H. Recursive random forest algorithm for constructing multilayered hierarchical gene regulatory networks that govern biological pathways. PLoS One 2017; 12(2): e0171532.
[http://dx.doi.org/10.1371/journal.pone.0171532] [PMID: 28158291]
[38]
Guo L, Wang Z, Du Y, et al. Random-forest algorithm based biomarkers in predicting prognosis in the patients with hepatocellular carcinoma. Cancer Cell Int 2020; 20(1): 251.
[http://dx.doi.org/10.1186/s12935-020-01274-z] [PMID: 32565735]
[39]
Fu J, Liu Q, Du Y, et al. Age- and sex-specific prevalence and modifiable risk factors of mild cognitive impairment among older adults in China: A population-based observational study. Front Aging Neurosci 2020; 12: 578742.
[http://dx.doi.org/10.3389/fnagi.2020.578742] [PMID: 33192471]
[40]
Qin H, Zhu B, Hu C, Zhao X. Later-onset hypertension is associated with higher risk of dementia in mild cognitive impairment. Front Neurol 2020; 11: 557977.
[http://dx.doi.org/10.3389/fneur.2020.557977] [PMID: 33324316]
[41]
Maccora J, Peters R, Anstey KJ. What does (low) education mean in terms of dementia risk? A systematic review and meta-analysis highlighting inconsistency in measuring and operationalising education. SSM Popul Health 2020; 12: 100654.
[http://dx.doi.org/10.1016/j.ssmph.2020.100654] [PMID: 33313373]
[42]
Xia C, Vonder M, Sidorenkov G, et al. The relationship of coronary artery calcium and clinical coronary artery disease with cognitive function: A systematic review and meta-analysis. J Atheroscler Thromb 2020; 27(9): 934-58.
[http://dx.doi.org/10.5551/jat.52928] [PMID: 32062643]
[43]
Nam E, Lee YB, Moon C, Chang KA. Serum tau proteins as potential biomarkers for the assessment of Alzheimer’s disease progression. Int J Mol Sci 2020; 21(14): E5007.
[http://dx.doi.org/10.3390/ijms21145007] [PMID: 32679907]
[44]
Abe K, Shang J, Shi X, et al. A new serum biomarker set to detect mild cognitive impairment and Alzheimer’s disease by peptidome technology. J Alzheimers Dis 2020; 73(1): 217-27.
[http://dx.doi.org/10.3233/JAD-191016] [PMID: 31771070]
[45]
McFarlane O, Kozakiewicz M, Kędziora-Kornatowska K, et al. Blood lipids and cognitive performance of aging polish adults: A case-control study based on the PolSenior project. Front Aging Neurosci 2020; 12: 590546.
[http://dx.doi.org/10.3389/fnagi.2020.590546] [PMID: 33328967]
[46]
Li Y, Liang Y, Tan X, et al. Altered functional hubs and connectivity in type 2 diabetes mellitus without mild cognitive impairment. Front Neurol 2020; 11: 1016.
[http://dx.doi.org/10.3389/fneur.2020.01016] [PMID: 33071928]
[47]
Yan S, Zheng C, Cui B, et al. Multiparametric imaging hippocampal neurodegeneration and functional connectivity with simultaneous PET/MRI in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2020; 47(10): 2440-52.
[http://dx.doi.org/10.1007/s00259-020-04752-8] [PMID: 32157432]
[48]
An N, Fu Y, Shi J, et al. Synergistic effects of APOE and CLU may increase the risk of Alzheimer’s disease: Acceleration of atrophy in the volumes and shapes of the Hippocampus and Amygdala. J Alzheimers Dis 2021; 80(3): 1311-27.
[http://dx.doi.org/10.3233/JAD-201162] [PMID: 33682707]

© 2025 Bentham Science Publishers | Privacy Policy