Generic placeholder image

Current Functional Foods

Editor-in-Chief

ISSN (Print): 2666-8629
ISSN (Online): 2666-8637

Review Article

Miracle Fruit from a Medical Perspective: Goji Berry (Lycium spp.)

Author(s): İlbilge Oğuz, Halil İbrahim Oğuz and Nesibe Ebru Kafkas*

Volume 1, Issue 1, 2023

Published on: 14 March, 2022

Article ID: e270122200604 Pages: 6

DOI: 10.2174/2666862901666220127140658

Price: $65

Abstract

The goji berry (Lycium spp.) belongs to the Solanaceae family. The genus Lycium com- prises 87 recognized species and is distributed in arid and semi-arid regions in temperate to sub- tropical zones around the world. China is currently the greatest supplier of goji berry, or wolfberry, products in the world and commercial amounts of wolfberry are grown in this country. Goji berry is densely cultivated around the southwestern part of China. Recently, goji berry became a popular fruit in Turkey due to containing health beneficial compounds, especially phenolic compounds (phenolic acids and flavonoids), carotenoids, tocopherol, and ascorbic acid and having antioxidant properties. Lycium fruits were used as remedies since ancient times in Asian countries, especially in China, for their emmenagogue, diuretic, antipyretic, tonic, aphrodisiac, hypnotic, and hepatopro- tective effects. After the discovery of the medicinal and aromatic characteristics of goji berry products, interest in goji berry has increased around the world. Goji berry is regarded as a super- food because of its nutrient profile. Especially in recent years, the goji berry has been cultivated and used widely as a medical aromatic plant in many European countries, following its use in Southeast Asian countries. In this chapter, adequate research is presented about goji berry in terms of botanical description, homeland, benefits to human health, and traditional uses.

Keywords: Goji berry, superfood, medicinal plants, aromatic, human health. wolfberry.

[1]
Hänsel R, Keller K, Rimpler H, Schneider G. Handbuch der pharmazeutischen Praxis. Berlin, Heidelberg, New York: Springer Verlag 1993; p. 5.
[2]
Qian J, Liu D, Huang A. The efficiency of flavonoids in polar extracts of Lycium chinense Mill. fruits as free radical scavenger. Food Chem 2004; 87(2): 283-8.
[http://dx.doi.org/10.1016/j.foodchem.2003.11.008]
[3]
Masri IN, Yusoff WAW, Muhamad K. The potential of goji berry tree to control soil erosion in cameron highlands, Malaysia. In: Global Symposium (15–17 May 2019) on Soil Erosion. pp. 316.
[4]
Bondia-Pons I, Savolainen O, Törrönen R, Martinez JA, Poutanen K, Hanhineva K. Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non-targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res Int 2014; 63: 132-8.
[http://dx.doi.org/10.1016/j.foodres.2014.01.067]
[5]
Liu Z, Dang J, Wang Q, et al. Optimization of polysaccharides from Lycium ruthenicum fruit using RSM and its anti-oxidant activity. Int J Biol Macromol 2013; 61: 127-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.06.042] [PMID: 23831533]
[6]
Wu T, Lv H, Wang F, Wang Y. Characterization of polyphenols from Lycium ruthenicum fruit by UPLC-Q-TOF/MSE and their antioxidant activity in Caco-2 cells. J Agric Food Chem 2016; 64(11): 2280-8.
[http://dx.doi.org/10.1021/acs.jafc.6b00035] [PMID: 26963650]
[7]
Zhang Y, Chen FF, Sang J. Green approach for sample preparation and determination of anthocyanins from Lycium ruthenicum Murr. Using a β-cyclodextrin-based extraction method coupled with UPLC-DAD analysis. Food Anal Methods 2018; 11(8): 2141-8.
[http://dx.doi.org/10.1007/s12161-018-1191-4]
[8]
Islam T, Yu X, Badwal TS, Xu B. Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum). Chem Cent J 2017; 11(1): 59.
[http://dx.doi.org/10.1186/s13065-017-0287-z] [PMID: 29086843]
[9]
He Q, Du B, Xu B. Extraction optimization of phenolics and antioxidants from black goji berry by accelerated solvent extractor using response surface methodology. Appl Sci (Basel) 2018; 8(10): 1905.
[http://dx.doi.org/10.3390/app8101905]
[10]
Zhang Q, Chen W, Zhao J, Xi W. Functional constituents and antioxidant activities of eight Chinese native goji genotypes. Food Chem 2016; 200: 230-6.
[http://dx.doi.org/10.1016/j.foodchem.2016.01.046] [PMID: 26830583]
[11]
Liu B, Xu Q, Sun Y. Black goji berry (Lycium ruthenicum) tea has higher phytochemical contents and in vitro antioxidant properties than red goji berry (Lycium barbarum) tea. Food Quality and Safety 2020; 4(4): 193-201.
[http://dx.doi.org/10.1093/fqsafe/fyaa022]
[12]
Zhang C, Wu W, Zhou L, Cheng H, Ye X, He Y. Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging. Food Chem 2020; 319: 126536.
[http://dx.doi.org/10.1016/j.foodchem.2020.126536] [PMID: 32146292]
[13]
Oğuz İ, Değirmenci İ, Kafkas E. Determination of the total phenolic and anthocyanin contents, as well as the total antioxidant capacity, of black wolfberry (Lycium ruthenicum) fruits. J Process Energy Agric 2019; 23(4): 158-61.
[http://dx.doi.org/10.5937/JPEA1904158O]
[14]
Amagase H, Farnsworth NR. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Res Int 2011; 44(7): 1702-17.
[http://dx.doi.org/10.1016/j.foodres.2011.03.027]
[15]
Skenderidis P, Kerasioti E, Karkanta E, et al. Assessment of the antioxidant and antimutagenic activity of extracts from goji berry of Greek cultivation. Toxicol Rep 2018; 5: 251-7.
[http://dx.doi.org/10.1016/j.toxrep.2018.02.001] [PMID: 29854596]
[16]
Benchennouf A, Grigorakis S, Loupassaki S, Kokkalou E. Phytochemical analysis and antioxidant activity of Lycium barbarum (Goji) cultivated in Greece. Pharm Biol 2017; 55(1): 596-602.
[http://dx.doi.org/10.1080/13880209.2016.1265987] [PMID: 27937034]
[17]
Stuart GA, Smith FP. Chinese materia medica. Shanghai: American Pres-byterian Mission Press: 250 1911.
[http://dx.doi.org/10.5962/bhl.title.25114]
[18]
Liu CY, Tseng A. Chinese herbal medicine modern applications of traditional formulas. Boca Raton, FL: CRC Press 2005.
[19]
Wang H, Li J, Tao W, et al. Lycium ruthenicum studies: Molecular biology, Phytochemistry and pharmacology. Food Chem 2018; 240: 759-66.
[http://dx.doi.org/10.1016/j.foodchem.2017.08.026] [PMID: 28946340]
[20]
Song MK, Salam NK, Roufogalis BD, Huang TH. Lycium barbarum (Goji Berry) extracts and its taurine component inhibit PPARγ-dependent gene transcription in human retinal pigment epithelial cells: Possible implications for diabetic retinopathy treatment. Biochem Pharmacol 2011; 82(9): 1209-18.
[http://dx.doi.org/10.1016/j.bcp.2011.07.089] [PMID: 21820420]
[21]
Shahrajabian MH, Sun W, Cheng Q. A short review of goji berry, ginger, ginseng and astragalus in traditional Chinese and Asian medicine. Black Sea J Health Sci 2020; 3(2): 36-45.
[22]
Reid DP. Chinesische Heilkunde. Stuttgart: Thieme Hippokrates Enke 1995; pp. 155-224.
[23]
Zhufan X. Practical traditional Chinese medicine. Beijing: Foreign Language Press 2000.
[24]
Reid DP. Handbuch der chinesischen Heilkräuter. München: Droemer-sche Verlagsanstalt Th Knaur Nachf 1998.
[25]
Chen JK, Chen TT. Chinese medical herbology and pharmacology. City of Industry, CA: Art of Medicine Press, Inc 2004.
[26]
Bora P, Ragaee S, Abdel-Aal ESM. Effect of incorporation of goji berry by-product on biochemical, physical and sensory properties of selected bakery products. Lebensm Wiss Technol 2019; 112: 108225.
[http://dx.doi.org/10.1016/j.lwt.2019.05.123]
[27]
Ye X, Jiang Y, Eds. Phytochemicals in Goji Berries: Applications in Functional Foods. CRC Press 2020.
[http://dx.doi.org/10.1201/9780429021749]
[28]
Huang KC. The pharmacognosy of Chinese herbs. Boca Raton: CRC Press 1999; pp. 333-4.
[29]
Zhu YP. Chinese Materia Medica chemistry, pharmacology and applications. Amsterdam: Harwood Academic Publishers 1998.
[30]
Yeh PT, Chen YJ, Lin NC, Yeh AI, Yang CH. The ocular protective effects of nano/submicron particles prepared from Lycium barbarum fruits against oxidative stress in an animal model. J Ocul Pharmacol Ther 2020; 36(3): 179-89.
[http://dx.doi.org/10.1089/jop.2019.0048] [PMID: 31951153]
[31]
Yu MS, Lai CS, Ho YS, et al. Characterization of the effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity. Int J Mol Med 2007; 20(2): 261-8.
[PMID: 17611646]
[32]
Amagase H, Sun B, Borek C. Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults. Nutr Res 2009; 29(1): 19-25.
[http://dx.doi.org/10.1016/j.nutres.2008.11.005] [PMID: 19185773]
[33]
Potterat O. Goji (Lycium barbarum and L. Chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med 2010; 76(1): 7-19.
[http://dx.doi.org/10.1055/s-0029-1186218] [PMID: 19844860]
[34]
Reeve VE, Allanson M, Arun SJ, Domanski D, Painter N. Mice drinking goji berry juice (Lycium barbarum) are protected from UV radiation-induced skin damage via antioxidant pathways. Photochem Photobiol Sci 2010; 9(4): 601-7.
[http://dx.doi.org/10.1039/b9pp00177h] [PMID: 20354657]
[35]
Takebayashi J, Ishii R, Chen J, Matsumoto T, Ishimi Y, Tai A. Reassessment of antioxidant activity of arbutin: Multifaceted evaluation using five antioxidant assay systems. Free Radic Res 2010; 44(4): 473-8.
[http://dx.doi.org/10.3109/10715761003610760] [PMID: 20166881]
[36]
Zhang Z, Liu X, Wu T, et al. Selective suppression of cervical cancer Hela cells by 2-O-β-D-glucopyranosyl-L-ascorbic acid isolated from the fruit of Lycium barbarum L. Cell Biol Toxicol 2011; 27(2): 107-21.
[http://dx.doi.org/10.1007/s10565-010-9174-2] [PMID: 20717715]
[37]
Tang WM, Chan E, Kwok CY, et al. A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit. Inflammopharmacology 2012; 20(6): 307-14.
[http://dx.doi.org/10.1007/s10787-011-0107-3] [PMID: 22189914]
[38]
Zhang X. [Experimental research on the role of Lycium barbarum polysaccharide in anti-peroxidation]. Zhongguo Zhongyao Zazhi 1993; 18(2): 110-112, 128.
[PMID: 8323695]
[39]
Oguz HI. History, botanical characteristic features, beneficial of human health and general using ways of wolfberry. Gece Publishing First Edition. 2019; pp. 77-92.
[40]
Peng Y, Yan Y, Wan P, et al. Gut microbiota modulation and antiinflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radic Biol Med 2019; 136: 96-108.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.04.005] [PMID: 30959170]
[41]
Tang J, Yan Y, Ran L, et al. Isolation, antioxidant property and protective effect on PC12 cell of the main anthocyanin in fruit of Lycium ruthenicum Murray. J Funct Foods 2017; 30: 97-107.
[http://dx.doi.org/10.1016/j.jff.2017.01.015]
[42]
Yan Y, Peng Y, Tang J, et al. Effects of anthocyanins from the fruit of Lycium ruthenicum Murray on intestinal microbiota. J Funct Foods 2018; 48: 533-41.
[http://dx.doi.org/10.1016/j.jff.2018.07.053]
[43]
Wedick NM, Pan A, Cassidy A, et al. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr 2012; 95(4): 925-33.
[http://dx.doi.org/10.3945/ajcn.111.028894] [PMID: 22357723]
[44]
Mink PJ, Scrafford CG, Barraj LM, et al. Flavonoid intake and cardiovascular disease mortality: A prospective study in postmenopausal women. Am J Clin Nutr 2007; 85(3): 895-909.
[http://dx.doi.org/10.1093/ajcn/85.3.895] [PMID: 17344514]
[45]
McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 2012; 95(2): 454-64.
[http://dx.doi.org/10.3945/ajcn.111.016634] [PMID: 22218162]
[46]
Zhu Y, Ling W, Guo H, et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial. Nutr Metab Cardiovasc Dis 2013; 23(9): 843-9.
[http://dx.doi.org/10.1016/j.numecd.2012.06.005] [PMID: 22906565]
[47]
Caballero S, Pamer EG. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu Rev Immunol 2015; 33(1): 227-56.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120238] [PMID: 25581310]
[48]
Jones RM. The influence of the gut microbiota on host physiology: In pursuit of mechanisms. Yale J Biol Med 2016; 89(3): 285-97.
[PMID: 27698613]
[49]
Peng Y, Yan Y, Wan P, et al. Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo. Food Res Int 2020; 130: 108952.
[http://dx.doi.org/10.1016/j.foodres.2019.108952] [PMID: 32156393]
[50]
Su CX, Duan XG, Liang LJ, et al. Lycium barbarum polysaccharides as an adjuvant for recombinant vaccine through enhancement of humoral immunity by activating Tfh cells. Vet Immunol Immunopathol 2014; 158(1-2): 98-104.
[http://dx.doi.org/10.1016/j.vetimm.2013.05.006] [PMID: 23759470]
[51]
Chen Z, Kwong Huat Tan B, Chan SH. Activation of T lymphocytes by polysaccharide-protein complex from Lycium barbarum L. Int Immunopharmacol 2008; 8(12): 1663-71.
[http://dx.doi.org/10.1016/j.intimp.2008.07.019] [PMID: 18755300]
[52]
Xu M, Zhang H, Wang Y. [The protective effects of Lycium barbarum polysaccharide on alloxan-induced isolated islet cells damage in rats]. Zhong Yao Cai 2002; 25(9): 649-51.
[http://dx.doi.org/10.1002/ptr.3633] [PMID: 12451977]
[53]
Zhang L, Gu J, Chen Y, Zhang L. A study on four antioxidation effects of lycium barbarum polysaccharides in vitro. Afr J Tradit Complement Altern Med 2013; 10(6): 494-8.
[http://dx.doi.org/10.4314/ajtcam.v10i6.18] [PMID: 24311876]
[54]
Jing L, Yin L. Antihyperglycemic activity of polysaccharide from Lycium barbarum. J Med Plants Res 2010; 4(1): 23-6.
[55]
Li P, Xiao B, Chen H, Guo J. Lycium barbarum and tumors in the gastrointestinal tract. In: Chang RC, So KF, Eds. Lycium barbarum and Human. 2015.
[http://dx.doi.org/10.1007/978-94-017-9658-3_6]
[56]
Torrissen OJ, Hardy RW, Shearer KD, Scott TM, Stone FE. Effects of dietary canthaxanthin level and lipid level on apparent digestibility coefficients for canthaxanthin in rainbow trout (Oncorhynchus mykiss). Aquaculture 1990; 88(3-4): 351-62.
[http://dx.doi.org/10.1016/0044-8486(90)90160-O]
[57]
Kan X, Yan Y, Ran L, et al. Ultrasonic-assisted extraction and high-speed counter-current chromatography purification of zeaxanthin dipalmitate from the fruits of Lycium barbarum L. Food Chem 2020; 310: 125854.
[http://dx.doi.org/10.1016/j.foodchem.2019.125854] [PMID: 31784067]
[58]
Oguz I, Kafkas EN. Importance and growing of wolf berry ın the world and turkey. I. International Mersin Symposium. 01-03 December 2018; 2018: pp. 70-7.
[59]
Gong G, Fan J, Sun Y, et al. Isolation, structural characterization, and antioxidativity of polysaccharide LBLP5-A from Lycium barbarum leaves. Process Biochem 2016; 51(2): 314-24.
[http://dx.doi.org/10.1016/j.procbio.2015.11.013]
[60]
Mocan A, Zengin G, Simirgiotis M, et al. Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: Phytochemical characterization, biological profile, and computational studies. J Enzyme Inhib Med Chem 2017; 32(1): 153-68.
[http://dx.doi.org/10.1080/14756366.2016.1243535] [PMID: 28095717]
[61]
Yao X, Peng Y, Xu LJ, Li L, Wu QL, Xiao PG. Phytochemical and biological studies of Lycium medicinal plants. Chem Biodivers 2011; 8(6): 976-1010.
[http://dx.doi.org/10.1002/cbdv.201000018] [PMID: 21674776]
[62]
Mocan A, Vlase L, Vodnar DC, et al. Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. leaves. Molecules 2014; 19(7): 10056-73.
[http://dx.doi.org/10.3390/molecules190710056] [PMID: 25014533]
[63]
Wei ZQ, Yang J, Tan YP, Wang JJ. Study on hypoglycemic effect of Lycium barbarum leaves in Ningxia at different picking periods. Lishizhen Med Materia Medica Res 2012; 23: 2786-7.
[64]
Wang L, Li ZF, Yang J. Effect of Lycium barbarum leaf tea on diabetic mice Lishizhen Med. Materia Medica Res 2012; 23: 2753-4.
[65]
Zhao XQ, Guo S, Lu YY, et al. Lycium barbarum L. leaves ameliorate type 2 diabetes in rats by modulating metabolic profiles and gut microbiota composition. Biomed Pharmacother 2020; 121: 109559.
[http://dx.doi.org/10.1016/j.biopha.2019.109559] [PMID: 31734581]
[66]
Bensky D, Clavey S, Stöger E. Chinese herbal medicine. 3rd ed. Materia Medica. Seattle: Eastland Press, Inc. 2004.
[67]
Oyagbemi AA, Azeez OI, Saba AB. Interactions between reactive oxygen species and cancer: The roles of natural dietary antioxidants and their molecular mechanisms of action. Asian Pac J Cancer Prev 2009; 10(4): 535-44.
[PMID: 19827865]
[68]
Oğuz İ, Oğuz Hİ, Kafkas NE. Evaluation of fruit characteristics of various organically-grown goji berry (Lycium barbarum L., Lycium chinense Miller) species during ripening stages. J Food Compos Anal 2021; 101: 103846.
[http://dx.doi.org/10.1016/j.jfca.2021.103846]
[69]
Balsano C, Alisi A. Antioxidant effects of natural bioactive compounds. Curr Pharm Des 2009; 15(26): 3063-73.
[http://dx.doi.org/10.2174/138161209789058084] [PMID: 19754380]
[70]
Sasazuki S, Hayashi T, Nakachi K, et al. Protective effect of vitamin C on oxidative stress: A randomized controlled trial. Int J Vitam Nutr Res 2008; 78(3): 121-8.
[http://dx.doi.org/10.1024/0300-9831.78.3.121] [PMID: 19003734]
[71]
Ohno S, Ohno Y, Suzuki N, Soma G, Inoue M. High-dose vitamin C (ascorbic acid) therapy in the treatment of patients with advanced cancer. Anticancer Res 2009; 29(3): 809-15.
[PMID: 19414313]
[72]
Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints 2020.
[http://dx.doi.org/10.20944/preprints202003.0226.v1]
[73]
Yang F, Zhang Y, Tariq A, et al. Food as medicine: A possible preventive measure against coronavirus disease (COVID-19). Phytother Res 2020; 34(12): 3124-36.
[http://dx.doi.org/10.1002/ptr.6770] [PMID: 32468635]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy