Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Graphitic Carbon Nitride-based Photocatalysts for Environmental Remediation of Organic Pollutants

Author(s): Mayuri S. Umekar, Ganesh S. Bhusari*, Toshali Bhoyar, Vidyasagar Devthade, Bharat P. Kapgate, Ajay P. Potbhare, Ratiram G. Chaudhary and Ahmed A. Abdala*

Volume 19, Issue 2, 2023

Published on: 28 March, 2022

Page: [148 - 169] Pages: 22

DOI: 10.2174/1573413718666220127123935

Price: $65

Abstract

Graphitic carbon nitride (g-C3N4) is an extraordinary semiconductor photocatalyst (PC), which transforms solar energy into chemical energy for the photodisintegration of several noxious organic contaminants into non-toxic derivatives. Polymeric g-C3N4 is a metal-free PC with high chemical stability, eco-friendly composition, and suitable energy band potential that absorb a significant portion of the solar spectrum. Despite its outstanding characteristics, g-C3N4 has some limitations, including low visible light absorption, low surface area, and rapid recoupling of charge carriers. These limitations over-shaded its proficient efficiency as a PC. The current g-C3N4 related research focuses on developing g-C3N4 nanocomposites (NCs) with high-surface-area, broad lightabsorbing, and reduced recombination via physicochemical modifications. This review highlights the latest developments in the synthesis and application of pristine g-C3N4 and its NCs with inorganic constituent and nanomaterials. A critical analysis of the strategies to enhance g-C3N4’s photocatalytic efficiency via excited charge separation and visible light absorption is also presented. Furthermore, the photocatalytic degradation of organic pollutants (OPs), including dyes, phenol, antibiotics, and pharmaceutical drugs, is summarized herewith.

Keywords: g-C3N4-based nanostructures, photocatalysis, charge separation, energy transformation, photodegradation, organic pollutant.

[1]
Ali, W.; Ullah, H.; Zada, A.; Alamgir, M.K.; Muhammad, W.; Ahmad, M.J.; Nadhman, A. Effect of calcination temperature on the photoactivities of ZnO/SnO2 nanocomposites for the degradation of methyl orange. Mater. Chem. Phys., 2018, 213, 259-266.
[http://dx.doi.org/10.1016/j.matchemphys.2018.04.015]
[2]
Qi, K.; Qi, H.; Yang, J.; Wang, G.C.; Selvaraj, R.; Zheng, W. Experimental and theoretical DFT+ D investigations regarding to various morphology of cuprous oxide nanoparticles: Growth mechanism of ionic liquid-assisted synthesis and photocatalytic activities. Chem. Eng. J., 2017, 324, 347-357.
[http://dx.doi.org/10.1016/j.cej.2017.04.113]
[3]
Miao, F.; Lu, N.; Zhang, P.; Zhang, Z.; Shao, G. Multidimension‐controllable synthesis of ant nest‐structural electrode materials with unique 3D hierarchical porous features toward electrochemical applications. Adv. Funct. Mater., 2019, 29(29), 1808994.
[http://dx.doi.org/10.1002/adfm.201808994]
[4]
Ali, N.; Zada, A.; Zahid, M.; Ismail, A.; Rafiq, M.; Riaz, A.; Khan, A. Enhanced photodegradation of methylene blue with alkaline and transition‐metal ferrite nanophotocatalysts under direct sun light irradiation. J. Chin. Chem. Soc. (Taipei), 2019, 66(4), 402-408.
[http://dx.doi.org/10.1002/jccs.201800213]
[5]
Chen, S.; Zhang, M.; Jiang, G.; Zhang, Z.; Zhou, X. NiMoO4 nanorods@ hydrous NiMoO4 nanosheets core-shell structured arrays for pseudocapacitor application. J. Alloys Compd., 2020, 814, 152253.
[http://dx.doi.org/10.1016/j.jallcom.2019.152253]
[6]
Balu, S.; Velmurugan, S.; Palanisamy, S.; Chen, S.W.; Velusamy, V.; Yang, T.C.; El-Shafey, E.S.I. Synthesis of α-Fe2O3 decorated g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media. J. Taiwan Inst. Chem. Eng., 2019, 99, 258-267.
[http://dx.doi.org/10.1016/j.jtice.2019.03.011]
[7]
Qi, K.; Liu, S.Y.; Qiu, M. Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects. Chin. J. Catal., 2018, 39(4), 867-875.
[http://dx.doi.org/10.1016/S1872-2067(17)62999-1]
[8]
Sivachidambaram, M.; Vijaya, J.J.; Kaviyarasu, K.; Kennedy, L.J.; Al-Lohedan, H.A.; Ramalingam, R.J. A novel synthesis protocol for Co3O4 nanocatalysts and their catalytic applications. RSC Advances, 2017, 7(62), 38861-38870.
[http://dx.doi.org/10.1039/C7RA06996K]
[9]
Magdalane, C.M.; Kaviyarasu, K.; Matinise, N.; Mayedwa, N.; Mongwaketsi, N.; Letsholathebe, D.; Mola, G.T. AbdullahAl-Dhabi, N.; Arasu, M.V.; Henini, M.; Kennedy, J. Evaluation on La2O3 garlanded ceria heterostructured binary metal oxide nanoplates for UV/visible light induced removal of organic dye from urban wastewater. S. Afr. J. Chem. Eng., 2018, 26, 49-60.
[http://dx.doi.org/10.1016/j.sajce.2018.09.003]
[10]
Qi, K.; Cheng, B.; Yu, J.; Ho, W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd., 2017, 727, 792-820.
[http://dx.doi.org/10.1016/j.jallcom.2017.08.142]
[11]
Jesudoss, S.K.; Judith Vijaya, J.; Iyyappa Rajan, P.; Kaviyarasu, K.; Sivachidambaram, M.; John Kennedy, L.; Al-Lohedan, H.A.; Jothiramalingam, R.; Munusamy, M.A. High performance multifunctional green Co3O4 spinel nanoparticles: Photodegradation of textile dye effluents, catalytic hydrogenation of nitro-aromatics and antibacterial potential. Photochem. Photobiol. Sci., 2017, 16(5), 766-778.
[http://dx.doi.org/10.1039/C7PP00006E ] [PMID: 28349142]
[12]
Gholami, P.; Khataee, A.; Soltani, R.D.C.; Bhatnagar, A. A review on carbon-based materials for heterogeneous sonocatalysis: Fundamentals, properties and applications. Ultrason. Sonochem., 2019, 58, 104681.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104681 ] [PMID: 31450341]
[13]
Qiu, M.; Wang, R.; Qi, X. Hollow polyhedral α-Fe2O3 prepared by self-assembly and its photocatalytic activities in degradation of RhB. J. Taiwan Inst. Chem. Eng., 2019, 102, 394-402.
[http://dx.doi.org/10.1016/j.jtice.2019.05.024]
[14]
Qi, K.; Xie, Y.; Wang, R.; Liu, S.Y.; Zhao, Z. Electroless plating Ni-P cocatalyst decorated g-C3N4 with enhanced photocatalytic water splitting for H2 generation. Appl. Surf. Sci., 2019, 466, 847-853.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.037]
[15]
Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale, 2015, 7(1), 15-37.
[http://dx.doi.org/10.1039/C4NR03008G ] [PMID: 25407808]
[16]
Liebig, J. Uber einige Stickstoff‐Verbindungen. Annalen der Pharmaci., 1834, 10(1), 1-47.
[http://dx.doi.org/10.1002/jlac.18340100102]
[17]
Franklin, E.C. The ammono carbonic acids. J. Am. Chem. Soc., 1922, 44(3), 486-509.
[http://dx.doi.org/10.1021/ja01424a007]
[18]
Pauling, L.; Sturdivant, J.H. The structure of cyameluric acid, hydromelonic acid and related substances. Proc. Natl. Acad. Sci. USA, 1937, 23(12), 615-620.
[http://dx.doi.org/10.1073/pnas.23.12.615 ] [PMID: 16577829]
[19]
Redemann, C.E.; Lucas, H.J. Some derivatives of cyameluric acid and probable structures of melam, melem and melon. J. Am. Chem. Soc., 1940, 62(4), 842-846.
[http://dx.doi.org/10.1021/ja01861a038]
[20]
Cohen, M.L. Calculation of bulk moduli of diamond and zinc-blende solids. Phys. Rev. B Condens. Matter, 1985, 32(12), 7988-7991.
[http://dx.doi.org/10.1103/PhysRevB.32.7988 ] [PMID: 9936971]
[21]
Chan, M.H.; Liu, R.S.; Hsiao, M. Graphitic carbon nitride-based nanocomposites and their biological applications: A review. Nanoscale, 2019, 11(32), 14993-15003.
[http://dx.doi.org/10.1039/C9NR04568F ] [PMID: 31380525]
[22]
Lotsch, B.V.; Schnick, W. New light on an old story: Formation of melam during thermal condensation of melamine. Chemistry, 2007, 13(17), 4956-4968.
[http://dx.doi.org/10.1002/chem.200601291 ] [PMID: 17415738]
[23]
Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. Angew. Chem. Int. Ed., 2006, 45(27), 4467-4471.
[http://dx.doi.org/10.1002/anie.200600412 ] [PMID: 16770823]
[24]
Horvath-Bordon, E.; Riedel, R.; McMillan, P.F.; Kroll, P.; Miehe, G.; van Aken, P.A.; Zerr, A.; Hoppe, P.; Shebanova, O.; McLaren, I.; Lauterbach, S.; Kroke, E.; Boehler, R. High-pressure synthesis of crystalline carbon nitride imide, C2N2(NH). Angew. Chem. Int. Ed., 2007, 46(9), 1476-1480.
[http://dx.doi.org/10.1002/anie.200603851 ] [PMID: 17221897]
[25]
Masih, D.; Ma, Y.; Rohani, S. Graphitic g-C3N4-based noble-metal-free photocatalyst systems: A review. Appl. Catal. B, 2017, 206, 556-588.
[http://dx.doi.org/10.1016/j.apcatb.2017.01.061]
[26]
Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J. Am. Chem. Soc., 2003, 125(34), 10288-10300.
[http://dx.doi.org/10.1021/ja0357689 ] [PMID: 12926953]
[27]
Mamba, G.; Mishra, A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B, 2016, (198), 347-377.
[http://dx.doi.org/10.1016/j.apcatb.2016.05.052]
[28]
Ni, Y.; Wang, R.; Zhang, W.; Shi, S.; Zhu, W.; Liu, M.; Yang, C.; Xie, X.; Wang, J. Graphitic carbon nitride (g-C3N4)-based nanostructured materials for photodynamic inactivation: Synthesis, efficacy and mechanism. Chem. Eng. J., 2021, (404), 126528.
[http://dx.doi.org/10.1016/j.cej.2020.126528]
[29]
Keshawy, M.; Farag, R.K.; Gaffer, A. Egyptian crude oil sorbent based on coated polyurethane foam waste. Egyptian Journal of Petroleum, 2020, 29(1), 67-73.
[http://dx.doi.org/10.1016/j.ejpe.2019.11.001]
[30]
Lin, H.P.; Chen, C.C.; Lee, W.W.; Lai, Y.Y.; Chen, J.Y.; Chen, Y.Q.; Fu, J.Y. Synthesis of a SrFeO3− x/g-C3N4 heterojunction with improved visible-light photocatalytic activities in chloramphenicol and crystal violet degradation. RSC Advances, 2016, 6(3), 2323-2336.
[http://dx.doi.org/10.1039/C5RA21339H]
[31]
Martin, D.J.; Reardon, P.J.T.; Moniz, S.J.; Tang, J. Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc., 2014, 136(36), 12568-12571.
[http://dx.doi.org/10.1021/ja506386e ] [PMID: 25136991]
[32]
Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. Engl., 2012, 51(1), 68-89.
[http://dx.doi.org/10.1002/anie.201101182 ] [PMID: 22109976]
[33]
Darkwah, W.K.; Ao, Y. Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications. Nanoscale Res. Lett., 2018, 13(1), 388.
[http://dx.doi.org/10.1186/s11671-018-2702-3 ] [PMID: 30498964]
[34]
Zhu, B.; Zhang, L.; Cheng, B.; Yu, J. First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl. Catal. B, 2018, 224, 983-999.
[http://dx.doi.org/10.1016/j.apcatb.2017.11.025]
[35]
Battula, V.R.; Kumar, S.; Chauhan, D.K.; Samanta, S.; Kailasam, K. A true oxygen-linked heptazine based polymer for efficient hydrogen evolution. Appl. Catal. B, 2019, 244, 313-319.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.027]
[36]
Zhang, C.; Li, Y.; Shuai, D.; Shen, Y.; Xiong, W.; Wang, L. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review. Chemosphere, 2019, 214, 462-479.
[http://dx.doi.org/10.1016/j.chemosphere.2018.09.137 ] [PMID: 30273880]
[37]
Prasad, C.; Tang, H.; Bahadur, I. Graphitic carbon nitride based ternary nanocomposites: From synthesis to their applications in photocatalysis: A recent review. J. Mol. Liq., 2019, 281, 634-654.
[http://dx.doi.org/10.1016/j.molliq.2019.02.068]
[38]
Cao, S.; Yu, J. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett., 2014, 5(12), 2101-2107.
[http://dx.doi.org/10.1021/jz500546b ] [PMID: 26270499]
[39]
Li, J.; Shen, B.; Hong, Z.; Lin, B.; Gao, B.; Chen, Y. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. (Camb.), 2012, 48(98), 12017-12019.
[http://dx.doi.org/10.1039/c2cc35862j ] [PMID: 23133831]
[40]
Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S.A. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces, 2014, 6(19), 16449-16465.
[http://dx.doi.org/10.1021/am502925j ] [PMID: 25215903]
[41]
Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci., 2017, 391, 72-123.
[http://dx.doi.org/10.1016/j.apsusc.2016.07.030]
[42]
Gong, Y.; Li, M.; Wang, Y. Carbon nitride in energy conversion and storage: Recent advances and future prospects. ChemSusChem, 2015, 8(6), 931-946.
[http://dx.doi.org/10.1002/cssc.201403287 ] [PMID: 25688746]
[43]
Wang, X.; Blechert, S.; Antonietti, M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal., 2015, 2(8), 1596-1606.
[http://dx.doi.org/10.1021/cs300240x]
[44]
Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S.Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci., 2015, 5(5), 6717-6731.
[http://dx.doi.org/10.1039/c2ee03479d]
[45]
Ismael, M.; Wu, Y. A mini-review on the synthesis and structural modification of g-C3N4 based materials, and their applications in solar energy conversion and environmental remediation. Sustain. Energy Fuels, 2019, 3(11), 2907-2925.
[http://dx.doi.org/10.1039/C9SE00422J]
[46]
Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 2009, 25(17), 10397-10401.
[http://dx.doi.org/10.1021/la900923z ] [PMID: 19705905]
[47]
Mao, J.; Peng, T.; Zhang, X.; Li, K.; Ye, L.; Zan, L. Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal. Sci. Technol., 2013, 3(5), 1253-1260.
[http://dx.doi.org/10.1039/c3cy20822b]
[48]
Tan, M.; Yu, C.; Li, J.; Li, Y.; Tao, C.; Liu, C.; Meng, H.; Su, Y.; Qiao, L.; Bai, Y. Engineering of g-C3N4-based photocatalysts to enhance hydrogen evolution. Adv. Colloid Interface Sci., 2021, 295(295), 102488.
[http://dx.doi.org/10.1016/j.cis.2021.102488 ] [PMID: 34332277]
[49]
Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem., 2008, 18(41), 4893-4908.
[http://dx.doi.org/10.1039/b800274f]
[50]
He, F.; Wang, Z.; Li, Y.; Peng, S.; Liu, B. The nonmetal modulation of composition and morphology of g-C3N4 -based photocatalysts. Appl. Catal. B, 2020, 269, 118828.
[http://dx.doi.org/10.1016/j.apcatb.2020.118828]
[51]
Jiang, H.; Li, Y.; Wang, D.; Hong, X.; Liang, B. Recent Advances in Heteroatom Doped Graphitic Carbon Nitride (g-C3N4) and g-C3N4/Metal Oxide Composite Photocatalysts. Curr. Org. Chem., 2020, 24(6), 673-693.
[http://dx.doi.org/10.2174/1385272824666200309151648]
[52]
Ge, L.; Zuo, F.; Liu, J.; Ma, Q.; Wang, C.; Sun, D.; Bartels, L.; Feng, P. Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots. J. Phys. Chem. C, 2012, 116(25), 13708-13714.
[http://dx.doi.org/10.1021/jp3041692]
[53]
Li, H.; Liu, J.; Hou, W.; Du, N.; Zhang, R.; Tao, X. Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity. Appl. Catal. B, 2014, 160, 89-97.
[http://dx.doi.org/10.1016/j.apcatb.2014.05.019]
[54]
Feng, Y.; Liao, C.; Kong, L.; Wu, D.; Liu, Y.; Lee, P.H.; Shih, K. Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation: A novel nonradical oxidation process. J. Hazard. Mater., 2018, 354, 63-71.
[http://dx.doi.org/10.1016/j.jhazmat.2018.04.056 ] [PMID: 29727791]
[55]
Qi, F.; Li, Y.; Wang, Y.; Wang, Y.; Liu, S.; Zhao, X. Ag-Doped g-C3N4 film electrode: Fabrication, characterization and photoelectrocatalysis property. RSC Advances, 2016, 6(84), 81378-81385.
[http://dx.doi.org/10.1039/C6RA17613E]
[56]
Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B, 2015, 176, 44-52.
[http://dx.doi.org/10.1016/j.apcatb.2015.03.045]
[57]
Wei, J.; Shen, W.; Zhao, J.; Zhang, C.; Zhou, Y.; Liu, H. Boron doped g-C3N4 as an effective metal-free solid base catalyst in Knoevenagel condensation. Catal. Today, 2018, 316, 199-205.
[http://dx.doi.org/10.1016/j.cattod.2018.02.041]
[58]
Zhou, L.; Zhang, H.; Sun, H.; Liu, S.; Tade, M.O.; Wang, S.; Jin, W. Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: A historic review. Catal. Sci. Technol., 2016, 6(19), 7002-7023.
[http://dx.doi.org/10.1039/C6CY01195K]
[59]
Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J.D.; Fu, X.; Antonietti, M.; Wang, X. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. Engl., 2010, 49(2), 441-444.
[http://dx.doi.org/10.1002/anie.200903886 ] [PMID: 19950150]
[60]
Zhu, Y.; Zhang, Y.; Cheng, L.; Ismael, M.; Feng, Z.; Wu, Y. Novel application of g-C3N4/NaNbO3 composite for photocatalytic selective oxidation of biomass-derived HMF to FFCA under visible light irradiation. Adv. Powder Technol., 2020, 31(3), 1148-1159.
[http://dx.doi.org/10.1016/j.apt.2019.12.040]
[61]
Ge, L.; Han, C. Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Appl. Catal. B, 2012, 117, 268-274.
[http://dx.doi.org/10.1016/j.apcatb.2012.01.021]
[62]
Wang, Y.; Hong, J.; Zhang, W.; Xu, R. Carbon nitride nanosheets for photocatalytic hydrogen evolution: Remarkably enhanced activity by dye sensitization. Catal. Sci. Technol., 2013, 3(7), 1703-1711.
[http://dx.doi.org/10.1039/c3cy20836b]
[63]
Reza Gholipour, M.; Dinh, C.T.; Béland, F.; Do, T.O. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale, 2015, 7(18), 8187-8208.
[http://dx.doi.org/10.1039/C4NR07224C ] [PMID: 25804291]
[64]
Yang, L.; Liu, X.; Liu, Z.; Wang, C.; Liu, G.; Li, Q.; Feng, X. Enhanced photocatalytic activity of g-C3N4 2D nanosheets through thermal exfoliation using dicyandiamide as precursor. Ceram. Int., 2018, 44(17), 20613-20619.
[http://dx.doi.org/10.1016/j.ceramint.2018.06.105]
[65]
Güy, N. Directional transfer of photocarriers on CdS/g-C3N4 heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production. Appl. Surf. Sci., 2020, (522), 146442.
[http://dx.doi.org/10.1016/j.apsusc.2020.146442]
[66]
Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc., 2009, 131(5), 1680-1681.
[http://dx.doi.org/10.1021/ja809307s ] [PMID: 19191697]
[67]
Zhang, J.; Zhang, M.; Yang, C.; Wang, X. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater., 2014, 26(24), 4121-4126.
[http://dx.doi.org/10.1002/adma.201400573 ] [PMID: 24706532]
[68]
Cui, Y.; Ding, Z.; Fu, X.; Wang, X. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. Angew. Chem. Int. Ed. Engl., 2012, 51(47), 11814-11818.
[http://dx.doi.org/10.1002/anie.201206534 ] [PMID: 23081850]
[69]
Li, X.H.; Wang, X.; Antonietti, M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. (Camb.), 2012, 3(6), 2170-2174.
[http://dx.doi.org/10.1039/c2sc20289a]
[70]
Bai, X.; Wang, L.; Zong, R.; Zhu, Y. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C, 2013, 117(19), 9952-9961.
[http://dx.doi.org/10.1021/jp402062d]
[71]
Zheng, D.; Pang, C.; Liu, Y.; Wang, X. Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution. Chem. Commun. (Camb.), 2015, 51(47), 9706-9709.
[http://dx.doi.org/10.1039/C5CC03143E ] [PMID: 25980518]
[72]
Sun, J.; Zhang, J.; Zhang, M.; Antonietti, M.; Fu, X.; Wang, X. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun., 2012, 3(1), 1-7.
[http://dx.doi.org/10.1038/ncomms2152]
[73]
Zhang, J.; Guo, F.; Wang, X. An optimized and general synthetic strategy for fabrication of polymeric carbon nitride nanoarchitectures. Adv. Funct. Mater., 2013, 23(23), 3008-3014.
[http://dx.doi.org/10.1002/adfm.201203287]
[74]
Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(6), 2485-2534.
[http://dx.doi.org/10.1039/C4TA04461D]
[75]
Ze’ai, H.; Sun, Q.; Lv, K.; Zhang, Z.; Li, M.; Li, B. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4. Appl. Catal. B, 2015, 164, 420-427.
[http://dx.doi.org/10.1016/j.apcatb.2014.09.043]
[76]
Shi, H.; Zhang, C.; Zhou, C.; Chen, G. Conversion of CO 2 into renewable fuel over Pt–gC3 N4/KNbO3 composite photocatalyst. RSC Advances, 2015, 5(113), 93615-93622.
[http://dx.doi.org/10.1039/C5RA16870H]
[77]
Cheng, F.; Yin, H.; Xiang, Q. Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity. Appl. Surf. Sci., 2017, 391, 432-439.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.169]
[78]
Ge, L.; Han, C.; Liu, J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal. B, 2011, 108, 100-107.
[http://dx.doi.org/10.1016/j.apcatb.2011.08.014]
[79]
Liang, Q.; Zhang, M.; Yao, C.; Liu, C.; Xu, S.; Li, Z. High performance visible-light driven photocatalysts of Bi2MoO6-g-C3N4 with controllable solvothermal fabrication. J. Photochem. Photobiol. Chem., 2017, 332, 357-363.
[http://dx.doi.org/10.1016/j.jphotochem.2016.09.012]
[80]
Cao, S.W.; Liu, X.F.; Yuan, Y.P.; Zhang, Z.Y.; Liao, Y.S.; Fang, J.; Loo, S.C.J.; Sum, T.C.; Xue, C. Solar-to-fuels conversion over In2O3/ g-C3N4 hybrid photocatalysts. Appl. Catal. B, 2014, 147, 940-946.
[http://dx.doi.org/10.1016/j.apcatb.2013.10.029]
[81]
Liu, L.; Qi, Y.; Lu, J.; Lin, S.; An, W.; Liang, Y.; Cui, W. A stable Ag3PO4@ g-C3N4 hybrid core@ shell composite with enhanced visible light photocatalytic degradation. Appl. Catal. B, 2016, 183, 133-141.
[http://dx.doi.org/10.1016/j.apcatb.2015.10.035]
[82]
Yang, Y.; Guo, W.; Guo, Y.; Zhao, Y.; Yuan, X.; Guo, Y. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity. J. Hazard. Mater., 2014, 271, 150-159.
[http://dx.doi.org/10.1016/j.jhazmat.2014.02.023 ] [PMID: 24632367]
[83]
Peng, W.C.; Li, X.Y. Synthesis of MoS2/g-C3N4 as a solar light-responsive photocatalyst for organic degradation. Catal. Commun., 2014, 49, 63-67.
[http://dx.doi.org/10.1016/j.catcom.2014.02.008]
[84]
Shim, M.; McDaniel, H.; Oh, N. Prospects for strained type-II nanorod heterostructures. J. Phys. Chem. Lett., 2011, 2(21), 2722-2727.
[http://dx.doi.org/10.1021/jz201111y]
[85]
Iqbal, W.; Yang, B.; Zhao, X.; Rauf, M.; Waqas, M.; Gong, Y.; Zhang, J.; Mao, Y. Controllable synthesis of graphitic carbon nitride nanomaterials for solar energy conversion and environmental remediation: The road travelled and the way forward. Catal. Sci. Technol., 2018, 8(18), 4576-4599.
[http://dx.doi.org/10.1039/C8CY01061G]
[86]
Kumar, S.; Karthikeyan, S.; Lee, A.F. g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts, 2018, 8(2), 74.
[http://dx.doi.org/10.3390/catal8020074]
[87]
Konstas, P.S.; Konstantinou, I.; Petrakis, D.; Albanis, T. Synthesis, characterization of g-C3N4/SrTiO3 heterojunctions and photocatalytic activity for organic pollutants degradation. Catalysts, 2018, 8(11), 554.
[http://dx.doi.org/10.3390/catal8110554]
[88]
Yuan, X.; Zhou, C.; Jing, Q.; Tang, Q.; Mu, Y.; Du, A.K. Facile synthesis of g-C3N4 nanosheets/ZnO nanocomposites with enhanced photocatalytic activity in reduction of aqueous chromium (VI) under visible light. Nanomaterials (Basel), 2016, 6(9), 173.
[http://dx.doi.org/10.3390/nano6090173 ] [PMID: 28335301]
[89]
Wen, M.Q.; Xiong, T.; Zang, Z.G.; Wei, W.; Tang, X.S.; Dong, F. Synthesis of MoS2/gC3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO). Opt. Express, 2016, 24(10), 10205-10212.
[http://dx.doi.org/10.1364/OE.24.010205 ] [PMID: 27409846]
[90]
Pan, C.; Xu, J.; Wang, Y.; Li, D.; Zhu, Y. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self‐assembly. Adv. Funct. Mater., 2012, 22(7), 1518-1524.
[http://dx.doi.org/10.1002/adfm.201102306]
[91]
Zou, X.; Ran, C.; Dong, Y.; Chen, Z.; Dong, D.; Hu, D.; Li, X.; Cui, Y. Synthesis and characterization of BiPO4/gC3N4 nanocomposites with significantly enhanced visible-light photocatalytic activity for benzene degradation. RSC Advances, 2016, 6(25), 20664-20670.
[http://dx.doi.org/10.1039/C5RA01607J]
[92]
Yin, R.; Luo, Q.; Wang, D.; Sun, H.; Li, Y.; Li, X.; An, J. SnO2/gC3N4 photocatalyst with enhanced visible-light photocatalytic activity. J. Mater. Sci., 2014, 49(17), 6067-6073.
[http://dx.doi.org/10.1007/s10853-014-8330-0]
[93]
Kokane, S.B.; Sasikala, R.; Phase, D.M.; Sartale, S.D. In2S3 nanoparticles dispersed on gC3N4 nanosheets: Role of heterojunctions in photoinduced charge transfer and photoelectrochemical and photocatalytic performance. J. Mater. Sci., 2017, 52(12), 7077-7090.
[http://dx.doi.org/10.1007/s10853-017-0940-x]
[94]
Li, X.; Zhang, J.; Shen, L.; Ma, Y.; Lei, W.; Cui, Q.; Zou, G. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys., A Mater. Sci. Process., 2009, 94(2), 387-392.
[http://dx.doi.org/10.1007/s00339-008-4816-4]
[95]
Zhai, H.S.; Cao, L.; Xia, X.H. Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chin. Chem. Lett., 2013, 24(2), 103-106.
[http://dx.doi.org/10.1016/j.cclet.2013.01.030]
[96]
Dong, F.; Wu, L.; Sun, Y.; Fu, M.; Wu, Z.; Lee, S.C. Efficient synthesis of polymeric gC3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem., 2011, 21(39), 15171-15174.
[http://dx.doi.org/10.1039/c1jm12844b]
[97]
Dong, F.; Sun, Y.; Wu, L.; Fu, M.; Wu, Z. Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catal. Sci. Technol., 2012, 2(7), 1332-1335.
[http://dx.doi.org/10.1039/c2cy20049j]
[98]
Hwang, S.; Lee, S.; Yu, J.S. Template-directed synthesis of highly ordered nanoporous graphitic carbon nitride through polymerization of cyanamide. Appl. Surf. Sci., 2007, 253(13), 5656-5659.
[http://dx.doi.org/10.1016/j.apsusc.2006.12.032]
[99]
Xu, H.; Yan, J.; Xu, Y.; Song, Y.; Li, H.; Xia, J.; Huang, C.; Wan, H. Novel visible-light-driven AgX/graphite-like C3N4 (X= Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal. B, 2013, 129, 182-193.
[http://dx.doi.org/10.1016/j.apcatb.2012.08.015]
[100]
Ismael, M.; Wu, Y. A facile synthesis method for fabrication of LaFeO3/gC3N4 nanocomposite as efficient visible-light-driven photocatalyst for photodegradation of RhB and 4-CP. New J. Chem., 2019, 43(35), 13783-13793.
[http://dx.doi.org/10.1039/C9NJ03376A]
[101]
Ismael, M.; Elhaddad, E.; Taffa, D.H.; Wark, M. Solid state route for synthesis of YFeO3/g-C3N4 composites and its visible light activity for degradation of organic pollutants. Catal. Today, 2018, 313, 47-54.
[http://dx.doi.org/10.1016/j.cattod.2018.02.003]
[102]
Ismael, M.; Wu, Y.; Wark, M. Photocatalytic activity of ZrO2 composites with graphitic carbon nitride for hydrogen production under visible light. New J. Chem., 2019, 43(11), 4455-4462.
[http://dx.doi.org/10.1039/C8NJ06507A]
[103]
Ismael, M.; Wu, Y.; Taffa, D.H.; Bottke, P.; Wark, M. Graphitic carbon nitride synthesized by simple pyrolysis: Role of precursor in photocatalytic hydrogen production. New J. Chem., 2019, 43(18), 6909-6920.
[http://dx.doi.org/10.1039/C9NJ00859D]
[104]
Katsumata, H.; Tachi, Y.; Suzuki, T.; Kaneco, S. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts. RSC Advances, 2014, 4(41), 21405-21409.
[http://dx.doi.org/10.1039/C4RA02511C]
[105]
He, K.; Xie, J.; Li, M.; Li, X. In situ one-pot fabrication of g-C3N4 nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H2 generation. Appl. Surf. Sci., 2018, 430, 208-217.
[http://dx.doi.org/10.1016/j.apsusc.2017.08.191]
[106]
Tian, Y.; Chang, B.; Lu, J.; Fu, J.; Xi, F.; Dong, X. Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS Appl. Mater. Interfaces, 2013, 5(15), 7079-7085.
[http://dx.doi.org/10.1021/am4013819 ] [PMID: 23841689]
[107]
Yan, M.; Zhu, F.; Gu, W.; Sun, L.; Shi, W.; Hua, Y. Construction of nitrogen-doped graphene quantum dots-BiVO4/gC3N4 Z-scheme photocatalyst and enhanced photocatalytic degradation of antibiotics under visible light. RSC Advances, 2016, 6(66), 61162-61174.
[http://dx.doi.org/10.1039/C6RA07589D]
[108]
Zhu, J.; Zheng, W.; He, B.; Zhang, J.; Anpo, M. Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. Chem., 2004, 216(1), 35-43.
[http://dx.doi.org/10.1016/j.molcata.2004.01.008]
[109]
Li, D.; Xue, J. Synthesis of Bi2Sn2O7 and enhanced photocatalytic activity of Bi2 Sn2O7 hybridized with g-C3N4. New J. Chem., 2015, 39(7), 5833-5840.
[http://dx.doi.org/10.1039/C5NJ00886G]
[110]
Huang, H.; Xiao, K.; Tian, N.; Dong, F.; Zhang, T.; Du, X.; Zhang, Y. Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(33), 17452-17463.
[http://dx.doi.org/10.1039/C7TA04639A]
[111]
Guo, F.; Shi, W.; Lin, X.; Che, G. Hydrothermal synthesis of graphitic carbon nitride–BiVO4 composites with enhanced visible light photocatalytic activities and the mechanism study. J. Phys. Chem. Solids, 2014, 75(11), 1217-1222.
[http://dx.doi.org/10.1016/j.jpcs.2014.05.011]
[112]
Lu, Z.; Zeng, L.; Song, W.; Qin, Z.; Zeng, D.; Xie, C. In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl. Catal. B, 2017, 202, 489-499.
[http://dx.doi.org/10.1016/j.apcatb.2016.09.052]
[113]
Jin, J.; Liang, Q.; Song, Y.; Xu, S.; Li, Z.; Yao, C. Hydrothermal synthesis of g-C3N4/Ag2MoO4 nanocomposites for improved visible light photocatalytic performance. J. Alloys Compd., 2017, 726, 221-229.
[http://dx.doi.org/10.1016/j.jallcom.2017.07.330]
[114]
Vattikuti, S.P.; Byon, C. Hydrothermally synthesized ternary heterostructured MoS2/Al2O3/g-C3N4 photocatalyst. Mater. Res. Bull., 2017, 96, 233-245.
[http://dx.doi.org/10.1016/j.materresbull.2017.03.008]
[115]
Xing, Z.; Chen, Y.; Liu, C.; Yang, J.; Xu, J.; Situ, Y.; Huang, H. Synthesis of core-shell ZnO/oxygen doped g-C3N4 visible light driven photocatalyst via hydrothermal method. J. Alloys Compd., 2017, 708, 853-861.
[http://dx.doi.org/10.1016/j.jallcom.2016.11.295]
[116]
Li, X.; Xiong, J.; Gao, X.; Huang, J.; Feng, Z.; Chen, Z.; Zhu, Y. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J. Alloys Compd., 2019, 802, 196-209.
[http://dx.doi.org/10.1016/j.jallcom.2019.06.185]
[117]
Li, Z.; Li, B.; Peng, S.; Li, D.; Yang, S.; Fang, Y. Novel visible light-induced gC3N4 quantum dot/BiPO4 nanocrystal composite photocatalysts for efficient degradation of methyl orange. RSC Advances, 2014, 4(66), 35144-35148.
[http://dx.doi.org/10.1039/C4RA05749J]
[118]
Shi, W.; Guo, F.; Chen, J.; Che, G.; Lin, X. Hydrothermal synthesis of InVO4/Graphitic carbon nitride heterojunctions and excellent visible-light-driven photocatalytic performance for rhodamine B. J. Alloys Compd., 2014, 612, 143-148.
[http://dx.doi.org/10.1016/j.jallcom.2014.05.207]
[119]
Huang, K.; Hong, Y.; Yan, X.; Huang, C.; Chen, J.; Chen, M.; Shi, W.; Liu, C. Hydrothermal synthesis of gC3N4/CdWO4 nanocomposite and enhanced photocatalytic activity for tetracycline degradation under visible light. CrystEngComm, 2016, 18(34), 6453-6463.
[http://dx.doi.org/10.1039/C6CE01019A]
[120]
Li, C.; Sun, Z.; Xue, Y.; Yao, G.; Zheng, S. A facile synthesis of g-C3N4 /TiO2 hybrid photocatalysts by sol–gel method and its enhanced photodegradation towards methylene blue under visible light. Adv. Powder Technol., 2016, 27(2), 330-337.
[http://dx.doi.org/10.1016/j.apt.2016.01.003]
[121]
Hu, B.; Cai, F.; Chen, T.; Fan, M.; Song, C.; Yan, X.; Shi, W. Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation. ACS Appl. Mater. Interfaces, 2015, 7(33), 18247-18256.
[http://dx.doi.org/10.1021/acsami.5b05715 ] [PMID: 26222984]
[122]
Cao, J.; Qin, C.; Wang, Y. Synthesis of g-C3N4 nanosheets decorated flower-like tin oxide composites and their improved ethanol gas sensing properties. J. Alloys Compd., 2017, 728, 1101-1109.
[http://dx.doi.org/10.1016/j.jallcom.2017.09.073]
[123]
Hao, R.; Wang, G.; Jiang, C.; Tang, H.; Xu, Q. In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl. Surf. Sci., 2017, 411, 400-410.
[http://dx.doi.org/10.1016/j.apsusc.2017.03.197]
[124]
Patil, K.C.; Aruna, S.T.; Ekambaram, S. Curr. Opin. Solid State Mater. Sci., 1917.
[125]
Mukasyan, A.S.; Dinka, P. Novel approaches to solution-combustion synthesis of nanomaterials. Int. J. Self-Propag. High-Temp. Synth., 2007, 16(1), 23-35.
[http://dx.doi.org/10.3103/S1061386207010049]
[126]
Mahoney, L.; Koodali, R.T. Versatility of evaporation-induced self-assembly (EISA) method for preparation of mesoporous TiO2 for energy and environmental applications. Materials (Basel), 2014, 7(4), 2697-2746.
[http://dx.doi.org/10.3390/ma7042697 ] [PMID: 28788590]
[127]
Karpuraranjith, M.; Chen, Y.; Rajaboopathi, S.; Ramadoss, M.; Srinivas, K.; Yang, D.; Wang, B. Three-dimensional porous MoS2 nanobox embedded g-C3N4@TiO2 architecture for highly efficient photocatalytic degradation of organic pollutant. J. Colloid Interface Sci., 2022, 605(605), 613-623.
[http://dx.doi.org/10.1016/j.jcis.2021.07.133 ] [PMID: 34343734]
[128]
Ouyang, H.; Tu, X.; Fu, Z.; Wang, W.; Fu, S.; Zhu, C.; Du, D.; Lin, Y. Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites. Biosens. Bioelectron., 2018, 106, 43-49.
[http://dx.doi.org/10.1016/j.bios.2018.01.033 ] [PMID: 29414087]
[129]
Vidyasagar, D.; Ghugal, S.G.; Kulkarni, A.; Shende, A.G.; Umare, S.S.; Sasikala, R. Microwave assisted in situ decoration of a g-C3N4 surface with CdCO3 nanoparticles for visible light driven photocatalysis. New J. Chem., 2018, 42(8), 6322-6331.
[http://dx.doi.org/10.1039/C8NJ00444G]
[130]
Seza, A.; Soleimani, F.; Naseri, N.; Soltaninejad, M.; Montazeri, S.M.; Sadrnezhaad, S.K.; Mohammadi, M.R.; Moghadam, H.A.; Forouzandeh, M.; Amin, M.H. Novel microwave-assisted synthesis of porous g-C3N4 /SnO2 nanocomposite for solar water-splitting. Appl. Surf. Sci., 2018, 440, 153-161.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.133]
[131]
Saravanakumar, K.; Park, C.M. Rational design of a novel LaFeO3/g-C3N4/BiFeO3 double Z-scheme structure: Photocatalytic performance for antibiotic degradation and mechanistic insight. Chem. Eng. J., 2021, (423), 130076.
[http://dx.doi.org/10.1016/j.cej.2021.130076]
[132]
Miranda, C.; Mansilla, H.; Yáñez, J.; Obregón, S.; Colón, G. Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method. J. Photochem. Photobiol. Chem., 2013, 253, 16-21.
[http://dx.doi.org/10.1016/j.jphotochem.2012.12.014]
[133]
Ma, Y.; Chen, Y.; Feng, Z.; Zeng, L.; Chen, Q.; Jin, R.; Lu, Y.; Huang, Y.; Wu, Y.; He, Y. Preparation, characterization of Bi3O4Cl/g-C3N4 composite and its photocatalytic activity in dye degradation. J. Water Process Eng., 2017, 18, 65-72.
[http://dx.doi.org/10.1016/j.jwpe.2017.06.002]
[134]
Kumar, S.; Kumar, B.; Baruah, A.; Shanker, V. Synthesis of magnetically separable and recyclable g-C3N4-Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. J. Phys. Chem. C, 2013, 117(49), 26135-26143.
[http://dx.doi.org/10.1021/jp409651g]
[135]
Sun, J.; Song, J.; Gondal, M.A.; Shi, S.; Lu, Z.; Xu, Q.; Chang, X.; Xiang, D.; Shen, K. Preparation of gC3N4/BiOX (X= Cl, Br, I) composites, and their photocatalytic activity under visible light irradiation. Res. Chem. Intermed., 2015, 41(10), 6941-6955.
[http://dx.doi.org/10.1007/s11164-014-1789-0]
[136]
Zhou, T.; Xua, Y.; Xub, H.; Wanga, H.; Daa, Z.; Huanga, S.; Jia, H.; Lia, H. In situ oxidation synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl/ g-C3N4 and its activity. Ceram. Int., 2014, (40), 9293-9301.
[http://dx.doi.org/10.1016/j.ceramint.2014.01.152]
[137]
Bhandary, N.; Singh, A.P.; Kumar, S.; Ingole, P.P.; Thakur, G.S.; Ganguli, A.K.; Basu, S. In situ solid-state synthesis of a AgNi/ g-C3N4 nanocomposite for enhanced photoelectrochemical and photocatalytic activity. ChemSusChem, 2016, 9(19), 2816-2823.
[http://dx.doi.org/10.1002/cssc.201600740 ] [PMID: 27628430]
[138]
Bu, Y.; Chen, Z.; Li, W. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material. Appl. Catal. B, 2014, (144), 622-630.
[http://dx.doi.org/10.1016/j.apcatb.2013.07.066]
[139]
Bai, X.; Zong, R.; Li, C.; Liu, D.; Liu, Y.; Zhu, Y. Enhancement of visible photocatalytic activity via Ag@ g-C3N4 core–shell plasmonic composite. Appl. Catal. B, 2014, (147), 82-91.
[http://dx.doi.org/10.1016/j.apcatb.2013.08.007]
[140]
Qin, J.; Huo, J.; Zhang, P.; Zeng, J.; Wang, T.; Zeng, H. Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation. Nanoscale, 2016, 8(4), 2249-2259.
[http://dx.doi.org/10.1039/C5NR06346A ] [PMID: 26743319]
[141]
Patnaik, S.; Sahoo, D.P.; Parida, K. An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications. Renew. Sustain. Energy Rev., 2018, 82, 1297-1312.
[http://dx.doi.org/10.1016/j.rser.2017.09.026]
[142]
Barzegar, J.; Habibi-Yangjeh, A.; Akhundi, A.; Vadivel, S. Novel ternary g-C3N4/Ag3VO4/AgBr nanocomposites with excellent visible-light-driven photocatalytic performance for environmental applications. Solid State Sci., 2018, (78), 133-143.
[http://dx.doi.org/10.1016/j.solidstatesciences.2018.03.001]
[143]
Akhundi, A.; Habibi-Yangjeh, A. Ternary magnetic g-C3N4/Fe3O4/AgI nanocomposites: novel recyclable photocatalysts with enhanced activity in degradation of different pollutants under visible light. Mater. Chem. Phys., 2016, (174), 59-69.
[http://dx.doi.org/10.1016/j.matchemphys.2016.02.052]
[144]
Dai, K.; Lv, J.; Lu, L.; Liang, C.; Geng, L.; Zhu, G. A facile fabrication of plasmonic g-C3N4/Ag2WO4/Ag ternary heterojunction visible-light photocatalyst. Mater. Chem. Phys., 2016, (177), 529-537.
[http://dx.doi.org/10.1016/j.matchemphys.2016.04.065]
[145]
Panneri, S.; Ganguly, P.; Nair, B.N.; Mohamed, A.A.P.; Warrier, K.G.; Hareesh, U.N.S. Co pyrolysed C3N4-Ag/ZnO Ternary Heterostructure Systems for Enhanced Adsorption and Photocatalytic Degradation of Tetracycline. Eur. J. Inorg. Chem., 2016, (31), 5038-5076.
[146]
Chen, Y.; Huang, W.; He, D.; Situ, Y.; Huang, H. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Interfaces, 2014, 6(16), 14405-14414.
[http://dx.doi.org/10.1021/am503674e ] [PMID: 25089850]
[147]
Akhundi, A.; Badiei, A.; Ziarani, G.M.; Habibi-Yangjeh, A.; Muñoz-Batista, M.J.; Luque, R. Graphitic carbon nitride-based photocatalysts: toward efficient organic transformation for value-added chemicals production. Molecular Catalysis, 2021, (488), 110902.
[148]
Wang, Z.; Fan, Y.; Wu, R.; Huo, Y.; Wu, H.; Wang, F.; Xu, X. Novel magnetic g-C3N4/α-Fe2O3/Fe3O4 composite for the very effective visible-light-Fenton degradation of Orange II. RSC Advances, 2018, 8(10), 5180-5188.
[http://dx.doi.org/10.1039/C7RA13291C]
[149]
Xu, D.; Cheng, B.; Wang, W.; Jiang, C.; Yu, J. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B, 2018, (231), 368-380.
[http://dx.doi.org/10.1016/j.apcatb.2018.03.036]
[150]
Duan, Y.; Li, J.; Li, Y.; Shang, X.; Jia, D.; Li, C. Direct Z-scheme Bi2O2CO3/porous g-C3N4 heterojunction for improved photocatalytic degradation performance. J. Taiwan Inst. Chem. Eng., 2020, 106, 74-85.
[http://dx.doi.org/10.1016/j.jtice.2019.08.013]
[151]
Wang, K.; Zhang, Y.; Liu, L.; Lu, N.; Zhang, Z. BiOBr nanosheets-decorated TiO2 nanofibers as hierarchical p–n heterojunctions photocatalysts for pollutant degradation. J. Mater. Sci., 2019, 54(11), 8426-8435.
[http://dx.doi.org/10.1007/s10853-019-03466-z]
[152]
Gholami, P.; Dinpazhoh, L.; Khataee, A.; Hassani, A.; Bhatnagar, A. Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium. J. Hazard. Mater., 2020, 381, 120742.
[http://dx.doi.org/10.1016/j.jhazmat.2019.120742 ] [PMID: 31204019]
[153]
Zhang, P.; Wan, D.; Zhang, Z.; Wang, G.; Hu, J.; Shao, G. rGO-functionalized polymer nanofibrous membrane with exceptional surface activity and ultra-low airflow resistance for PM 2.5 filtration. Environ. Sci. Nano, 2018, 5(8), 1813-1820.
[http://dx.doi.org/10.1039/C8EN00468D]
[154]
Qi, K.; Karthikeyan, S.; Kim, W.; Al-Marzouqi, F.; Al-Khusaibi, I.S.; Kim, Y.; Selvaraj, R. Hydrothermal synthesis of SnS2 nanocrystals for photocatalytic degradation of 2, 4, 6-trichlorophenol under white LED light irradiation. Desalination Water Treat., 2017, 92, 108-115.
[http://dx.doi.org/10.5004/dwt.2017.21355]
[155]
Zhang, S.; Liu, Y.; Gu, P.; Ma, R.; Wen, T.; Zhao, G.; Li, L.; Ai, Y.; Hu, C.; Wang, X. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Appl. Catal. B, 2019, 248, 1-10.
[http://dx.doi.org/10.1016/j.apcatb.2019.02.008]
[156]
Boruah, B.; Gupta, R.; Modak, J.M.; Madras, G. Novel insights into the properties of AgBiO3 photocatalyst and its application in immobilized state for 4-nitrophenol degradation and bacteria inactivation. J. Photochem. Photobiol. Chem., 2019, 373, 105-115.
[http://dx.doi.org/10.1016/j.jphotochem.2018.11.001]
[157]
Sundaram, I.M.; Kalimuthu, S. Metal-free heterojunction of graphitic carbon nitride composite with superior and stable visible-light active photocatalysis. Mater. Chem. Phys., 2018, 204, 243-250.
[http://dx.doi.org/10.1016/j.matchemphys.2017.10.041]
[158]
Inamuddin. Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye. Int. J. Biol. Macromol., 2019, 121, 1046-1053.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.064 ] [PMID: 30336247]
[159]
Humayun, M.; Zada, A.; Li, Z.; Xie, M.; Zhang, X.; Qu, Y.; Raziq, F.; Jing, L. Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Appl. Catal. B, 2016, 180, 219-226.
[http://dx.doi.org/10.1016/j.apcatb.2015.06.035]
[160]
Worathitanon, C.; Jangyubol, K.; Ruengrung, P.; Donphai, W.; Klysubun, W.; Chanlek, N.; Prasitchoke, P.; Chareonpanich, M. High performance visible-light responsive Chl-Cu/ZnO catalysts for photodegradation of rhodamine B. Appl. Catal. B, 2019, 241, 359-366.
[http://dx.doi.org/10.1016/j.apcatb.2018.09.048]
[161]
Yang, Y.J.; Wang, F.S.; Liu, D.; Cui, G.H. A unique (4, 4, 5)-connected 3D zinc (II) metal-organic framework for highly efficient photodegradation of Rhodamine B under UV light. Inorg. Chem. Commun., 2019, (100), 60-63.
[http://dx.doi.org/10.1016/j.inoche.2018.12.018]
[162]
Yosefi, L.; Haghighi, M. Sequential precipitation design of p-BiOCl-p-Mn3O4 binary semiconductor nanoheterojunction with enhanced photoactivity for acid orange 7 removals from water. Ceram. Int., 2019, 45(7), 8248-8257.
[http://dx.doi.org/10.1016/j.ceramint.2019.01.130]
[163]
Alvaro, M.; Carbonell, E.; Fornés, V.; García, H. Novel photocatalysts containing 2, 4, 6-triphenylthiapyrylium encapsulated within zeolites. Enhanced photocatalytic activity as compared to the pyrylium analogues. New J. Chem., 2004, 28(5), 631-639.
[http://dx.doi.org/10.1039/B313382F]
[164]
Huo, R.; Yang, X.L.; Yang, J.Y.; Yang, S.Y.; Xu, Y.H. Self-assembly synthesis of BiVO4/Polydopamine/g-C3N4 with enhanced visible light photocatalytic performance. Mater. Res. Bull., 2018, 98, 225-230.
[http://dx.doi.org/10.1016/j.materresbull.2017.10.016]
[165]
Hori, H.; Wachi, S.; Iwamura, K.; Sano, T. Visible light-induced decomposition of monoethanolamine in water using graphitic carbon nitride as a photocatalyst. J. Photochem. Photobiol. Chem., 2018, 351, 162-169.
[http://dx.doi.org/10.1016/j.jphotochem.2017.10.015]
[166]
Kumar, A.; Kumar, A.; Sharma, G.; Ala’a, H.; Naushad, M.; Ghfar, A.A.; Stadler, F.J. Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem. Eng. J., 2018, 334, 462-478.
[http://dx.doi.org/10.1016/j.cej.2017.10.049]
[167]
Jiang, D.; Ma, W.; Xiao, P.; Shao, L.; Li, D.; Chen, M. Enhanced photocatalytic activity of graphitic carbon nitride/carbon nanotube/Bi2WO6 ternary Z-scheme heterojunction with carbon nanotube as efficient electron mediator. J. Colloid Interface Sci., 2018, 512, 693-700.
[http://dx.doi.org/10.1016/j.jcis.2017.10.074 ] [PMID: 29107920]
[168]
Aguilar, Y.; Tadiosa, E.; Tondo, J. A comparative study on wastewater treatment methods of selected multinational and local beverage companies in the Philippines and their effects on the environment. Int. J. Environ. Sci. Dev., 2014, 5(6), 570.
[http://dx.doi.org/10.7763/IJESD.2014.V5.548]
[169]
Lam, S.M.; Sin, J.C.; Mohamed, A.R. A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Mater. Sci. Semicond. Process., 2016, 47, 62-84.
[http://dx.doi.org/10.1016/j.mssp.2016.02.019]
[170]
Klavarioti, M.; Mantzavinos, D.; Kassinos, D.A. Pharmaceuticals and other organic Removal of residual pharmaceuticals from chemicals in selected north-central and aqueous systems by advanced oxidation north western Arkansas streams. J Environ processes. Environ Int J, 2009, 35, 402-417.
[http://dx.doi.org/10.1016/j.envint.2008.07.009]
[171]
Zhang, X.; Wang, Y.; Li, G. Effect of operating parameters on microwave assisted photocatalytic degradation of azo dye X-3B with grain TiO2 catalyst. J. Mol. Catal. Chem., 2005, 237(1-2), 199-205.
[http://dx.doi.org/10.1016/j.molcata.2005.03.043]
[172]
Udom, I.; Ram, M.K.; Stefanakos, E.K.; Hepp, A.F.; Goswami, D.Y. One dimensional-ZnO nanostructures: Synthesis, properties and environmental applications. Mater. Sci. Semicond. Process., 2013, 16(6), 2070-2083.
[http://dx.doi.org/10.1016/j.mssp.2013.06.017]
[173]
Yang, C.; Dong, W.; Cui, G.; Zhao, Y.; Shi, X.; Xia, X.; Tang, B.; Wang, W. Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Advances, 2017, 7(38), 23699-23708.
[http://dx.doi.org/10.1039/C7RA02423A]
[174]
Wang, H.; Liang, Y.; Liu, L.; Hu, J.; Cui, W. Highly ordered TiO2 nanotube arrays wrapped with g-C3N4 nanoparticles for efficient charge separation and increased photoelectrocatalytic degradation of phenol. J. Hazard. Mater., 2018, 344(344), 369-380.
[http://dx.doi.org/10.1016/j.jhazmat.2017.10.044 ] [PMID: 29096250]
[175]
Zhang, H.; Cao, J.; Kang, P.; Tang, Q.; Sun, Q.; Ma, M. Ag nanocrystals decorated g-C3N4/Nafion hybrid membranes: One-step synthesis and photocatalytic performance. Mater. Lett., 2018, (213), 218-221.
[http://dx.doi.org/10.1016/j.matlet.2017.11.068]
[176]
Fan, C.; Feng, Q.; Xu, G.; Lv, J.; Zhang, Y.; Liu, J.; Qin, Y.; Wu, Y. Enhanced photocatalytic performances of ultrafine g-C3N4 nanosheets obtained by gaseous stripping with wet nitrogen. Appl. Surf. Sci., 2018, (427), 730-738.
[http://dx.doi.org/10.1016/j.apsusc.2017.08.090]
[177]
Zhang, L.; Wang, G.; Xiong, Z.; Tang, H.; Jiang, C. Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation. Appl. Surf. Sci., 2018, (436), 162-171.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.280]
[178]
Wu, S.; Wen, S.; Xu, X.; Huang, G.; Cui, Y.; Li, J.; Qu, A. Facile synthesis of porous graphene-like carbon nitride nanosheets with high surface area and enhanced photocatalytic activity via one-step catalyst-free solution self-polymerization. Appl. Surf. Sci., 2018, (436), 424-432.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.254]
[179]
Ye, M.; Wang, R.; Shao, Y.; Tian, C.; Zheng, Z.; Gu, X.; Wei, W.; Wei, A. Silver nanoparticles/graphitic carbon nitride nanosheets for improved visible-light-driven photocatalytic performance. J. Photochem. Photobiol. Chem., 2018, (351), 145-153.
[http://dx.doi.org/10.1016/j.jphotochem.2017.10.016]
[180]
Mohamed, M.A.; Jaafar, J.; Zain, M.F.M.; Minggu, L.J.; Kassim, M.B.; Rosmi, M.S.; Alias, N.H.; Nor, N.A.M.; Salleh, W.N.W.; Othman, M.H.D. In-depth understanding of core-shell nanoarchitecture evolution of g-C3N4@ C, N co-doped anatase/rutile: efficient charge separation and enhanced visible-light photocatalytic performance. Appl. Surf. Sci., 2018, (436), 302-318.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.229]
[181]
Crowell, C.R.; Sze, S.M. Current transport in metal-semiconductor barriers. Solid-State Electron., 1966, 9(11-12), 1035-1048.
[http://dx.doi.org/10.1016/0038-1101(66)90127-4]
[182]
Ye, L.; Liu, J.; Jiang, Z.; Peng, T.; Zan, L. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl. Catal. B, 2013, 142, 1-7.
[http://dx.doi.org/10.1016/j.apcatb.2013.04.058]
[183]
Jiang, D.; Chen, L.; Zhu, J.; Chen, M.; Shi, W.; Xie, J. Novel p-n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: facile synthesis and enhanced photocatalytic activity. Dalton Trans., 2013, 42(44), 15726-15734.
[http://dx.doi.org/10.1039/c3dt52008k ] [PMID: 24051513]
[184]
Wang, Y.; Bai, X.; Pan, C.; He, J.; Zhu, Y. Enhancement of photocatalytic activity of Bi 2WO6 hybridized with graphite-like C3N4. J. Mater. Chem., 2012, 22(23), 11568-11573.
[http://dx.doi.org/10.1039/c2jm16873a]
[185]
Kumar, S.; Surendar, T.; Baruah, A.; Shanker, V. Synthesis of a novel and stable g-C3N 4–Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(17), 5333-5340.
[http://dx.doi.org/10.1039/c3ta00186e]
[186]
Huang, L.; Li, Y.; Xu, H.; Xu, Y.; Xia, J.; Wang, K.; Li, H.; Cheng, X. Synthesis and characterization of CeO2/gC3N4 composites with enhanced visible-light photocatatalytic activity. RSC Advances, 2013, 3(44), 22269-22279.
[http://dx.doi.org/10.1039/c3ra42712a]
[187]
Huang, L.; Xu, H.; Zhang, R.; Cheng, X.; Xia, J.; Xu, Y.; Li, H. Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible-light photoactivity. Appl. Surf. Sci., 2013, 283, 25-32.
[http://dx.doi.org/10.1016/j.apsusc.2013.05.106]
[188]
Zhou, X.; Jin, B.; Chen, R.; Peng, F.; Fang, Y. Synthesis of porous Fe3O4/g-C3N4 nanospheres as highly efficient and recyclable photocatalysts. Mater. Res. Bull., 2013, 48(4), 1447-1452.
[http://dx.doi.org/10.1016/j.materresbull.2012.12.038]
[189]
Kumar, S.; Kumar, B.; Surendar, T.; Shanker, V. g-C3N4/NaTaO3 organic–inorganic hybrid nanocomposite: high-performance and recyclable visible light driven photocatalyst. Mater. Res. Bull., 2014, (49), 310-318.
[http://dx.doi.org/10.1016/j.materresbull.2013.09.013]
[190]
Liang, Y.; Sun, N.; Zang, C.; Chen, F. 1, 3, 5-Benzenetriyl substituted g-C3N4 for enhanced visible light photocatalytic activity. Res. Chem. Intermed., 2019, 45(7), 3641-3654.
[http://dx.doi.org/10.1007/s11164-018-03718-8]
[191]
Lei, J.; Chen, Y.; Wang, L.; Liu, Y.; Zhang, J. Highly condensed g-C3N4-modified TiO2 catalysts with enhanced photodegradation performance toward acid orange 7. J. Mater. Sci., 2015, 50(9), 3467-3476.
[http://dx.doi.org/10.1007/s10853-015-8906-3]
[192]
Lei, J.; Chen, Y.; Shen, F.; Wang, L.; Liu, Y.; Zhang, J. Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity. J. Alloys Compd., 2015, 631, 328-334.
[http://dx.doi.org/10.1016/j.jallcom.2015.01.080]
[193]
Shin, S.H.; Jo, W.K. Longitudinal variations in indoor VOC concentrations after moving into new apartments and indoor source characterization. Environ. Sci. Pollut. Res. Int., 2013, 20(6), 3696-3707.
[http://dx.doi.org/10.1007/s11356-012-1296-z ] [PMID: 23143824]
[194]
Sun, R.; Shi, Q.; Zhang, M.; Xie, L.; Chen, J.; Yang, X.; Chen, M.; Zhao, W. Enhanced photocatalytic oxidation of toluene with a coral-like direct Z-scheme BiVO4/g-C3N4 photocatalyst. J. Alloys Compd., 2017, 714, 619-626.
[http://dx.doi.org/10.1016/j.jallcom.2017.04.108]
[195]
Fontelles-Carceller, O.; Muñoz-Batista, M.J.; Fernández-García, M.; Kubacka, A. Interface effects in sunlight-driven Ag/g-C3N4 composite catalysts: study of the toluene photodegradation quantum efficiency. ACS Appl. Mater. Interfaces, 2016, 8(4), 2617-2627.
[http://dx.doi.org/10.1021/acsami.5b10434 ] [PMID: 26714203]
[196]
Munoz-Batista, M.J.; Fontelles-Carceller, O.; Kubacka, A.; Fernández-García, M. Effect of exfoliation and surface deposition of MnOx species in g-C3N4: toluene photo-degradation under UV and visible light. Appl. Catal. B, 2017, 203, 663-672.
[http://dx.doi.org/10.1016/j.apcatb.2016.10.044]
[197]
Muñoz-Batista, M.J.; Kubacka, A.; Fernández-García, M. Effect of g-C3N4 loading on TiO2-based photocatalysts: UV and visible degradation of toluene. Catal. Sci. Technol., 2014, 4(7), 2006-2015.
[http://dx.doi.org/10.1039/c4cy00226a]
[198]
Khan, M.A.; Mutahir, S.; Wang, F.; Lei, W.; Xia, M. Sensitization of TiO2 nanosheets with Cu-biphenylamine framework to enhance photocatalytic degradation performance of toxic organic contaminants: synthesis, mechanism and kinetic studies. Nanotechnology, 2018, 29(37), 375605.
[http://dx.doi.org/10.1088/1361-6528/aacee0 ] [PMID: 29939156]
[199]
Stets, S.; do Amaral, B.; Schneider, J.T.; de Barros, I.R.; de Liz, M.V.; Ribeiro, R.R.; Nagata, N.; Peralta-Zamora, P. Antituberculosis drugs degradation by UV-based advanced oxidation processes. J. Photochem. Photobiol. Chem., 2018, (353), 26-33.
[http://dx.doi.org/10.1016/j.jphotochem.2017.11.006]
[200]
Khan, M.A.; Mutahir, S.; Wang, F.; Zhen, H.; Lei, W.; Xia, M.; Ouyang, Y.; Muhmood, T. Synthesis of environmentally encouraged, highly robust pollutants reduction 3-D system consisting of Ag/g-C3N4 and Cu-complex to degrade refractory pollutants. J. Photochem. Photobiol. Chem., 2018, (364), 826-836.
[http://dx.doi.org/10.1016/j.jphotochem.2018.04.035]
[201]
Li, C.; Che, H.; Liu, C.; Che, G.; Charpentier, P.A.; Xu, W.Z.; Wang, X.; Liu, L. Facile fabrication of g-C3N4 QDs/BiVO4 Z-scheme heterojunction towards enhancing photodegradation activity under visible light. J. Taiwan Inst. Chem. Eng., 2019, (95), 669-681.
[http://dx.doi.org/10.1016/j.jtice.2018.10.011]
[202]
Chen, D.; Xie, Z.; Zeng, Y.; Lv, W.; Zhang, Q.; Wang, F.; Liu, G.; Liu, H. Accelerated photocatalytic degradation of quinolone antibiotics over Z-scheme MoO3/g-C3N4 heterostructure by peroxydisulfate under visible light irradiation: Mechanism; kinetic; and products. J. Taiwan Inst. Chem. Eng., 2019, (104), 250-259.
[http://dx.doi.org/10.1016/j.jtice.2019.08.007]
[203]
Hassandoost, R.; Pouran, S.R.; Khataee, A.; Orooji, Y.; Joo, S.W. Hierarchically structured ternary heterojunctions based on Ce3+/ Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline. J. Hazard. Mater., 2019, 376(376), 200-211.
[http://dx.doi.org/10.1016/j.jhazmat.2019.05.035 ] [PMID: 31128399]
[204]
Gholami, P.; Khataee, A.; Soltani, R.D.C.; Dinpazhoh, L.; Bhatnagar, A. Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite. J. Hazard. Mater., 2020, 382(382), 121070.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121070 ] [PMID: 31470301]
[205]
Deng, Y.; Tang, L.; Feng, C.; Zeng, G.; Wang, J.; Zhou, Y.; Liu, Y.; Peng, B.; Feng, H. Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation. J. Hazard. Mater., 2018, 344(344), 758-769.
[http://dx.doi.org/10.1016/j.jhazmat.2017.11.027 ] [PMID: 29161670]
[206]
Wang, X.; Lu, W.; Chen, Y.; Li, N.; Zhu, Z.; Wang, G.; Chen, W. Effective elimination of antibiotics over hot-melt adhesive sheath-core polyester fiber supported graphitic carbon nitride under solar irradiation. Chem. Eng. J., 2018, (335), 82-93.
[http://dx.doi.org/10.1016/j.cej.2017.10.061]
[207]
Zhu, Z.; Huo, P.; Lu, Z.; Yan, Y.; Liu, Z.; Shi, W.; Li, C.; Dong, H. Fabrication of magnetically recoverable photocatalysts using g-C3N4 for effective separation of charge carriers through like-Z-scheme mechanism with Fe3O4 mediator. Chem. Eng. J., 2018, (331), 615-625.
[http://dx.doi.org/10.1016/j.cej.2017.08.131]
[208]
Wang, F.; Wang, Y.; Feng, Y.; Zeng, Y.; Xie, Z.; Zhang, Q.; Su, Y.; Chen, P.; Liu, Y.; Yao, K.; Lv, W. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Appl. Catal. B, 2018, (221), 510-520.
[http://dx.doi.org/10.1016/j.apcatb.2017.09.055]
[209]
Wang, J.; Tang, L.; Zeng, G.; Deng, Y.; Liu, Y.; Wang, L.; Zhou, Y.; Guo, Z.; Wang, J.; Zhang, C. Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl. Catal. B, 2017, (209), 285-294.
[http://dx.doi.org/10.1016/j.apcatb.2017.03.019]
[210]
Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Chen, X.; Yu, H.; Wang, H.; Wu, Z.; Zhang, J.; Xiong, T. In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl. Catal. B, 2018, (227), 376-385.
[http://dx.doi.org/10.1016/j.apcatb.2018.01.042]
[211]
Smýkalová, A.; Sokolová, B.; Foniok, K.; Matějka, V.; Praus, P. Photocatalytic degradation of selected pharmaceuticals using g-C3N4 and TiO2 nanomaterials. Nanomaterials (Basel), 2019, 9(9), 1194.
[http://dx.doi.org/10.3390/nano9091194 ] [PMID: 31450849]
[212]
Viet, N.M.; Giang, B.L.; Tri, N.L.M.; Thao, P.; Pham, T.H.; Kamand, F.Z.; Al Tahtamouni, T.M. Noble metal-doped graphitic carbon nitride photocatalyst for enhancement photocatalytic decomposition of antibiotic pollutant in wastewater under visible light. J. Water Process Eng., 2019, (32), 100954.
[http://dx.doi.org/10.1016/j.jwpe.2019.100954]
[213]
Hao, Q.; Chen, T.; Wang, R.; Feng, J.; Chen, D.; Yao, W. A separation-free polyacrylamide/bentonite/graphitic carbon nitride hydrogel with excellent performance in water treatment. J. Clean. Prod., 2018, (197), 1222-1230.
[http://dx.doi.org/10.1016/j.jclepro.2018.06.289]
[214]
Chen, B.; Zhou, L.; Tian, Y.; Yu, J.; Lei, J.; Wang, L.; Liu, Y.; Zhang, J. Z-scheme inverse opal CN/BiOBr photocatalysts for highly efficient degradation of antibiotics. Phys. Chem. Chem. Phys., 2019, 21(24), 12818-12825.
[http://dx.doi.org/10.1039/C9CP01495K ] [PMID: 31165817]
[215]
Zhou, L.; Liu, Z.; Guan, Z.; Tian, B.; Wang, L.; Zhou, Y.; Zhou, Y.; Lei, J.; Zhang, J.; Liu, Y. 0D/2D plasmonic Cu2-xS/g-C3N4 nanosheets harnessing UV-vis-NIR broad spectrum for photocatalytic degradation of antibiotic pollutant. Appl. Catal. B, 2020, (263), 118326.
[http://dx.doi.org/10.1016/j.apcatb.2019.118326]
[216]
Zhu, D.; Zhou, Q. Novel Bi2WO6 modified by N-doped graphitic carbon nitride photocatalyst for efficient photocatalytic degradation of phenol under visible light. Appl. Catal. B, 2020, (268), 118426.
[http://dx.doi.org/10.1016/j.apcatb.2019.118426]
[217]
Zhang, H.; Zhao, L.; Geng, F.; Guo, L.H.; Wan, B.; Yang, Y. Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation. Appl. Catal. B, 2016, (180), 656-662.
[http://dx.doi.org/10.1016/j.apcatb.2015.06.056]
[218]
Zheng, Q.; Durkin, D.P.; Elenewski, J.E.; Sun, Y.; Banek, N.A.; Hua, L.; Chen, H.; Wagner, M.J.; Zhang, W.; Shuai, D. Visible-light-responsive graphitic carbon nitride: rational design and photocatalytic applications for water treatment. Environ. Sci. Technol., 2016, 50(23), 12938-12948.
[http://dx.doi.org/10.1021/acs.est.6b02579 ] [PMID: 27934277]
[219]
Li, J.; Zhang, M.; Li, X.; Li, Q.; Yang, J. Effect of the calcination temperature on the visible light photocatalytic activity of direct contact Z-scheme g-C3N4-TiO2 heterojunction. Appl. Catal. B, 2017, (212), 106-114.
[http://dx.doi.org/10.1016/j.apcatb.2017.04.061]
[220]
Vigneshwaran, S.; Preethi, J.; Meenakshi, S. Removal of chlorpyrifos, an insecticide using metal free heterogeneous graphitic carbon nitride (g-C3N4) incorporated chitosan as catalyst: Photocatalytic and adsorption studies. Int. J. Biol. Macromol., 2019, 132(132), 289-299.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.071 ] [PMID: 30872056]
[221]
Liu, X.; Wu, X.; Long, Z.; Zhang, C.; Ma, Y.; Hao, X.; Zhang, H.; Pan, C. Photodegradation of imidacloprid in aqueous solution by the metal-free catalyst graphitic carbon nitride using an energy-saving lamp. J. Agric. Food Chem., 2015, 63(19), 4754-4760.
[http://dx.doi.org/10.1021/acs.jafc.5b01105 ] [PMID: 25923251]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy