Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

An Overview of Antiviral Properties of Bacteriophages with Emphasis on the Treatment of COVID-19 Infection

Author(s): Mahsa Jalili, Nastaran Ansari, Behzad Pourhossein, Maryam Fazeli and Farid Azizi Jalilian*

Volume 22, Issue 6, 2022

Published on: 20 May, 2022

Article ID: e240122200472 Pages: 7

DOI: 10.2174/1871526522666220124110547

Price: $65

Abstract

Bacteriophages or phages are the most abundant organisms in the biosphere. Scientists considered phages an appropriate tool for understanding molecular biology, horizontal gene transfer vectors, stimulants of bacterial evolution, a source of diagnostic and genetic tools, and new therapeutic agents. Therefore, studying the biology of phages and their interactions with their hosts is crucial to gaining a deeper knowledge of biological systems. Numerous studies confirmed that bacteriophages are a genetic tool with high potential for treating infectious diseases, including bacterial, fungal, and viral infections. Therefore, phages may be used as an appropriate therapeutic target against some viruses, such as COVID-19 infection. In this study, we describe the role of phages in modulating the host immune system, the production of specific antibodies against the COVID-19 virus by the host immune system, and the minimization of damage caused by the COVID-19 virus to the host. Also, the present study expresses our understanding of the prospect of phage therapy as an adjunctive therapy.

Keywords: Bacteriophage, bacteriophage therapy, COVID-19, SARS-CoV-2, phage therapy, infectious diseases.

Graphical Abstract

[1]
Fouladvand F, Bemani P, Mohammadi M, Amini R, Azizi Jalilian F. A review of the methods for concentrating M13 phage. J Appl Biotechnol Rep 2020; 7(1): 7-15.
[2]
Teijaro JR, Farber DL. COVID-19 vaccines: modes of im-mune activation and future challenges. Nat Rev Immunol 2021; 7(5): 4-9.
[3]
Jalili M, Ansari N, Bakhtiari S, Jalilian FA. Phage therapy in the treatment of infectious diseases: An overview. Open Biomark J 2021; 11(1): 126-39.
[4]
Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020; 55(3): 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[5]
Mishra VN, Kumari N, Pathak A, Chaturvedi RK, Gupta AK, Chaurasia RN. Possible role for bacteriophages in the treat-ment of SARS-CoV-2 infection. Int J Microbiol 2020; 2020(2): 8844963.
[http://dx.doi.org/10.1155/2020/8844963] [PMID: 32963540]
[6]
Singh AK, Gaur V, Kumar A. Role of phage therapy in COVID-19 infection: Future prospects. bacteriophages. IntechOpen 2021; 65(1): 4-35.
[http://dx.doi.org/10.5772/intechopen.96788]
[7]
Ndwandwe D, Wiysonge CS. COVID-19 vaccines. Curr Opin Immunol 2021; 71(4): 111-6.
[http://dx.doi.org/10.1016/j.coi.2021.07.003] [PMID: 34330017]
[8]
Silveira MM, Moreira GMSG, Mendonça M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci 2021; 267: 118919.
[http://dx.doi.org/10.1016/j.lfs.2020.118919] [PMID: 33352173]
[9]
Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell 2021; 184(7): 1671-92.
[http://dx.doi.org/10.1016/j.cell.2021.02.029] [PMID: 33743212]
[10]
Jalili M, Mahmoodabadi KA, Sayehmiri K. Relationship between and periodontal diseases: A meta-analysis study and systematic review. Open Dentistry J 2020; 14(1): 362-8.
[11]
McIntosh K, Chao RK, Krause HE, Wasil R, Mocega HE, Mufson MA. Coronavirus infection in acute lower respirato-ry tract disease of infants. J Infect Dis 1974; 130(5): 502-7.
[http://dx.doi.org/10.1093/infdis/130.5.502] [PMID: 4371278]
[12]
Wojewodzic MW. Bacteriophages could be a potential game changer in the trajectory of coronavirus disease (COVID-19). PHAGE 2020; 1(2): 60-5.
[http://dx.doi.org/10.1089/phage.2020.0014]
[13]
Jalili M, Sharifi S, Abdal K, Daneshyar F. Eradication of biofilm formation by Crocus sativus alcoholic extract in Streptococcus mutans clinical isolates. J Medicinal Plants By-product 2021; 10(Special): 39-42.
[14]
Jalili M. Prediction of toxin-antitoxin system (TA system) as a novel potent target in Salmonella typhi using bioinformatics analysis. Modern Med Lab J 2020; 3(1): 30-4.
[15]
Jalili M, Amraei M, Sadeghifard N, Ghafourian S. Evaluation of biofilm formation and anti-biofilm properties of and in clinical isolates. Open Microbiol J 2019; 13(1): 297-300.
[16]
Skurnik M, Pajunen M, Kiljunen S. Biotechnological chal-lenges of phage therapy. Biotechnol Lett 2007; 29(7): 995-1003.
[http://dx.doi.org/10.1007/s10529-007-9346-1] [PMID: 17364214]
[17]
Fernández L, Duarte AC, Rodríguez A, García P. The rela-tionship between the phageome and human health: Are bacte-riophages beneficial or harmful microbes? Benef Microbes 2021; 12(2): 107-20.
[http://dx.doi.org/10.3920/BM2020.0132] [PMID: 33789552]
[18]
Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N. A review of phage therapy against bacterial pathogens of aquat-ic and terrestrial organisms. Viruses 2017; 9(3): 50.
[http://dx.doi.org/10.3390/v9030050] [PMID: 28335451]
[19]
Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol 2020; 11: 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[20]
Song W, Zhang J, Guo J, et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanopar-ticles. Toxicol Lett 2010; 199(3): 389-97.
[http://dx.doi.org/10.1016/j.toxlet.2010.10.003] [PMID: 20934491]
[21]
Przerwa A, Zimecki M. Switała-Jeleń K, et al. Effects of bacteriophages on free radical production and phagocytic functions. Med Microbiol Immunol (Berl) 2006; 195(3): 143-50.
[http://dx.doi.org/10.1007/s00430-006-0011-4] [PMID: 16447074]
[22]
Bodner K, Melkonian AL, Covert MW. The enemy of my enemy: New insights regarding bacteriophage–mammalian cell interactions. Trends Microbiol 2020; 9(3): 3-6.
[http://dx.doi.org/10.1016/j.tim.2020.10.014] [PMID: 33243546]
[23]
Halpern MD, Kurlander RJ, Pisetsky DS. Bacterial DNA induces murine interferon-γ production by stimulation of in-terleukin-12 and tumor necrosis factor-&#945. Cell Immunol 1996; 167(1): 72-8.
[http://dx.doi.org/10.1006/cimm.1996.0009] [PMID: 8548847]
[24]
Bhowmick GD, Dhar D, Nath D, Ghangrekar MM, Banerjee R, Das S. Coronavirus disease 2019 (COVID-19) outbreak: Some serious consequences with urban and rural water cy-cle. Npj Clean Water 2020; 3(1): 1-8.
[http://dx.doi.org/10.1038/s41545-020-0079-1]
[25]
Van Belleghem JD. Dąbrowska K, Vaneechoutte M, Barr JJ. Phage Interaction with the mammalian immune system. In: Belleghem JDV, Dąbrowska K, Vaneechoutte M, Barr JJ, Eds. Phage Therapy: A Practical Approach. Cham: Springer 2019 2019; pp. 91-122.
[http://dx.doi.org/10.1007/978-3-030-26736-0_4]
[26]
Vareille M, Kieninger E, Edwards MR, Regamey N. The airway epithelium: Soldier in the fight against respiratory vi-ruses. Clin Microbiol Rev 2011; 24(1): 210-29.
[http://dx.doi.org/10.1128/CMR.00014-10] [PMID: 21233513]
[27]
Górski A, Międzybrodzki R, Jończyk-Matysiak E, Borysowski J, Letkiewicz S, Weber-Dąbrowska B. Expert Opinion Biol Ther 2019; 19(11): 1115-7.
[http://dx.doi.org/10.1080/14712598.2019.1651287] [PMID: 31364887]
[28]
Noor R. A comparative review of pathogenesis and host innate immunity evasion strategies among the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV). Arch Microbiol 2021; 203(5): 1943-51.
[http://dx.doi.org/10.1007/s00203-021-02265-y] [PMID: 33682075]
[29]
Conti P, Younes A. Coronavirus COV-19/SARS-CoV-2 af-fects women less than men: Clinical response to viral infec-tion. J Biol Regul Homeost Agents 2020; 34(2): 339-43.
[http://dx.doi.org/10.23812/Editorial-Conti-3] [PMID: 32253888]
[30]
Jung HS, Kang BJ, Ra SW, et al. Elucidation of bacterial pneumonia-causing pathogens in patients with respiratory vi-ral infection. Tuberc Respir Dis (Seoul) 2017; 80(4): 358-67.
[http://dx.doi.org/10.4046/trd.2017.0044] [PMID: 28905531]
[31]
Frieman M, Heise M, Baric R. SARS coronavirus and innate immunity. Virus Res 2008; 133(1): 101-12.
[http://dx.doi.org/10.1016/j.virusres.2007.03.015] [PMID: 17451827]
[32]
Hargreaves KR, Clokie MR. Clostridium difficile phages: Still difficult? Front Microbiol 2014; 5: 184.
[http://dx.doi.org/10.3389/fmicb.2014.00184] [PMID: 24808893]
[33]
Shukra AM, Sridevi NV, Dev C, Kapil M. Production of recombinant antibodies using bacteriophages. Eur J Microbiol Immunol (Bp) 2014; 4(2): 91-8.
[http://dx.doi.org/10.1556/EuJMI.4.2014.2.1] [PMID: 24883194]
[34]
Górski A. Górski A, Jończyk-Matysiak E, Łusiak-Szelachowska M, Międzybrodzki R, Weber-Dąbrowska B, Borysowski J. Bac-teriophages targeting intestinal epithelial cells: A potential novel form of immunotherapy. Cell Mol Life Sci 2018; 75(4): 589-95.
[http://dx.doi.org/10.1007/s00018-017-2715-6] [PMID: 29164271]
[35]
Jafarzadeh A, Jafarzadeh S, Nozari P, Mokhtari P, Nemati M. Lymphopenia an important immunological abnormality in patients with COVID-19: Possible mechanisms. Scandinavi-an J Immunol 2021; 93(2): e12967.
[http://dx.doi.org/10.1111/sji.12967] [PMID: 32875598]
[36]
Li C, Chu H, Liu X, et al. Human coronavirus dependency on host heat shock protein 90 reveals an antiviral target. Emerg Microbes Infect 2020; 9(1): 2663-72.
[http://dx.doi.org/10.1080/22221751.2020.1850183] [PMID: 33179566]
[37]
Smith DF, Sullivan WP, Marion TN, et al. Identification of a 60-kilodalton stress-related protein, p60, which interacts with hsp90 and hsp70. Mol Cell Biol 1993; 13(2): 869-76.
[http://dx.doi.org/10.1128/mcb.13.2.869-876.1993] [PMID: 8423808]
[38]
Przybylski M, Borysowski J, Jakubowska-Zahorska R. Weber- Dąbrowska B, Górski A. T4 bacteriophage-mediated in-hibition of adsorption and replication of human adenovirus in vitro. Future Microbiol 2015; 10(4): 453-60.
[http://dx.doi.org/10.2217/fmb.14.147] [PMID: 25865186]
[39]
Ryan EM, Gorman SP, Donnelly RF, Gilmore BF. Recent advances in bacteriophage therapy: How delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol 2011; 63(10): 1253-64.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01324.x] [PMID: 21899540]
[40]
Górski A. Międzybrodzki R, Jończyk-Matysiak E, Weber- Dąbrowska B, Bagińska N, Borysowski J. Perspectives of phage-eukaryotic cell interactions to control epstein-barr vi-rus infections. Front Microbiol 2018; 9: 630.
[http://dx.doi.org/10.3389/fmicb.2018.00630] [PMID: 29666617]
[41]
Górski A, Bollyky PL, Przybylski M, et al. Perspectives of phage therapy in non-bacterial infections. Front Microbiol 2019; 9: 3306.
[http://dx.doi.org/10.3389/fmicb.2018.03306] [PMID: 30687285]
[42]
Górski A. Międzybrodzki R, Żaczek M, Borysowski J. Phag-es in the fight against COVID-19. Front Microbiol 2020; 1095-100.
[http://dx.doi.org/10.2217/fmb-2020-0082] [PMID: 32845164]
[43]
Furr SR, Chauhan VS, Moerdyk-Schauwecker MJ, Marriott I. A role for DNA-dependent activator of interferon regulatory factor in the recognition of herpes simplex virus type 1 by glial cells. J Neuroinflammation 2011; 8(1): 99.
[http://dx.doi.org/10.1186/1742-2094-8-99] [PMID: 21838860]
[44]
Gerchman Y, Mamane H, Friedman N, Mandelboim M. UV-LED disinfection of Coronavirus: Wavelength effect. J Photochem Photobiol B 2020; 212: 112044.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.112044] [PMID: 33022467]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy