Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Mini-Review Article

Recent Advances in Classification of Brain Tumor from MR Images – State of the Art Review from 2017 to 2021

Author(s): Ghazanfar Latif*, Faisal Yousif Al Anezi, D.N.F. Awang Iskandar, Abul Bashar and Jaafar Alghazo

Volume 18, Issue 9, 2022

Published on: 05 April, 2022

Article ID: e170122200307 Pages: 16

DOI: 10.2174/1573405618666220117151726

Price: $65

Abstract

Background: The task of identifying a tumor in the brain is a complex problem that requires sophisticated skills and inference mechanisms to accurately locate the tumor region. The complex nature of the brain tissue makes the problem of locating, segmenting, and ultimately classifying Magnetic Resonance (MR) images a complex problem. The aim of this review paper is to consolidate the details of the most relevant and recent approaches proposed in this domain for the binary and multi-class classification of brain tumors using brain MR images.

Objective: In this review paper, a detailed summary of the latest techniques used for brain MR image feature extraction and classification is presented. A lot of research papers have been published recently with various techniques proposed for identifying an efficient method for the correct recognition and diagnosis of brain MR images. The review paper allows researchers in the field to familiarize themselves with the latest developments and be able to propose novel techniques that have not yet been explored in this research domain. In addition, the review paper will facilitate researchers who are new to machine learning algorithms for brain tumor recognition to understand the basics of the field and pave the way for them to be able to contribute to this vital field of medical research.

Results: In this paper, the review is performed for all recently proposed methods for both feature extraction and classification. It also identifies the combination of feature extraction methods and classification methods that, when combined, would be the most efficient technique for the recognition and diagnosis of brain tumor from MR images. In addition, the paper presents the performance metrics, particularly the recognition accuracy, of selected research published between 2017-2021.

Keywords: Brain tumor detection, feature extraction, Magnetic Resonance (MR) image classification, convolutional neural networks, deep learning, glioma tumor classification.

Graphical Abstract

[1]
Overcast WB, Davis KM, Ho CY, et al. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep 2021; 23(3): 34.
[http://dx.doi.org/10.1007/s11912-021-01020-2] [PMID: 33599882]
[2]
Lizio G, Salizzoni E, Coe M, et al. Differential diagnosis between a granuloma and radicular cyst: Effectiveness of magnetic resonance imaging. Int Endod J 2018; 51(10): 1077-87.
[http://dx.doi.org/10.1111/iej.12933] [PMID: 29618163]
[3]
Agravat RR, Raval MS. Deep learning for automated brain tumor segmentation in MRI images. In: Dey N, Ashour AS, Balas VE, Shi F, Eds. Soft Computing Based Medical Image Analysis. Cambridge, Massachusetts: Academic Press 2018; pp. 183-201.
[http://dx.doi.org/10.1016/B978-0-12-813087-2.00010-5]
[4]
Biratu ES, Schwenker F, Ayano YM, Debelee TG. A survey of brain tumor segmentation and classification algorithms. J Imaging 2021; 7(9): 179.
[http://dx.doi.org/10.3390/jimaging7090179] [PMID: 34564105]
[5]
Kaur P, Singh G, Kaur P. A review of denoising medical images using machine learning approaches. Curr Med Imaging Rev 2018; 14(5): 675-85.
[http://dx.doi.org/10.2174/1573405613666170428154156] [PMID: 30532667]
[6]
Chamberland M, Raven EP, Genc S, et al. Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain. Neuroimage 2019; 200: 89-100.
[http://dx.doi.org/10.1016/j.neuroimage.2019.06.020] [PMID: 31228638]
[7]
Magadza T, Viriri S. Deep learning for brain tumor segmentation: A survey of state-of-the-art. J Imaging 2021; 7(2): 19.
[http://dx.doi.org/10.3390/jimaging7020019] [PMID: 34460618]
[8]
Singh R, Goel A, Raghuvanshi DK. Computer-aided diagnostic network for brain tumor classification employing modulated Gabor filter banks. Vis Comput 2021; 37: 2157-71.
[9]
Latif G, Iskandar DA, Alghazo J. Multi-class brain tumor classification using region growing based tumor segmentation and ensemble wavelet features. In: Proceedings of the 2018 International Conference on Computing and Big Data; 2018 September 8-10; Charleston, USA; pp. 67-72.
[http://dx.doi.org/10.1145/3277104.3278311]
[10]
Kavin KK, Meera DT, Maheswaran S. An efficient method for brain tumor detection using texture features and SVM classifier in MR images. Asian Pac J Cancer Prev 2018; 19(10): 2789-94.
[PMID: 30360607]
[11]
Morais CLM, Lima KMG, Martin FL. Uncertainty estimation and misclassification probability for classification models based on discriminant analysis and support vector machines. Anal Chim Acta 2019; 1063: 40-6.
[http://dx.doi.org/10.1016/j.aca.2018.09.022] [PMID: 30967184]
[12]
Kaplan K, Kaya Y, Kuncan M, Ertunç HM. Brain tumor classification using modified Local Binary Patterns (LBP) feature extraction methods. Med Hypotheses 2020; 139: 109696.
[http://dx.doi.org/10.1016/j.mehy.2020.109696] [PMID: 32234609]
[13]
Bazine R, Wu H, Boukhechba K. Spatial filtering in DCT domain-based frameworks for hyperspectral imagery classification. Remote Sens 2019; 11(12): 1405.
[http://dx.doi.org/10.3390/rs11121405]
[14]
Ayadi W, Elhamzi W, Charfi I, Atri M. A hybrid feature extraction approach for brain MRI classification based on Bag-of-words. Biomed Signal Process Control 2019; 48: 144-52.
[http://dx.doi.org/10.1016/j.bspc.2018.10.010]
[15]
Fasihi MS, Mikhael WB. MRI brain tumor classification Employing transform Domain projections. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). 2020 Aug 9-12; Springfield, USA; pp. 1020-3.
[http://dx.doi.org/10.1109/MWSCAS48704.2020.9184678]
[16]
Goel A, Vishwakarma VP. Fractional DCT and DWT hybridization based efficient feature extraction for gender classification. Pattern Recognit Lett 2017; 95: 8-13.
[http://dx.doi.org/10.1016/j.patrec.2017.05.014]
[17]
Lapins S, Roman DC, Rougier J, De Angelis S, Cashman KV, Kendall JM. An examination of the continuous wavelet transform for volcano-seismic spectral analysis. J Volcanol Geotherm Res 2020; 389: 106728.
[http://dx.doi.org/10.1016/j.jvolgeores.2019.106728]
[18]
Mohankumar S. Analysis of different wavelets for brain image classification using support vector machine. Int J Adv Signal Image Sci 2016; 2(1): 1-4.
[http://dx.doi.org/10.29284/IJASIS.2.1.2016.1-4]
[19]
Barigye SJ, Freitas MP, Ausina P, Zancan P, Sola-Penna M, Castillo-Garit JA. Discrete Fourier transform-based multivariate image analysis: Application to modeling of aromatase inhibitory activity. ACS Comb Sci 2018; 20(2): 75-81.
[http://dx.doi.org/10.1021/acscombsci.7b00155] [PMID: 29297675]
[20]
Saeed S, Abdullah A, Jhanjhi NZ. Implementation of fourier transformation with brain cancer and CSF images. Indian J Sci Technol 2019; 12: 37.
[http://dx.doi.org/10.17485/ijst/2019/v12i37/146151]
[21]
Seifi Majdar R, Ghassemian H. A probabilistic SVM approach for hyperspectral image classification using spectral and texture features. Int J Remote Sens 2017; 38(15): 4265-84.
[http://dx.doi.org/10.1080/01431161.2017.1317941]
[22]
Kuess P, Andrzejewski P, Nilsson D, et al. Association between pathology and texture features of multi parametric MRI of the prostate. Phys Med Biol 2017; 62(19): 7833-54.
[http://dx.doi.org/10.1088/1361-6560/aa884d] [PMID: 28837046]
[23]
Zhang J, Geng W, Liang X, Li J, Zhuo L, Zhou Q. Hyperspectral remote sensing image retrieval system using spectral and texture features. Appl Opt 2017; 56(16): 4785-96.
[http://dx.doi.org/10.1364/AO.56.004785] [PMID: 29047616]
[24]
Hameed SAA, Radi MAH, Gaata MT. Medical image classification approach based on texture information. Iraqi J Information Technol 2018; 8(3): 114-28.
[http://dx.doi.org/10.34279/0923-008-003-011]
[25]
Ismael MR, Abdel-Qader I. Brain tumor classification via statistical features and back-propagation neural network. 2018 IEEE International Conference on Electro/Information Technology (EIT). 2018 May 3-5; Rochester, MI, USA. 0252-7.
[26]
Kandemirli SG, Chopra S, Priya S, et al. Presurgical detection of brain invasion status in meningiomas based on first-order histogram based texture analysis of contrast enhanced imaging. Clin Neurol Neurosurg 2020; 198: 106205.
[http://dx.doi.org/10.1016/j.clineuro.2020.106205] [PMID: 32932028]
[27]
Qurat-Ul-Ain Ghazanfar L, Kazmi SB, Jaffar MA, Mirza AM. Classification and segmentation of brain tumor using texture analysis. Recent Advances in Artificial Intelligence, Knowledge Engineering and Data Bases: Proceedings O the 9th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases (AIKED'10) 2010 Feb 20-22; University of Cambridge, UK. 147-55.
[28]
Latif G, Iskandar DA, Alghazo JM, Mohammad N. Enhanced MR image classification using hybrid statistical and wavelets features. IEEE Access 2018; 7: 9634-44.
[http://dx.doi.org/10.1109/ACCESS.2018.2888488]
[29]
Shaheen F, Verma B, Asafuddoula M. Impact of automatic feature extraction in deep learning architecture. In: 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA); 2016 30 Nov-2 Dec; Gold Coast, QLD, Australia; pp. 1-8.
[http://dx.doi.org/10.1109/DICTA.2016.7797053]
[30]
Shaikh E, Mohiuddin I, Manzoor A, Latif G, Mohammad N. Automated grading for handwritten answer sheets using convolutional neural networks. In: 2019 2nd International Conference on New Trends in Computing Sciences (ICTCS); 2019 Oct 9-11; Amman, Jordon; pp. 1-6.
[http://dx.doi.org/10.1109/ICTCS.2019.8923092]
[31]
Butt MM, Latif G, Iskandar DA, Alghazo J, Khan AH. Multi-channel convolutions neural network based diabetic retinopathy detection from fundus images. Procedia Comput Sci 2019; 163: 283-91.
[http://dx.doi.org/10.1016/j.procs.2019.12.110]
[32]
Alghmgham DA, Latif G, Alghazo J, Alzubaidi L. Autonomous Traffic Sign (ATSR) detection and recognition using deep CNN. Procedia Comput Sci 2019; 163: 266-74.
[http://dx.doi.org/10.1016/j.procs.2019.12.108]
[33]
Lee WY, Park SM, Sim KB. Optimal hyperparameter tuning of convolutional neural networks based on the parameter-setting-free harmony search algorithm. Optik (Stuttg) 2018; 172: 359-67.
[http://dx.doi.org/10.1016/j.ijleo.2018.07.044]
[34]
Latif G, Alghazo J, Alzubaidi L, Naseer MM, Alghazo Y. Deep convolutional neural network for recognition of unified multi-language handwritten numerals. In: 2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR); 2018 Mar 12-14; London, UK; pp. 90-5.
[http://dx.doi.org/10.1109/ASAR.2018.8480289]
[35]
Abiwinanda N, Hanif M, Hesaputra ST, Handayani A, Mengko TR. Brain tumor classification using convolutional neural network. In: Lhotska L., Sukupova L., Lacković I, Ibbott G, Eds. World Congress on Medical Physics and Biomedical Engineering; : Springer, 2018, pp.183-9.
[http://dx.doi.org/10.1007/978-981-10-9035-6_33]
[36]
Soltaninejad M, Zhang L, Lambrou T, Yang G, Allinson N, Ye X. MRI brain tumor segmentation and patient survival prediction using random forests and fully convolutional networks. In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M, Eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017; Cham: Springer; 2018; pp. 204-15.
[37]
Bhattacharjee K, Pant M. Hybrid particle swarm optimization-genetic algorithm trained multi-layer perceptron for classification of human glioma from molecular brain neoplasia data. Cogn Syst Res 2019; 58: 173-94.
[http://dx.doi.org/10.1016/j.cogsys.2019.06.003]
[38]
Deepa AR. MRI brain tumor classification using cuckoo search support vector machines and particle swarm optimization based feature selection. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI); 2018 May 11-12; Tirunelveli, India; pp. 1213-6.
[http://dx.doi.org/10.1109/ICOEI.2018.8553697]
[39]
Kaur T, Saini BS, Gupta S. An adaptive fuzzy K-nearest neighbor approach for MR brain tumor image classification using parameter free bat optimization algorithm. Multimedia Tools Appl 2019; 78(15): 21853-90.
[http://dx.doi.org/10.1007/s11042-019-7498-3]
[40]
Brunese L, Mercaldo F, Reginelli A, Santone A. An ensemble learning approach for brain cancer detection exploiting radiomic features. Comput Methods Programs Biomed 2020; 185: 105134.
[http://dx.doi.org/10.1016/j.cmpb.2019.105134] [PMID: 31675644]
[41]
Anaraki A K, Ayati M, Kazemi F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybernetics and biomedical engineering 2019; 39(1): 63-74.
[42]
Yap FY, Varghese BA, Cen SY, et al. Shape and texture-based radiomics signature on CT effectively discriminates benign from malignant renal masses. Eur Radiol 2021; 31(2): 1011-21.
[PMID: 32803417]
[43]
Biau G, Scornet E. A random forest guided tour. Test 2016; 25(2): 197-227.
[http://dx.doi.org/10.1007/s11749-016-0481-7]
[44]
Soltaninejad M, Yang G, Lambrou T, et al. Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Comput Methods Programs Biomed 2018; 157: 69-84.
[http://dx.doi.org/10.1016/j.cmpb.2018.01.003] [PMID: 29477436]
[45]
Bisong E. The Multilayer Perceptron (MLP). In: Bisong E, Ed. Building Machine Learning and Deep Learning Models on Google Cloud Platform. Berkeley, CA: O'reilly 2019; pp. 401-5.
[46]
Chen SG, Wu XJ. A new fuzzy twin support vector machine for pattern classification. Int J Mach Learn Cybern 2018; 9(9): 1553-64.
[http://dx.doi.org/10.1007/s13042-017-0664-x]
[47]
Xie S, Li Z, Hu H. Protein secondary structure prediction based on the fuzzy support vector machine with the hyperplane optimization. Gene 2018; 642: 74-83.
[http://dx.doi.org/10.1016/j.gene.2017.11.005] [PMID: 29104167]
[48]
Foody GM, Mathur A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sens Environ 2006; 103(2): 179-89.
[http://dx.doi.org/10.1016/j.rse.2006.04.001]
[49]
Mahmoud AA, Alawadh INA, Latif G, Alghazo J. Smart nursery for smart cities: Infant sound classification based on novel features and support vector classifier. 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE). 2020 Apr 14-16; Antalya, Turkey. 47-52.
[50]
Shukla AK, Singh P, Vardhan M. A new hybrid wrapper TLBO and SA with SVM approach for gene expression data. Inf Sci 2019; 503: 238-54.
[http://dx.doi.org/10.1016/j.ins.2019.06.063]
[51]
Kharya S, Agrawal S, Soni S. Naive Bayes classifiers: A probabilistic detection model for breast cancer. Int J Comput Appl 2014; 92(10): 0975-8887.
[52]
De Campos CP. New complexity results for MAP in Bayesian networks. IJCAI (U S) 2011; 11: 2100-6.
[53]
Latif G, Iskandar D A, Jaffar A, Butt M M. Multimodal brain tumor segmentation using neighboring image features. J Telecommun Electron Comput Eng 2017; 9(2-9): 37-42.
[54]
Malini Devi G, Seetha M, Sunitha KVN. A Novel K-Nearest Neighbor Technique for Data Clustering using Swarm Optimization. Int J Geoinformatics 2016; 12(1)
[55]
Ajai AR, Gopalan S. Analysis of active contours without edge-based segmentation technique for brain tumor classification using SVM and KNN classifiers. In: Jayakumari J, Karagiannidis G, Ma M, Hossain S, Eds. Advances in Communication Systems and Networks. Singapore: Springer 2020; pp. 1-10.
[http://dx.doi.org/10.1007/978-981-15-3992-3_1]
[56]
Győrfi Á, Kovács L, Szilágyi L. Brain tumor detection and segmentation from magnetic resonance image data using ensemble learning methods. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). 2019 Oct 6-9; Bari, Italy. 909-14.
[http://dx.doi.org/10.1109/SMC.2019.8914463]
[57]
Farias G, Dormido-Canto S, Vega J, Martinez I, Alfaro L, Martinez F. Adaboost classification of TJ-II Thomson Scattering images. Fusion Eng Des 2017; 123: 759-63.
[http://dx.doi.org/10.1016/j.fusengdes.2017.05.042]
[58]
Usman K, Rajpoot K. Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Anal Appl 2017; 20(3): 871-81.
[http://dx.doi.org/10.1007/s10044-017-0597-8]
[59]
Lahoz-Beltra R, Rodriguez RJ. Modeling a cancerous tumor development in a virtual patient suffering from a depressed state of mind: Simulation of somatic evolution with a customized genetic algorithm. Biosystems 2020; 198: 104261.
[http://dx.doi.org/10.1016/j.biosystems.2020.104261] [PMID: 33002528]
[60]
Hemanth DJ, Anitha J. Modified Genetic Algorithm approaches for classification of abnormal magnetic resonance brain tumour images. Appl Soft Comput 2019; 75: 21-8.
[http://dx.doi.org/10.1016/j.asoc.2018.10.054]
[61]
Sajjad M, Khan S, Muhammad K, Wu W, Ullah A, Baik SW. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J Comput Sci 2019; 30: 174-82.
[http://dx.doi.org/10.1016/j.jocs.2018.12.003]
[62]
Raja PM. Siva. “Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach. Biocybern Biomed Eng 2020; 40(1): 440-53.
[http://dx.doi.org/10.1016/j.bbe.2020.01.006]
[63]
Kumar S, Mankame DP. Optimization driven deep convolution neural network for brain tumor classification. Biocybern Biomed Eng 2020; 40(3): 1190-204.
[http://dx.doi.org/10.1016/j.bbe.2020.05.009]
[64]
Latif G, Iskandar DNFA, Alghazo J, Butt MM. Brain MR image classification for glioma tumor detection using deep convolutional neural network features. Curr Med Imaging 2021; 17(1): 56-63.
[65]
Mzoughi H, Njeh I, Wali A, et al. Deep multi-scale 3D Convolutional Neural Network (CNN) for MRI gliomas brain tumor classification. J Digit Imaging 2020; 33(4): 903-15.
[http://dx.doi.org/10.1007/s10278-020-00347-9] [PMID: 32440926]
[66]
Arasi PRE, Suganthi M. A clinical support system for brain tumor classification using soft computing techniques. J Med Syst 2019; 43(5): 144.
[http://dx.doi.org/10.1007/s10916-019-1266-9] [PMID: 30989341]
[67]
Srinivas B, Rao GS. A Hybrid CNN-KNN model for MRI brain tumor classification. IJAST 2019; 127: 20-5.
[68]
Chinnam S, Sistla VPK, Kolli VKK. SVM-PUK Kernel based MRI-brain tumor identification using texture and Gabor wavelets. Traitement du Signal 2019; 36(2): 185-91.
[http://dx.doi.org/10.18280/ts.360209]
[69]
Seetha J, Raja SS. Brain tumor classification using convolutional neural networks. Biomed Pharmacol J 2018; 11(3): 1457.
[http://dx.doi.org/10.13005/bpj/1511]
[70]
Sriramakrishnan P, Kalaiselvi T, Nagaraja P, Mukila K. Tumorous slices classification from MRI brain volumes using block based features extraction and random forest classifier. Int J Comput Sci Eng May 2018; 6(4): 191-6.
[71]
Amin J, Sharif M, Yasmin M, Fernandes SL. A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognit Lett 2020; 139: 118-27.
[72]
Latif G, Iskandar DA, Alghazo J, Jaffar A. Improving brain MR image classification for tumor segmentation using phase congruency. Curr Med Imaging 2018; 14(6): 914-22.
[http://dx.doi.org/10.2174/1573405614666180402150218]
[73]
Wasule V, Sonar P. Classification of brain MRI using SVM and KNN classifier. 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS). 2017 May 4-5; Chennai, India. 2017; pp. 218-23.
[http://dx.doi.org/10.1109/SSPS.2017.8071594]
[74]
Bahadure NB, Ray AK, Thethi HP. Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. Int J Biomed Imaging 2017; 2017: 9749108.
[http://dx.doi.org/10.1155/2017/9749108] [PMID: 28367213]
[75]
Swati ZNK, Zhao Q, Kabir M, et al. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput Med Imaging Graph 2019; 75: 34-46.
[http://dx.doi.org/10.1016/j.compmedimag.2019.05.001] [PMID: 31150950]
[76]
Amin J, Sharif M, Gul N, Yasmin M, Shad SA. Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network. Pattern Recognit Lett 2020; 129: 115-22.
[http://dx.doi.org/10.1016/j.patrec.2019.11.016]
[77]
Khan MA, Ashraf I, Alhaisoni M, et al. Multimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologists. Diagnostics (Basel) 2020; 10(8): 565.
[http://dx.doi.org/10.3390/diagnostics10080565] [PMID: 32781795]
[78]
Xue Y, Yang Y, Farhat FG, et al. Brain tumor classification with tumor segmentations and a dual path residual convolutional neural network from MRI and pathology images. In: Crimi A, Bakas S, Eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Cham: Springer; 2019; pp. 360-7.
[79]
Rehman A, Khan MA, Saba T, Mehmood Z, Tariq U, Ayesha N. Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture. Microsc Res Tech 2021; 84(1): 133-49.
[http://dx.doi.org/10.1002/jemt.23597] [PMID: 32959422]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy