Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Ethnomedicinal Uses, Phytochemistry, Pharmacology, and Toxicity of the Genus Nymphaea L.: A Review

Author(s): Boniface Pone Kamdem*, Eutrophe Le Doux Kamto, Aboubakar, Dieudonné Emmanuel Pegnyemb and Ferreira Elizabeth Igne

Volume 18, Issue 8, 2022

Published on: 10 March, 2022

Article ID: e110122200133 Pages: 39

DOI: 10.2174/1573407218666220111110352

Price: $65

Abstract

Background: Plants from the genus Nymphaea L. have been used for decades to treat various diseases, including dysentery, diarrhea, uterine cancer, gonorrhea, inflammation conditions, etc. The present study aims to critically analyze comprehensive literature on ethnopharmacological uses, phytochemistry, pharmacology, and toxicity of Nymphaea L.

Methods: The available information on Nymphaea L. was obtained from textbooks, theses, as well as published articles through libraries and electronic databases.

Results: More than 150 compounds, including flavonoids, phenolics, alkaloids, miscellaneous compounds, etc. were identified from Nymphaea L. extracts, and pure molecules from Nymphaea L. exhibited a wide range of pharmacological activities, including antimicrobial, anti-inflammatory, anticancer, immunomodulatory, hepatoprotective, antioxidant, cytotoxic, etc.

Conclusion: According to in vitro and in vivo studies, Nymphaea sp. are very promising medicinal plants. However, more in vivo experiments, cytotoxicity tests, and detailed mechanisms of action of their extracts and compounds are recommended to translate their ethnomedicinal claims into scientific rationale-based information.

Keywords: Drug discovery, ethnomedicine, Nymphaea L., pharmacology, phytochemistry, secondary metabolites.

Graphical Abstract

[1]
Ullah, R.; Alqahtani, A.S.; Noman, O.M.A.; Alqahtani, A.M.; Ibenmoussa, S.; Bourhia, M. A review on ethno-medicinal plants used in traditional medicine in the Kingdom of Saudi Arabia. Saudi J. Biol. Sci., 2020, 27(10), 2706-2718.
[http://dx.doi.org/10.1016/j.sjbs.2020.06.020] [PMID: 32994730]
[2]
Schulze, A. Cosmetic care of grey hair comprising melatonin. Ger. Offen., 2017.
[3]
Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(5), 210-229.
[http://dx.doi.org/10.4314/ajtcam.v10i5.2] [PMID: 24311829]
[4]
Khan, N.; Sharma, S.; Alam, A.; Saleem, M.; Sultana, S. Tephrosia purpurea ameliorates N-diethylnitrosamine and potassium bromate-mediated renal oxidative stress and toxicity in Wistar rats. Pharmacol. Toxicol., 2001, 88(6), 294-299.
[http://dx.doi.org/10.1034/j.1600-0773.2001.880602.x] [PMID: 11453368]
[5]
Khan, N.; Sultana, S. Anticarcinogenic effect of Nymphaea alba against oxidative damage, hyperproliferative response and renal carcinogenesis in Wistar rats. Mol. Cell. Biochem., 2005, 271(1-2), 1-11.
[http://dx.doi.org/10.1007/s11010-005-2258-2] [PMID: 15881650]
[6]
Rodrigues, E.; Tabach, R.; Galduroz, J.C.F.; Negri, G. Plants with possible anxiolytic and/or hypnotic effects indicated by three Brazilian cultures-Indians, Afro-Brazilians, and river dwellers. Stud. Nat. Prod. Chem., 2008, 35, 549-595.
[http://dx.doi.org/10.1016/S1572-5995(08)80014-2]
[7]
Sonowal, R.; Barua, I. Ethnomedical practices among the Tai-Khamyangs of Assam, India. Ethno. Med., 2011, 5(1), 41-50.
[http://dx.doi.org/10.1080/09735070.2011.11886390]
[8]
The Plant List. 2021. Available from: http://www.theplantlist.org/tpl1.1/search?q=Nymphaea+L Accessed on 18th March 2021.
[9]
Bajpai, V.K.; Alam, M.B.; Ju, M-K.; Kwon, K-R.; Huh, Y.S.; Han, Y-K.; Lee, S.H. Antioxidant mechanism of polyphenol-rich Nymphaea nouchali leaf extract protecting DNA damage and attenuating oxidative stress-induced cell death via Nrf2-mediated heme-oxygenase-1 induction coupled with ERK/p38 signaling pathway. Biomed. Pharmacother., 2018, 103, 1397-1407.
[http://dx.doi.org/10.1016/j.biopha.2018.04.186] [PMID: 29864924]
[10]
Zhao, J.; Tuersunmaimaiti, M.; Ji, T.; Liu, T.; Xu, F. Hepatoprotective activity of isostrictiniin from Nymphaea candida on Con A-induced acute liver injury in mice. Nat. Prod. Res., 2021, 35(10), 1662-1666.
[http://dx.doi.org/10.1080/14786419.2019.1622105] [PMID: 31198052]
[11]
Nengroo, Z.R.; Rauf, A. Fatty acid composition, functional group analysis and antioxidant activity of Nymphia alba and Lupinus polyphyllus seed extracts. J. Oleo Sci., 2020, 69(4), 317-326.
[http://dx.doi.org/10.5650/jos.ess19112] [PMID: 32249260]
[12]
Cudalbeanu, M.; Ghinea, I.O.; Furdui, B.; Dah-Nouvlessounon, D.; Raclea, R.; Costache, T.; Cucolea, I.E.; Urlan, F.; Dinica, R.M. Exploring new antioxidant and mineral compounds from Nymphaea alba wild-grown in Danube Delta Biosphere. Molecules, 2018, 23(6), 1-16.
[http://dx.doi.org/10.3390/molecules23061247] [PMID: 29882880]
[13]
Cudalbeanu, M.; Furdui, B.; Cârâc, G.; Barbu, V.; Iancu, A.V.; Marques, F.; Leitão, J.H.; Sousa, S.A.; Dinica, R.M. Antifungal, antitumoral and antioxidant potential of the Danube delta Nymphaea alba extracts. Antibiotics (Basel), 2019, 9(1), 1-25.
[http://dx.doi.org/10.3390/antibiotics9010007] [PMID: 31877815]
[14]
Alam, M.B.; Ahmed, A.; Motin, M.A.; Kim, S.; Lee, S-H. Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and proteasomal degradation of tyrosinase. Sci. Rep., 2021, 342, 128313.
[http://dx.doi.org/10.1038/s41598-018-32303-7] [PMID: 30224716]
[15]
Anand, A.; Komati, A.; Katragunta, K.; Shaik, H.; Kumar, N.N.; Kuncha, M.; Mudiam, M.K.R.; Babu, K.S.; Kumar, T.A. Phytometabolomic analysis of boiled rhizome of Nymphaea nouchali (Burm. f.) using UPLC-Q-TOF-MSE, LC-QqQ-MS & GC-MS and evaluation of antihyperglycemic and antioxidant activities. Food Chem., 2020, 1-48.
[PMID: 33067043]
[16]
Bing, S.J.; Kim, M.J.; Park, E.; Ahn, G.; Kim, D.S.; Ko, R.K.; Lee, N.H.; Shin, T.; Park, J.W.; Jee, Y. 1,2,3,4,6-penta-O-galloyl-β-D-glucose protects splenocytes against radiation-induced apoptosis in murine splenocytes. Biol. Pharm. Bull., 2010, 33(7), 1122-1127.
[http://dx.doi.org/10.1248/bpb.33.1122] [PMID: 20606300]
[17]
Oyeyemi, I.T.; Akanni, O.O.; Adaramoye, O.A.; Bakare, A.A. Methanol extract of Nymphaea lotus ameliorates carbon tetrachloride-induced chronic liver injury in rats via inhibition of oxidative stress. J. Basic Clin. Physiol. Pharmacol., 2017, 28(1), 43-50.
[http://dx.doi.org/10.1515/jbcpp-2016-0029] [PMID: 27824613]
[18]
Al-Harbi, L.N.; Subash-Babu, P.; Binobead, M.A.; Alhussain, M.H.; AlSedairy, S.A.; Aloud, A.A.; Alshatwi, A.A. Potential metabolite nymphayol isolated from water lily (Nymphaea stellata) flower inhibits MCF-7 human breast cancer cell growth via upregulation of Cdkn2a, pRb2, p53 and downregulation of PCNA mRNA expressions. Metabolites, 2020, 10(7), 1-14.
[http://dx.doi.org/10.3390/metabo10070280] [PMID: 32650545]
[19]
Agnihotri, V.K.; Elsohly, H.N.; Khan, S.I.; Smillie, T.J.; Khan, I.A.; Walker, L.A. Antioxidant constituents of Nymphaea caerulea flowers. Phytochemistry, 2008, 69(10), 2061-2066.
[http://dx.doi.org/10.1016/j.phytochem.2008.04.009] [PMID: 18534639]
[20]
Tungmunnithum, D.; Drouet, S.; Kabra, A.; Hano, C. Enrichment in antioxidant flavonoids of stamen extracts from Nymphaea lotus L. using ultrasonic-assisted extraction and macroporous resin adsorption. Antioxidants, 2020, 9(7), 1-24.
[http://dx.doi.org/10.3390/antiox9070576] [PMID: 32630721]
[21]
Park, G.; Sim, Y.; Lee, W.; Sung, S.H.; Oh, M.S. Protection on skin aging mediated by antiapoptosis effects of the water lily (Nymphaea Tetragona Georgi) via reactive oxygen species scavenging in human epidermal keratinocytes. Pharmacology, 2016, 97(5-6), 282-293.
[http://dx.doi.org/10.1159/000444022] [PMID: 26915077]
[22]
Cheng, J-H.; Lee, S-Y.; Lien, Y-Y.; Lee, M-S.; Sheu, S-C. Immunomodulating activity of Nymphaea rubra Roxb. extracts: activation of rat dendritic cells and improvement of the T(H)1 immune response. Int. J. Mol. Sci., 2012, 13(9), 10722-10735.
[http://dx.doi.org/10.3390/ijms130910722] [PMID: 23109818]
[23]
Rajagopal, K.; Sasikala, K. Antihyperglycaemic and antihyperlipidaemic effects of Nymphaea stellata in alloxan-induced diabetic rats. Singapore Med. J., 2008, 49(2), 137-141.
[PMID: 18301841]
[24]
Subash-Babu, P.; Ignacimuthu, S.; Agastian, P.; Varghese, B. Partial regeneration of β-cells in the islets of Langerhans by Nymphayol a sterol isolated from Nymphaea stellata (Willd.) flowers. Bioorg. Med. Chem., 2009, 17(7), 2864-2870.
[http://dx.doi.org/10.1016/j.bmc.2009.02.021] [PMID: 19272781]
[25]
Subash-Babu, P.; Ignacimuthu, S.; Alshatwi, A.A. Nymphayol increases glucose-stimulated insulin secretion by RIN-5F cells and GLUT4-mediated insulin sensitization in type 2 diabetic rat liver. Chem. Biol. Interact., 2015, 226, 72-81.
[http://dx.doi.org/10.1016/j.cbi.2014.12.011] [PMID: 25499137]
[26]
Pandurangan, S.B.; Paul, A.S.; Savarimuthu, I.; Ali, A.A. Antinociceptive, immunomodulatory and antipyretic activity of nymphayol isolated from Nymphaea stellata (Willd.) flowers. Biomol. Ther. (Seoul), 2013, 21(5), 391-397.
[http://dx.doi.org/10.4062/biomolther.2013.022] [PMID: 24244827]
[27]
Dash, B.K.; Sen, M.K.; Alam, K.; Hossain, K.; Islam, R.; Banu, N.A.; Rahman, S.; Jamal, A.H. Antibacterial activity of Nymphaea nouchali (Burm. f) flower. Ann. Clin. Microbiol. Antimicrob., 2013, 12(27), 27.
[http://dx.doi.org/10.1186/1476-0711-12-27] [PMID: 24099586]
[28]
Bello, F.H.; Maiha, B.B.; Anuka, J.A. The effect of methanol rhizome extract of Nymphaea lotus Linn. (Nymphaeaceae) in animal models of diarrhoea. J. Ethnopharmacol., 2016, 190, 13-21.
[http://dx.doi.org/10.1016/j.jep.2016.05.036] [PMID: 27215682]
[29]
Musuyu Muganza, D.; Fruth, B.I.; Nzunzu Lami, J.; Cos, P.; Cimanga Kanyanga, R.; Maes, L.; Pieters, L. In vitro antiprotozoal activity and cytotoxicity of extracts and fractions from the leaves, root bark and stem bark of Isolona hexaloba. J. Ethnopharmacol., 2015, 174, 187-194.
[http://dx.doi.org/10.1016/j.jep.2015.07.034] [PMID: 26239153]
[30]
Tang, H.; Zhang, L.; Chen, F.; Zhang, X.; Chen, F.; Ma, H.; Van de Peer, Y. Nymphaea colorata (Blue-Petal Water Lily). Trends Genet., 2020, 36(9), 718-719.
[http://dx.doi.org/10.1016/j.tig.2020.06.004] [PMID: 32631632]
[31]
Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; Sharma, S.; Soussov, V.; Sullivan, J.P.; Sun, L.; Turner, S.; Karsch-Mizrachi, I. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford), 2020, 2020, 1-21.
[http://dx.doi.org/10.1093/database/baaa062] [PMID: 32761142]
[32]
Grob, V.; Moline, P.; Pfeifer, E.; Novelo, A.R.; Rutishauser, R. Developmental morphology of branching flowers in Nymphaea prolifera. J. Plant Res., 2006, 119(6), 561-570.
[http://dx.doi.org/10.1007/s10265-006-0021-8] [PMID: 17021936]
[33]
Taxonomic, I. Integrated Taxonomic Information System (ITIS)-Report. 2021. Available from: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=18383#null/ Assessed on 8th November 2021
[34]
Lakshmi, T.; Madhusudhanan, N.; Rajendran, R. Nymphaea alba Linn-an overview. Research J. Pharm. Tech., 2013, 6(9), 974-977.
[35]
Mireille, K.P.; Désiré, D.D.P.; Danielle, C.B.; Yolande, S.M.N.; Marguerite, F.M.; Madeleine, C.N.; Rodrigue, N.; Agnes, C.O.; Theophile, D.; Pierre, K. Protective effects of Nymphaea lotus Linn. (Nymphaeaceae) aqueous extract against chronic unpredictable mild stress induced testicular lipid per oxidation. Asian J. Biomed. Pharm. Sci., 2016, 6(54), 1-6.
[36]
Kameni Poumeni, M.; Bilanda, D.C.; Dzeufiet Djomeni, P.D.; Mengue Ngadena, Y.S.; Mballa, M.F.; Ngoungoure, M.C.; Ouafo, A.C.; Dimo, T.; Kamtchouing, P. Safety assessment of the aqueous extract of the flowers of Nymphaea lotus Linn (Nymphaeaceae): Acute, neuro- and subchronic oral toxicity studies in albinos Wistar rats. J. Complement. Integr. Med., 2017, 14(2), 1-20.
[http://dx.doi.org/10.1515/jcim-2016-0046] [PMID: 28291734]
[37]
Ogbadoyi, E.O.; Abdulganiy, A.O.; Adama, T.Z.; Okogun, J.I. In vivo trypanocidal activity of Annona senegalensis Pers. leaf extract against Trypanosoma brucei brucei. J. Ethnopharmacol., 2007, 112(1), 85-89.
[http://dx.doi.org/10.1016/j.jep.2007.02.015] [PMID: 17418511]
[38]
Romeiras, M.M.; Duarte, M.C.; Indjai, B.; Catarino, L. Medicinal plants used to treat neurological disorders in West Africa: A case study with Guinea-Bissau flora. Am. J. Plant Sci., 2012, 3, 1028-1036.
[http://dx.doi.org/10.4236/ajps.2012.327122]
[39]
Burkill, H.M. The Useful Plants of West Tropical Africa, 2nd Ed; Royal Botanic gardens Kew: Richmond UK, 1997.
[40]
Tungmunnithum, D.; Renouard, S.; Drouet, S.; Blondeau, J-P.; Hano, C. Critical cross-species comparison of pollen from Nelumbo nucifera Gaertn. vs.Nymphaea lotus L. for authentification of Thai medicinal herbal tea. Plants, 2020, 9(7), E921.
[http://dx.doi.org/10.3390/plants9070921] [PMID: 32708113]
[41]
Tungmunnithum, D.; Kongsawadworakul, P.; Hano, C. A cosmetic perspective on the antioxidant flavonoids from Nymphaea lotus L. Cosmetics, 2021, 8(1), 12.
[http://dx.doi.org/10.3390/cosmetics8010012]
[42]
Liu, Y.M. Pharmacography of Uighur, Part One; Xinjiang Science & Technology & Hygiene Publishing House: Urumuqi, 1999, p. 119.
[43]
Zhao, J.; Zhang, S.; You, S.; Liu, T.; Xu, F.; Ji, T.; Gu, Z. Hepatoprotective effects of nicotiflorin from Nymphaea candida against concanavalin A-induced and D-galactosamine-induced liver injury in mice. Int. J. Mol. Sci., 2017, 18(3), 1-12.
[http://dx.doi.org/10.3390/ijms18030587] [PMID: 28282879]
[44]
Yumnam, R.S.; Dev, C.O.; Abujam, S.K.S. Study of the ethnomedicinal system of Manipur. Int. J. Pharm. Biol. Arch., 2012, 3(3), 587-591.
[45]
Roy, D.K.; Talukdar, A.D.; Choudhury, M.D.; Sinha, B.K. Less known uses of Nymphaea spp. (Nymphaeaceae) as the traditional food item (Vhet-laddu) in Northeast India. Int. J. Food Agric. Vet. Sci., 2013, 3(2), 82-87.
[46]
Patiri, B.; Borah, A. Wild Edible Plants of Assam; Geetakhi Printers and Publishers: Guwahati, 2007.
[47]
Sarma, H.; Sarma, A.M.; Sarma, C.M. Traditional knowledge of weeds: A study of herbal medicines and vegetables used by the Assamese people (India). Herba Pol., 2008, 54(2), 80-88.
[48]
Rani, D.D.; Kumar, S.A.; Shuaib, M.; Sudhir, G. Nymphaea stellata: A potential herb and its medicinal importance. J. Drug Deliv. Ther., 2012, 2(3), 41-44.
[http://dx.doi.org/10.22270/jddt.v2i3.173]
[49]
Maji, A.; Beg, M.; Das, S.; Jana, G.C.; Jha, P.K.; Islam, M.M.; Hossain, M. Spectroscopic study on interaction of Nymphaea nouchali leaf extract mediated bactericidal gold nanoparticles with human serum albumin. J. Mol. Struct., 2019, 179, 685-693.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.055]
[50]
Scolum, P.D. Waterlilies and Lotuses: Species, cultivars, and new hybrids, 1st Edition; 260.
[51]
Tandon, P.; Dang, J.C.; Kumaria, S. Nymphaea tetragona, a rare and endangered plant of Meghalaya, India 2020. Available from: https://www.plant-talk.org/nymphaea-tetragona-india.htm Assessed on 15th December 2020
[52]
Vardhana, R. Direct uses of medicinal plants and their identification. Vegetable; Materia Medica 2008. Available from: https://books.google.com.br Assessed on 15th May 2021
[53]
Fava, W.S.; Gomes, V.G.N. “Back-to-bud” strategy in Nymphaea amazonum (Nymphaeaceae): A protogynous macrophyte of the Pantanal wetlands. Aquat. Bot., 2017, 140, 1-3.
[http://dx.doi.org/10.1016/j.aquabot.2017.04.001]
[54]
Tani, M.; Sawada, A.; Oyabu, T.; Seiryo, K. Ability of water lilies to purify water polluted by soap and their application in domestic sewage disposal facilities. Sens. Mater., 2006, 18, 91-101.
[55]
Les, D.H. Aquatic Dicotyledons of North America: Ecology; Life History, and Systematics, LLC CRC Press, Taylor & Francis Group, 2018.
[56]
Alam, M.; Biozid, S.; Faruk, M.; Abeden, J.; Ferdous, K.U.; Nitul, I.A.; Islam, R. Anti-oxidant activity of methanolic extract of flowering plant Nymphaea capensis leaf. Research Square, 2020.
[http://dx.doi.org/10.21203/rs.3.rs-21616/v2]
[57]
Wiart, C. Lead Compounds from Medicinal Plants for the Treatment of Cancer; Alkaloids, 2013.
[http://dx.doi.org/10.1016/B978-0-12-398371-8.00001-5]
[58]
Zhang, Z.; Jiang, S.; Tian, H.; Zeng, Y.; He, K.; Lin, L.; Yu, F. Ethyl acetate fraction from Nymphaea hybrida Peck modulates inflammatory responses in LPS-stimulated RAW 264.7 cells and acute inflammation murine models. J. Ethnopharmacol., 2021, 269, 113698.
[http://dx.doi.org/10.1016/j.jep.2020.113698] [PMID: 33338590]
[59]
Fossen, T.; Andersen, O.M. Acylated anthocyanins from leaves of the water lily, Nymphaea x marliacea. Phytochemistry, 1997, 46(2), 353-357.
[http://dx.doi.org/10.1016/S0031-9422(97)00293-8]
[60]
Fossen, T.; Andersen, O.M. Cyanidin 3-(6″-acetylgalactoside) and other anthocyanins form reddish leaves of the water lily, Nymphaea alba. J. Hortic. Sci. Biotechnol., 2001, 76(2), 213-215.
[http://dx.doi.org/10.1080/14620316.2001.11511353]
[61]
Elegami, A.A.; Bates, C.; Gray, A.I.; Mackay, S.P.; Skellern, G.G.; Waigh, R.D. Two very unusual macrocyclic flavonoids from the water lily Nymphaea lotus. Phytochemistry, 2003, 63(6), 727-731.
[http://dx.doi.org/10.1016/S0031-9422(03)00238-3] [PMID: 12842147]
[62]
Zhang, Z.; ElSohly, H.N.; Li, X-C.; Khan, S.I.; Broedel, S.E.J., Jr; Raulli, R.E.; Cihlar, R.L.; Burandt, C.; Walker, L.A. Phenolic compounds from Nymphaea odorata. J. Nat. Prod., 2003, 66(4), 548-550.
[http://dx.doi.org/10.1021/np020442j] [PMID: 12713413]
[63]
Marquina, S.; Bonilla-Barbosa, J.; Alvarez, L. Comparative phytochemical analysis of four Mexican Nymphaea species. Phytochemistry, 2005, 66(8), 921-927.
[http://dx.doi.org/10.1016/j.phytochem.2005.02.027] [PMID: 15845410]
[64]
Liu, R.N.; Wang, W.; Ding, Y.; Xie, W.D.; Ma, C.; Du, L.J. A new flavonol glycoside and activity of compounds from the flower of Nymphaea candida. J. Asian Nat. Prod. Res., 2007, 9(3-5), 333-338.
[http://dx.doi.org/10.1080/10286020600727665] [PMID: 17613618]
[65]
Zhao, J.; Yan, M.; He, J.H.; Huang, Y.; Zhao, Y. Flavonol glycosides from the flowers of Nymphaea Candida. Chin. J.M.A.P., 2008, 25, 115-117.
[66]
Zhao, J.; Liu, T.; Ma, L.; Yan, M.; Gu, Z.; Huang, Y.; Xu, F.; Zhao, Y. Antioxidant and preventive effects of extract from nymphaea Candida flower on in vitro immunological liver injury of rat primary hepatocyte cultures. Evid. Based Complement. Alternat. Med., 2011, 2011, 497673.
[http://dx.doi.org/10.1093/ecam/nep003] [PMID: 19196740]
[67]
Hsu, C-L.; Fang, S-C.; Yen, G-C. Anti-inflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc. Food Funct., 2013, 4(8), 1216-1222.
[http://dx.doi.org/10.1039/c3fo60041f] [PMID: 23727892]
[68]
Parimala, M.; Shoba, F.G. Phytochemical analysis and in vitro antioxidant acitivity of hydroalcoholic seed extract of Nymphaea nouchali burm. F. Asian Pac. J. Trop. Biomed., 2013, 3(11), 887-895.
[http://dx.doi.org/10.1016/S2221-1691(13)60174-4]
[69]
Alam, M.B.; Ju, M-K.; Lee, S-H. DNA Protecting Activities of Nymphaea nouchali (Burm. f) flower extract attenuate t-BHP-induced oxidative stress cell death through Nrf2-mediated induction of heme oxygenase-1 expression by activating MAP-kinase. Int. J. Mol. Sci., 2017, 18(10), 1-17.
[http://dx.doi.org/10.3390/ijms18102069] [PMID: 28956831]
[70]
Gautam, S.; Rahuja, N.; Ishrat, N.; Asthana, R.K.; Mishra, D.K.; Maurya, R.; Jain, S.K.; Srivastava, A.K. Nymphaea rubra ameliorates TNF-α-induced insulin resistance via suppression of c-Jun NH2-terminal kinase and nuclear factor-κB in the rat skeletal muscle cells. Appl. Biochem. Biotechnol., 2014, 174(7), 2446-2457.
[http://dx.doi.org/10.1007/s12010-014-1192-8] [PMID: 25234391]
[71]
Kumar, K.; Sharma, S.; Kumar, A.; Bhardwaj, P.; Barhwal, K.; Hota, S.K. Acute and sub-acute toxicological evaluation of lyophilized Nymphaea x rubra Roxb. ex Andrews rhizome extract. Regul. Toxicol. Pharmacol., 2017, 88, 12-21.
[http://dx.doi.org/10.1016/j.yrtph.2017.04.008] [PMID: 28414041]
[72]
Bakr, R.O.; El-Naa, M.M.; Zaghloul, S.S.; Omar, M.M. Profile of bioactive compounds in Nymphaea alba L. leaves growing in Egypt: hepatoprotective, antioxidant and anti-inflammatory activity. BMC Complement. Altern. Med., 2017, 17(1), 52.
[http://dx.doi.org/10.1186/s12906-017-1561-2] [PMID: 28095910]
[73]
Rehman, S.; Ashfaq, U.A.; Ijaz, B.; Riazuddin, S. Anti-hepatitis C virus activity and synergistic effect of Nymphaea alba extracts and bioactive constituents in liver infected cells. Microb. Pathog., 2018, 121, 198-209.
[http://dx.doi.org/10.1016/j.micpath.2018.05.023] [PMID: 29775725]
[74]
Huang, Y-N.; Zhao, Y-L.; Gao, X-L.; Zhao, Z-F.; Jing, Z.; Zeng, W-C.; Yang, R.; Peng, R.; Tong, T.; Wang, L-F.; Cen, J-Q.; Gao, H. Intestinal α-glucosidase inhibitory activity and toxicological evaluation of Nymphaea stellata flowers extract. J. Ethnopharmacol., 2010, 131(2), 306-312.
[http://dx.doi.org/10.1016/j.jep.2010.06.035] [PMID: 20600753]
[75]
Dissanayake, R.K.; Ratnaweera, P.B.; Williams, D.E.; Wijayarathne, C.D.; Wijesundera, R.L.C.; Andersen, R.J.; de Silva, E.D. Antimicrobial activities of endophytic fungi of the Sri Lankan aquatic plant Nymphaea nouchali and chaetoglobosin A and C, produced by the endophytic fungus Chaetomium globosum. Mycology, 2016, 7(1), 1-8.
[http://dx.doi.org/10.1080/21501203.2015.1136708] [PMID: 30123610]
[76]
Supaphon, P.; Keawpiboon, C.; Preedanon, S.; Phongpaichit, S.; Rukachaisirikul, V. Isolation and antimicrobial activities of fungi derived from Nymphaea lotus and Nymphaea stellata. Mycoscience, 2018, 59, 415-423.
[http://dx.doi.org/10.1016/j.myc.2018.02.012]
[77]
Parimala, M.; Shoba, F.G. In vitro antimicrobial activity and HPTLC analysis of hydroalcoholic seed extract of Nymphaea nouchali Burm. f. BMC Complement. Altern. Med., 2014, 14, 361.
[http://dx.doi.org/10.1186/1472-6882-14-361] [PMID: 25256694]
[78]
Kabir, S.R.; Zubair, M.A.; Nurujjaman, M.; Haque, M.A.; Hasan, I.; Islam, M.F.; Hossain, M.T.; Hossain, M.A.; Rakib, M.A.; Alam, M.T.; Shaha, R.K.; Hossain, M.T.; Kimura, Y.; Absar, N. Purification and characterization of a Ca(2+)-dependent novel lectin from Nymphaea nouchali tuber with antiproliferative activities. Biosci. Rep., 2011, 31(6), 465-475.
[http://dx.doi.org/10.1042/BSR20100126] [PMID: 21291421]
[79]
Ulanowska, K.; Tkaczyk, A.; Konopa, G.; Wegrzyn, G. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch. Microbiol., 2006, 184(5), 271-278.
[http://dx.doi.org/10.1007/s00203-005-0063-7] [PMID: 16328542]
[80]
Cushnie, T.P.T.; Lamb, A.J. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss. J. Ethnopharmacol., 2005, 101(1-3), 243-248.
[http://dx.doi.org/10.1016/j.jep.2005.04.014] [PMID: 15985350]
[81]
Eumkeb, G.; Chukrathok, S. Synergistic activity and mechanism of action of ceftazidime and apigenin combination against ceftazidime-resistant Enterobacter cloacae. Phytomedicine, 2013, 20(3-4), 262-269.
[http://dx.doi.org/10.1016/j.phymed.2012.10.008] [PMID: 23218402]
[82]
Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial properties and mechanism of action of plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol., 2018, 9, 1639.
[http://dx.doi.org/10.3389/fmicb.2018.01639] [PMID: 30087662]
[83]
Wu, S-C.; Yang, Z-Q.; Liu, F.; Peng, W-J.; Qu, S-Q.; Li, Q.; Song, X-B.; Zhu, K.; Shen, J-Z. Antibacterial effect and mode of action of flavonoids from Licorice against methicillin-resistant Staphylococcus aureus. Front. Microbiol., 2019, 10, 2489.
[http://dx.doi.org/10.3389/fmicb.2019.02489] [PMID: 31749783]
[84]
Anbazhagan, P.V.; Thavitiki, P.R.; Varra, M.; Annamalai, L.; Putturu, R.; Lakkineni, V.R.; Pesingi, P.K. Evaluation of efflux pump activity of multidrug-resistant Salmonella Typhimurium isolated from poultry wet markets in India. Infect. Drug Resist., 2019, 12, 1081-1088.
[http://dx.doi.org/10.2147/IDR.S185081] [PMID: 31190903]
[85]
Paolillo, R.; Carratelli, C.R.; Rizzo, A. Effect of resveratrol and quercetin in experimental infection by Salmonella enterica serovar Typhimurium. Int. Immunopharmacol., 2011, 11(2), 149-156.
[http://dx.doi.org/10.1016/j.intimp.2010.10.019] [PMID: 21093605]
[86]
Vandeputte, O.M.; Kiendrebeogo, M.; Rasamiravaka, T.; Stevigny, C.; Duez, P.; Rajaonson, S.; Diallo, B.; Mol, A.; Baucher, M.; El Jaziri, M. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology-(UK), 2011, 157, 2120-2132.
[http://dx.doi.org/10.1099/mic.0.049338-0]
[87]
Wang, Y.; Curtis-Long, M.J.; Yuk, H.J.; Kim, D.W.; Tan, X.F.; Park, K.H. Bacterial neuraminidase inhibitory effects of prenylated isoflavones from roots of Flemingia philippinensis. Bioorg. Med. Chem., 2013, 21(21), 6398-6404.
[http://dx.doi.org/10.1016/j.bmc.2013.08.049] [PMID: 24054487]
[88]
Aboody, M.S.A.; Mickymaray, S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics (Basel), 2020, 9(2), 1-42.
[http://dx.doi.org/10.3390/antibiotics9020045] [PMID: 31991883]
[89]
Carvalho, R.S.; Carollo, C.A.; de Malgalhaes, J.C.; Palumbo, J.M.C.; Boaretto, A.; Nunese e Sad, I.C.; Ferraz, A.C.; Lima, W.G.; de Siqueira, J.M.; Ferreira, J.M.S. Antibacterial and antifungal activities of phenolic compound-enriched ethylacetate fraction from Cochloaspermum regium (mart. Et. Schr.) Pilger roots: Mechanisms of action and synergism with tannin and gallic acid. S. Afr. J. Bot., 2018, 114, 181-187.
[http://dx.doi.org/10.1016/j.sajb.2017.11.010]
[90]
Ooms, L.A.; Degryse, A.D.; Janssen, P.A. Mechanisms of action of loperamide. Scand. J. Gastroenterol. Suppl., 1984, 96, 145-155.
[PMID: 6382576]
[91]
Baker, D.E. Loperamide: a pharmacological review. Rev. Gastroenterol. Disord., 2007, 7(Suppl. 3), S11-S18.
[PMID: 18192961]
[92]
Sunilson, J.A.J.; Anandarajagopal, K.; Kumari, A.V.A.G.; Mohan, S. Antidiarrhoeal Activity of Leaves of Melastoma malabathricum Linn. Indian J. Pharm. Sci., 2009, 71(6), 691-695.
[http://dx.doi.org/10.4103/0250-474X.59556] [PMID: 20376227]
[93]
N’guessan, B.B.; Asiamah, A.D.; Arthur, N.K.; Frimpong-Manso, S.; Amoateng, P.; Amponsah, S.K.; Kukuia, K.E.; Sarkodie, J.A.; Opuni, K.F.M.; Asiedu-Gyekye, I.J.; Appiah-Opong, R. Ethanolic extract of Nymphaea lotus L. (Nymphaeaceae) leaves exhibits in vitro antioxidant, in vivo anti-inflammatory and cytotoxic activities on Jurkat and MCF-7 cancer cell lines. BMC Complement. Med. Ther., 2021, 21(1), 22.
[http://dx.doi.org/10.1186/s12906-020-03195-w] [PMID: 33413340]
[94]
Mohan, C.G.; Viswanatha, G.L.; Savinay, G.; Rajendra, C.E.; Halemani, P.D. 1,2,3,4,6 Penta-O-galloyl-β-d-glucose, a bioactivity guided isolated compound from Mangifera indica inhibits 11β-HSD-1 and ameliorates high fat diet-induced diabetes in C57BL/6 mice. Phytomedicine, 2013, 20(5), 417-426.
[http://dx.doi.org/10.1016/j.phymed.2012.12.020] [PMID: 23353053]
[95]
Bhandarkar, M.R.; Khan, A. Antihepatotoxic effect of Nymphaea stellata willd., against carbon tetrachloride-induced hepatic damage in albino rats. J. Ethnopharmacol., 2004, 91(1), 61-64.
[http://dx.doi.org/10.1016/j.jep.2003.11.020] [PMID: 15036469]
[96]
Dhanabal, S.P.; Raja, M.K.M.M.R.; Ramanathan, M.; Suresh, B. Hypoglycemic activity of Nymphaea stellata leaves ethanolic extract in alloxan induced diabetic rats. Fitoterapia, 2007, 78(4), 288-291.
[http://dx.doi.org/10.1016/j.fitote.2007.02.009] [PMID: 17498889]
[97]
Debnath, S.; Ghosh, S.; Hazra, B. Inhibitory effect of Nymphaea pubescens Willd. flower extract on carrageenan-induced inflammation and CCl4-induced hepatotoxicity in rats. Food Chem. Toxicol., 2013, 59, 485-491.
[http://dx.doi.org/10.1016/j.fct.2013.06.036] [PMID: 23827777]
[98]
Aimvijarn, P.; Palipoch, S.; Okada, S.; Suwannalert, P. Thai water Lily extract induces B16 melanoma cell apoptosis and inhibits cellular invasion through the role of cellular oxidants. Asian Pac. J. Cancer Prev., 2018, 19(1), 149-153.
[http://dx.doi.org/10.22034/APJCP.2018.19.1.149] [PMID: 29373906]
[99]
Alam, M.N.; Islam, M.R.; Biozid, M.S.; Chowdury, M.I.A.; Mazumdar, M.M.U.; Islam, M.A.; Anwar, Z.B. Effects of methanolic extract of Nymphaea capensis leaves on the sedation of mice and cytotoxicity of brine shrimp. Adv. Biol. Res., 2016, 10(1), 01-09.
[100]
Rathee, P.; Chaudhary, H.; Rathee, S.; Rathee, D.; Kumar, V.; Kohli, K. Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm. Allergy Drug Targets, 2009, 8(3), 229-235.
[http://dx.doi.org/10.2174/187152809788681029] [PMID: 19601883]
[101]
Rege, M.G.; Ayanwuyi, L.O.; Zezi, A.U.; Odoma, S. Anti-nociceptive, anti-inflammatory and possible mechanism of anti-nociceptive action of methanol leaf extract of Nymphaea lotus Linn (Nymphaeceae). J. Tradit. Complement. Med., 2020, 11(2), 123-129.
[http://dx.doi.org/10.1016/j.jtcme.2020.02.010] [PMID: 33728272]
[102]
Jang, E.J.; Shin, Y.; Park, H.J.; Kim, D.; Jung, C.; Hong, J-Y.; Kim, S.; Lee, S.K. Anti-melanogenic activity of phytosphingosine via the modulation of the microphthalmia-associated transcription factor signaling pathway. J. Dermatol. Sci., 2017, 87(1), 19-28.
[http://dx.doi.org/10.1016/j.jdermsci.2017.03.011] [PMID: 28390782]
[103]
Thippeswamy, B.S.; Mishra, B.; Veerapur, V.P.; Gupta, G. Anxiolytic activity of Nymphaea alba Linn. in mice as experimental models of anxiety. Indian J. Pharmacol., 2011, 43(1), 50-55.
[http://dx.doi.org/10.4103/0253-7613.75670] [PMID: 21455422]
[104]
Tallman, J.F.; Cassella, J.; Kehne, J. Mechanism of anxiolytics. Neuropsychopharmacology: The Fifth Generation of ProgressNeuropsychopharmacolog; Davis, K.L.; Charney, Dennis; Joseph, T.; Nemeroff, Coyle; Nemeroff, Charles, Eds.; , 2002, pp. 993-1006.
[105]
Oyeyemi, I.T.; Yekeen, O.M.; Odusina, P.O.; Ologun, T.M.; Ogbaide, O.M.; Olaleye, O.I.; Bakare, A.A. Genotoxicity and antigenotoxicity study of aqueous and hydro-methanol extracts of Spondias mombin L., Nymphaea lotus L. and Luffa cylindrical L. using animal bioassays. Interdiscip. Toxicol., 2015, 8(4), 184-192.
[http://dx.doi.org/10.1515/intox-2015-0028] [PMID: 27486380]
[106]
Antonisamy, P.; Subash-Babu, P.; Alshatwi, A.A.; Aravinthan, A.; Ignacimuthu, S.; Choi, K.C.; Kim, J-H. Gastroprotective effect of nymphayol isolated from Nymphaea stellata (Willd.) flowers: contribution of antioxidant, anti-inflammatory and anti-apoptotic activities. Chem. Biol. Interact., 2014, 224, 157-163.
[http://dx.doi.org/10.1016/j.cbi.2014.09.020] [PMID: 25289771]
[107]
Batool, R.; Kalsoom, A.; Akbar, I.; Arshad, N.; Jamil, N. Antilisterial Effect of Rosa damascena and Nymphaea alba in Mus musculus. BioMed Res. Int., 2018, 2018, 4543723.
[http://dx.doi.org/10.1155/2018/4543723] [PMID: 29607320]
[108]
Sharifi, N.; Souri, E.; Ziai, S.A.; Amin, G.; Amanlou, M. Discovery of new angiotensin converting enzyme (ACE) inhibitors from medicinal plants to treat hypertension using an in vitro assay. Daru, 2013, 21(1), 74.
[http://dx.doi.org/10.1186/2008-2231-21-74] [PMID: 24359711]
[109]
Zhuang, Z.; Lv, T.; Li, M.; Zhang, Y.; Xue, T.; Yang, L.; Liu, H.; Zhang, W. The lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. Plant Foods Hum. Nutr., 2014, 69(4), 304-309.
[http://dx.doi.org/10.1007/s11130-014-0448-3] [PMID: 25367047]
[110]
Garba, M.H.; Kabiru, A.Y.; Yusu, A.M.; Muhammad, A.H.; Lekene, B.J.; Kabir, M.; Joseph, A. In vivo trypanocidal activity of Nymphaea lotus Linn. methanol extract against Trypanosoma brucei brucei. Asian Pac. J. Trop. Dis., 2015, 5(10), 808-812.
[http://dx.doi.org/10.1016/S2222-1808(15)60935-5]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy