Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Numerical Examination on Impact of Hall Current on Peristaltic Flow of Eyring-Powell Fluid under Ohmic-Thermal Effect with Slip Conditions

Author(s): Maria Yasin, Sadia Hina, Rahila Naz, Thabet Abdeljawad* and Muhammad Sohail*

Volume 19, Issue 1, 2023

Published on: 02 June, 2022

Page: [49 - 62] Pages: 14

DOI: 10.2174/1573413718666220104124038

Price: $65

Abstract

Aims: This article is intended to investigate and determine the combined impact of Slip and Hall current on Peristaltic transmission of Magneto-hydrodynamic (MHD) Eyring- Powell fluid.

Background: The hall term arises, taking strong force-field under consideration. Velocity, thermal, and concentration slip conditions are applied. The energy equation is modeled by considering the Joule-thermal effect. To observe the non-Newtonian behavior of the fluid, the constitutive equations of Eyring-Powell fluid are encountered.

Objective: Flow is studied in a wave frame of reference traveling with the wave's velocity. The mathematical modeling is done by utilizing adequate assumptions of long wavelength and low Reynolds number.

Methods: The closed-form solution for momentum, temperature, and concentration distribution is computed analytically using the regular perturbation technique for the small fluid ter(A).

Results: Graphical results are presented and discussed in detail to analyze the behavior of sundry parameters on flow quantities (i.e., velocity, temperature, and concentration profile). It is noticed that Powell-Eyring fluid parameters (A,B) have a significant role in the outcomes.

Conclusion: The fluid parameter A magnifies the velocity profile, whereas the other fluid parameter B shows the opposite behavior.

Keywords: Peristalsis, Eyring-Powell, Slip effect, Convective boundary conditions, Hall current, Joule effect.

Graphical Abstract

[1]
Nadeem, S.; Hayat, T.; Noreen, S.; Malik, M.Y. On the influence of heat transfer in peristalsis with variable viscosity. Int. J. Heat Mass Transf., 2009, 52(21-22), 4722-4730.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.04.037]
[2]
Srinivas, S.; Kothandapani, M. The influence of heat and mass transfer on MHD peristaltic flow through a porous space with complaint walls. Appl. Math. Comput., 2009, 213(1), 197-208.
[http://dx.doi.org/10.1016/j.amc.2009.02.054]
[3]
Srinivas, S.; Gayathri, R.; Kothandapani, M. Mixed convection heat and mass transfer in an asymmetric channel with peristalsis. Commun. Nonlinear Sci. Numer. Simul., 2011, 16(4), 1845-1862.
[http://dx.doi.org/10.1016/j.cnsns.2010.08.004]
[4]
Hayat, T.; Noreen, S.; Alhothuali, M.; Asghar, S.; Alhomaidan, A. Peristaltic flow under the effects of induced magnetic field and heat and mass transfer. Int. J. Heat Mass Transf., 2012, 55(1-3), 443-452.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.09.044]
[5]
Hayat, T.; Yasmin, H.; Ahmad, B.; Chen, B. Simultaneous effects of convective conditions and nanoparticles on peristaltic motion. J. Mol. Liq., 2014, 193, 74-82.
[http://dx.doi.org/10.1016/j.molliq.2013.12.036]
[6]
Hina, S.; Mustafa, M.; Hayat, T.; Alotaibi, N.D. On peristaltic motion of pseudo plastic fluid in a curved channel with heat/mass transfer and wall properties. Appl. Math. Comput., 2015, 263, 378-391.
[http://dx.doi.org/10.1016/j.amc.2015.04.068]
[7]
Hayat, T.; Rafiq, M.; Ahmad, B. Influences of rotation and thermophoresis on MHD peristaltic transport of Jeffrey fluid with convective conditions and wall properties. J. Magn. Magn. Mater., 2016, 410, 89-99.
[http://dx.doi.org/10.1016/j.jmmm.2016.03.001]
[8]
Machireddy, G.R.; Kattamreddy, V.R. Impact of velocity slip and Joule heating on MHD peristaltic flow through a porous medium with chemical reaction. J. Niger. Math. Soc., 2016, 35(1), 227-244.
[http://dx.doi.org/10.1016/j.jnnms.2016.02.005]
[9]
Farooq, S.; Awais, M.; Naseem, M.; Hayat, T.; Ahmad, B. MHD peristalsis of variable viscosity Jeffrey liquid with heat and mass transfer. Nucl. Eng. Technol., 2017, 49(7), 1396-1404.
[http://dx.doi.org/10.1016/j.net.2017.07.013]
[10]
Tanveer, A.; Hayat, T.; Alsaedi, A.; Ahmad, B. On modified Darcy’s law utilization in peristalsis of Sisko fluid. J. Mol. Liq., 2017, 236, 290-297.
[http://dx.doi.org/10.1016/j.molliq.2017.04.041]
[11]
Imran, N.; Javed, M.; Sohail, M.; Tlili, I. Utilization of modified Darcy’s law in peristalsis with a complaint channel. J. Mater. Res. Technol., 2020, 9(3), 5619-5629.
[http://dx.doi.org/10.1016/j.jmrt.2020.03.087]
[12]
Sadaf, H.; Nadeem, S. Analysis of combined convective and viscous dissipation effects for peristaltic flow of Rabinwitcsh fluid model. J. Bionics Eng., 2017, 14(1), 182-190.
[http://dx.doi.org/10.1016/S1672-6529(16)60389-X]
[13]
Shaheen, A.; Asjad, M.I. Peristaltic flow of a Sisko fluid over a convectively heated surface with viscous dissipation. J. Phys. Chem. Solids, 2018, 122, 210-217.
[http://dx.doi.org/10.1016/j.jpcs.2018.06.016]
[14]
Hayat, T.; Aslam, N.; Khan, M.I.; Alsaedi, A. Mixed convective peristaltic flow of Carreau-Yasuda fluid in an inclined symmetric channel. Microsyst. Technol., 2019, 25, 609-620.
[http://dx.doi.org/10.1007/s00542-018-4017-9]
[15]
Noreen, S.; Nadeem, S. Characteristics of heating scheme and mass transfer on the peristaltic flow for an Eyring Powell fluid in an endoscope. Int. J. Heat Mass Transf., 2012, 55(1-3), 375-383.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.09.029]
[16]
Hayat, T.; Irfan, S.; Ahmad, B.; Mustafa, M. Effects of slip on peristaltic flow of Powell-Eyring fluid in a symmetric channel. Appl. Bionics Biomech., 2014, 11(1-2), 69-79.
[http://dx.doi.org/10.1155/2014/867328]
[17]
Hayat, T.; Tanveer, A.; Yasmin, H.; Alsaedi, A. Effects of convective condition and chemical reaction on peristaltic flow of Eyring-Powell fluid. Appl. Bionics Biomech., 2014, 11, 221-233.
[http://dx.doi.org/10.1155/2014/385821]
[18]
Hina, S.; Mustafa, M.; Hayat, T.; Alsaedi, A. Peristaltic transport of Powell Eyring fluid in a curved channel with heat/mass transfer and wall properties. Int. J. Heat Mass Transf., 2016, 101, 156-165.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.034]
[19]
Hina, S.; Mustafa, M.; Hayat, T.; Alsaedi, A. Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: A useful application in biomedicine. Comput. Methods Programs Biomed., 2016, 135, 89-100.
[http://dx.doi.org/10.1016/j.cmpb.2016.07.019] [PMID: 27586482]
[20]
Tanveer, A.; Hayat, T.; Alsaadi, F.; Alsaedi, A. Mixed convection peristaltic flow of Eyring-Powell nanofluid in a curved channel with compliant walls. Comput. Biol. Med., 2017, 82, 71-79.
[http://dx.doi.org/10.1016/j.compbiomed.2017.01.015] [PMID: 28161594]
[21]
Hayat, T.; Akram, J.; Alsaedi, A.; Zahir, H. Endoscopy effect in mixed convective peristalsis of Powell Eyring nano-fluid. J. Mol. Liq., 2018, 254, 47-54.
[http://dx.doi.org/10.1016/j.molliq.2018.01.064]
[22]
Ibrahim, W. Three dimensional rotating flow of Powell-Eyring nano-fluid with non-Fourier’s heat flux and non-Fick’s mass flux theory. Results Phys., 2018, 8, 569-577.
[http://dx.doi.org/10.1016/j.rinp.2017.12.034]
[23]
Mallick, B.; Misra, J.C. Peristaltic flow of Eyring Powell nano-fluid under the action of an electromagnetic field. Eng. Science Technol. Int. J., 2019, 22(1), 266-281.
[24]
Hussain, Q.; Alvi, N.; Latif, T.; Asghar, S. Radiative heat transfer in Powell Eyring nano-fluid with peristalsis. Int. J. Thermophys., 2019, 46(5), 1-20.
[25]
Nisar, Z.; Hayat, T.; Alsaedi, A.; Ahmad, B. Significance of activation energy in radiative peristaltic transport of Eyring Powell nano-fluid. Int. Commun. Heat Mass Transf., 2020, 116, 104655.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104655]
[26]
Kumar, D.; Ramesh, K.; Chandok, S. Mathematical modeling and simulation for the flow of magneto-Powel-Eyring fluid in an annulus with concentric rotating cylinders. Zhongguo Wuli Xuekan, 2020, 65, 187-197.
[http://dx.doi.org/10.1016/j.cjph.2020.02.002]
[27]
Hina, S. MHD peristaltic transport of Eyring Powell fluid with heat/mass transfer, wall properties and slip conditions. J. Magn. Magn. Mater., 2016, 404, 148-158.
[http://dx.doi.org/10.1016/j.jmmm.2015.11.059]
[28]
Hayat, T.; Shafique, M.; Tanveer, A.; Alsaedi, A. MHD effects on peristaltic flow of hyperbolic tangent nano-fluid with slip conditions and joule heating in an inclined channel. Int. J. Heat Mass Transf., 2016, 102, 54-63.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.105]
[29]
Javed, M.; Hayat, T.; Mustafa, M.; Ahmad, B. Velocity and thermal slip effects on peristaltic motion of Walter B fluid. Int. J. Heat Mass Transf., 2016, 96, 210-217.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.12.029]
[30]
Ramesh, K. Effects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous medium. Comput. Methods Programs Biomed., 2016, 135, 1-14.
[http://dx.doi.org/10.1016/j.cmpb.2016.07.001] [PMID: 27586475]
[31]
Sayed, H.M.; Aly, E.H.; Vajravelu, K. Influence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nano-fluid in an inclined asymmetric channel. Alex. Eng. J., 2016, 55(3), 2209-2220.
[http://dx.doi.org/10.1016/j.aej.2016.04.041]
[32]
Bhatti, M.M.; Abbas, M.A.; Rashidi, M.M. Combine effects of MHD and partial slip on peristaltic blood flow of Ree-Eyring fluid with wall properties. Eng. Science Technol. Int. J., 2016, 19(3), 1497-1502.
[http://dx.doi.org/10.1016/j.jestch.2016.05.004]
[33]
Hayat, T.; Shafique, M.; Tanveer, A.; Alsaedi, A. Slip and Joule heating effects on radiative peristaltic flow of hyperbolic tangent nano-fluid. Int. J. Heat Mass Transf., 2017, 559-567.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.03.116]
[34]
Hina, S.; Yasin, M. Slip effects on peristaltic flow of magnetohydrodynamics second grade fluid through a flexible channel with heat/mass transfer. J. Therm. Sci. Eng. Appl., 2018, 10(5), 051002.
[http://dx.doi.org/10.1115/1.4039544]
[35]
Rani, J.; Hina, S.; Mustafa, M. A novel formulation for MHD slip flow of Elastico-viscous fluid induced by peristaltic waves with heat/Mass transfer effects. Arab. J. Sci. Eng., 2020, 45, 9213-9225.
[http://dx.doi.org/10.1007/s13369-020-04722-0]
[36]
Tanveer, A.; Malik, M.Y. Slip and porosity effects on peristalsis of MHD Ree- Eyring nano-fluid in curved channel. Ain Shams Eng. J., 2020, 12(1), 955-968.
[http://dx.doi.org/10.1016/j.asej.2020.04.008]
[37]
Eldabe, N.T.; Elogail, M.A.; Elshaboury, S.M.; Hasan, A.A. Hall effects on the peristaltic transport of Williamson fluid through porous medium with heat and mass transfer. Appl. Math. Model., 2016, 40(1), 315-328.
[http://dx.doi.org/10.1016/j.apm.2015.04.043]
[38]
Hayat, T.; Rafiq, M.; Alsaedi, A. Investigation of hall current and slip conditions on peristaltic transport of Cu-water nano-fluid in a rotating medium. Int. J. Therm. Sci., 2017, 112, 129-141.
[http://dx.doi.org/10.1016/j.ijthermalsci.2016.10.004]
[39]
Rafiq, M. Effect if hall and ion slip on the peristaltic transport of nano-fluid. Zhongguo Wuli Xuekan, 2019, 60, 208-227.
[http://dx.doi.org/10.1016/j.cjph.2019.04.016]
[40]
Imran, N.; Javed, M.; Sohail, M.; Thounthong, P.; Nabwey, H.A.; Tlili, I. Utilization of hall current and ions slip effects for the dynamic simulation of peristalsis in a complaint wall. Alex. Eng. J., 2020, 59(5), 3609-3622.
[http://dx.doi.org/10.1016/j.aej.2020.06.006]
[41]
Krishna, M.V. Hall and ion slip impacts on unsteady MHD free convective rotating flow of Jeffrey fluid with ramped wall temperature. Int. Commun. Heat Mass Transf., 2020, 119, 104927.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104927]
[42]
Krishna, M.V.; Chamkha, A.J. Hall and ion slip effects on MHD rotating flow of elastic-viscous fluid through porous medium. Int. Commun. Heat Mass Transf., 2020, 113, 104494.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104494]
[43]
Javed, M. A mathematical framework for peristaltic mechanism of non-Newtonian fluid in an elastic heated channel with Hall effect. Multidiscip. Model. Mater. Struct., 2020, 17(2), 360-372.
[http://dx.doi.org/10.1108/MMMS-11-2019-0200]
[44]
Eldabe, N.T.; Moatimid, G.M.; Abouzeid, M.; Elshekhipy, A.A.; Abdallah, N.F. Semi-analytical treatment of Hall current effect on peristaltic flow of Jeffrey nanofluid. Int. J. Appl. Electromagn. Mech., 2021, 67(1), 47-66.
[http://dx.doi.org/10.3233/JAE-201626]
[45]
Reddy, M.G.; Reddy, K.V. Influence of joule heating on MHD peristaltic flow of a nano-fluid with complaint walls. Procedia Eng., 2015, 127, 1002-1009.
[http://dx.doi.org/10.1016/j.proeng.2015.11.449]
[46]
Hayat, T. Joule heating and thermal radiation effects on peristalsis in curved configuration. Results Phys., 2016, 6(1), 1088-1095.
[http://dx.doi.org/10.1016/j.rinp.2016.11.044]
[47]
Hayat, T.; Shafique, M.; Tanveer, A.; Alsaedi, A. Hall and ion slip effects on peristaltic flow of Jeffrey nano-fluid with Joule heating. J. Magn. Magn. Mater., 2016, 407, 51-59.
[http://dx.doi.org/10.1016/j.jmmm.2016.01.037]
[48]
Bhatti, M.M.; Rashidi, M.M. Study of heat and mass transfer with Joule heating on MHD peristaltic blood flow under the influence of hall current. Propulsion Power Res., 2017, 6(3), 177-185.
[http://dx.doi.org/10.1016/j.jppr.2017.07.006]
[49]
Hayat, T.; Aslam, N.; Rafiq, M.; Alsaadi, F.E. Hall and joule heating effects on peristaltic flow of Powell-Eyring fluid in an inclined symmetric channel. Results Phys., 2017, 7, 518-528.
[http://dx.doi.org/10.1016/j.rinp.2017.01.008]
[50]
Sucharitha, G.; Lakshminarayana, P.; Sandeep, N. Joule heating and wall flexibility effects on the peristaltic flow of MHD nano-fluid. Int. J. Mech. Sci., 2017, 131-132, 52-62.
[http://dx.doi.org/10.1016/j.ijmecsci.2017.06.043]
[51]
Noreen, S.; Kousar, T. Hall, ion slip and Ohmic heating effects in thermally active sinusoidal channel. Propulsion Power Res., 2019, 8(3), 263-273.
[http://dx.doi.org/10.1016/j.jppr.2019.02.002]
[52]
Ahmed, B.; Hayat, T.; Alsaedi, A.; Abbasi, F.M. Joule heating in mixed convective peristalsis of Sisko nanomaterial. J. Therm. Anal. Calorim., 2021, 146, 1-10.
[http://dx.doi.org/10.1007/s10973-020-09997-x]
[53]
Ramesh, K.; Riaz, A.; Dar, Z.A. Simultaneous effects of MHD and Joule heating on the fundamental flows of a Casson liquid with slip boundaries. Propulsion Power Res., 2021, 10(2), 118-129.
[http://dx.doi.org/10.1016/j.jppr.2021.05.002]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy