Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Ag-TiO2 Nanoparticles-catalyzed Three-component Synthesis of 12-aryl- 8,9,10,12-tetrahydrobenzo[a]-Xanthen-11-ones in Aqueous Medium

Author(s): Mahsa Lotfi Omran, Seyed Mohammad Vahdat* and Farhosh Kiani Barforosh

Volume 25, Issue 12, 2022

Published on: 31 January, 2022

Page: [2016 - 2025] Pages: 10

DOI: 10.2174/1386207325666220104110754

Price: $65

Abstract

Background: Ag-TiO2 nanoparticles catalyzed synthesis of 12-aryl-8,9,10,12- tetrahydrobenzo[a]-xanthen-11-ones have been enhanced via a three-component one-pot reaction betweenβ-naphthol, several aldehydes and dimedone in H2O at room temperature. Xanthenes are essential intermediates in chemistry owing to their vast difference in biological activity.

Methods: This process offered significant advantages containing appropriate cost efficiency, low amount of the catalyst, application of low-cost available Ag-TiO2 nanoparticles catalyst, purification of the product by non-chromatographic method, easy process, good atom economy, simple isolation and reusability of nanocatalyst.

Results: Ag-TiO2 nanoparticles catalyst shows easy access to Xanthenes with appropriate yields in short reaction time and purity. This nanoparticles catalyst was recycled and recovered by easy filtration and was reused up to five times with only an unimportant loss in its catalytic efficacy.

Conclusion: This method achieves to have a numerous scope relating to the difference in the aldehydes. Correspondingly, the attractiveness of this research was that H2O was the only by-product.

Keywords: Ag-TiO2 nanoparticles, aqueous medium, 12-Aryl-8, 9, 10, 12-tetrahydrobenzo[a]-xanthen-11-ones, threecomponent reaction, temperature, synthesis.

Graphical Abstract

[1]
Ashokreddy, A.; Buergi, B.R.; Chainani, A.; Chakrabarti, J.; Das, S.K.; DasGupta, N.; Joy, P.A.; Muhammed, M.A.H.; Kulkarni, G.U.; Manzoor, K.; Mukhopadhyay, R.; Nair, A.S.; Pal, T.; Pati, S.K.; Kumar, G.V.P.; Pillai, V.K.; Prasad, E.; Philip, R.; Kumar, V.R.R. A textbook of Nanoscience and Nanotechnology;; Tata McGraw Hill Education Private Limited: 7 West Patel Nagar, New Delhi, 2012.
[2]
Royal Society (Great Britain). Nanoscience and Nanotechnologies: Opportunities and Uncertainties; Royal Society: United Kingdom, 2004.
[3]
Liu, G.; Lu, Z.; Zhu, X.; Du, X.; Hu, J.; Chang, S.; Li, X.; Liu, Y. Facile in-situ growth of Ag/TiO2 nanoparticles on polydopamine modi-fied bamboo with excellent mildew-proofing. Sci. Rep., 2019, 9(1), 16496.
[http://dx.doi.org/10.1038/s41598-019-53001-y] [PMID: 31712585]
[4]
Wu, F.; Liu, W.; Qiu, J.; Li, J.; Zhou, W.; Fang, Y.; Zhang, S.; Li, X. Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Appl. Surf. Sci., 2015, 358, 425-435.
[http://dx.doi.org/10.1016/j.apsusc.2015.08.161]
[5]
Low, J.; Qiu, S.; Xu, D.; Jiang, C.; Cheng, B. Direct evidence and enhancement of surface plasmon resonance efect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. Appl. Surf. Sci., 2017, 434, 423-432.
[http://dx.doi.org/10.1016/j.apsusc.2017.10.194]
[6]
Shen, J.; Wang, R.; Liu, Q.; Yang, X.; Tang, H.; Yang, J. Accelerating photocatalytic hydrogen evolution and pollutant degradation by cou-pling organic co-catalysts with TiO2. Chin. J. Catal., 2019, 40, 380-389.
[http://dx.doi.org/10.1016/S1872-2067(18)63166-3]
[7]
Kakuta, N.; Park, K.H.; Finlayson, M.F.; Veno, A.; Bard, A.J.; Campion, A.; Fox, M.A.; Webber, S.E.; White, J.M. Silica-supported ZnS. cntdot. CdS mixed semiconductor catalysts for photogeneration of hydrogen. J. Phys. Chem., 1985, 89, 3828-3833.
[http://dx.doi.org/10.1021/j100264a012]
[8]
Nasr, C.; Chandini, H.S.; Kim, W.Y.; Schmehl, R.H.; Kamat, P.V. Photoelectrochemistry of composite semiconductor thin films. Photo-sensitization of SnO2/CdS coupled nanocrystallites with a ruthenium polypyridyl complex. J. Phys. Chem. B, 1997, 101, 7480-7487.
[http://dx.doi.org/10.1021/jp970833k]
[9]
Saravanan, R.; Manoj, D.; Qin, J.; Naushad, M.; Gracia, F.; Lee, A.F.; Khan, M.M.; Gracia-Pinilla, M.A. Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production. Process Saf. Environ, 2018, 120, 339-347.
[http://dx.doi.org/10.1016/j.psep.2018.09.015]
[10]
Lee, D.S.; Chen, Y.W. Nano Ag/TiO2 catalyst prepared by chemical deposition and its photocatalytic activity. J. Taiwan Inst. Chem. Eng., 2014, 45, 705-712.
[http://dx.doi.org/10.1016/j.jtice.2013.07.007]
[11]
Zhao, B.; Chen, Y.W. Ag/TiO2 sol prepared by a sol-gel method and its photocatalytic activity. J. Phys. Chem. Solids, 2011, 72, 1312-1318.
[http://dx.doi.org/10.1016/j.jpcs.2011.07.025]
[12]
Avciata, O.; Benli, Y.; Gordukb, S.; Koyun, O. Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nano-particles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity. J. Eng. Appl, 2016, 1, 34-50.
[http://dx.doi.org/10.30931/jetas.281381]
[13]
Naik, B.; Manoratne, C.H.; Chandrashekhar, A.; Iyer, A.; Prasad, V.S.; Ghosh, N.N. Preparation of TiO2, Ag-doped TiO2 nanoparticle and TiO2 SBA-15 nanocomposites using simple aqueous solution-based chemical method and study of their photocatalytical activity. J. Exp. Nanosci., 2013, 8, 462-479.
[http://dx.doi.org/10.1080/17458080.2011.597435]
[14]
Ugi, I. Multi‐Component Reactions (MCR). Part 1. Perspectives of multi‐component reactions and their libraries. Adv. Synth. Catal., 1997, 339, 499-516.
[15]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[16]
Jamison, J.M.; Krabill, K.; Hatwalkar, A.; Jamison, E.; Tsai, C.C. Potentiation of the antiviral activity of poly r(A-U) by xanthene dyes. Cell Biol. Int. Rep., 1990, 14(12), 1075-1084.
[http://dx.doi.org/10.1016/0309-1651(90)90015-Q] [PMID: 1964628]
[17]
El-Brashy, A.M.; El-Sayed Metwally, M.; El-Sepai, F.A. Spectrophotometric determination of some fluoroquinolone antibacterials by binary complex formation with xanthene dyes. Farmaco, 2004, 59(10), 809-817.
[http://dx.doi.org/10.1016/j.farmac.2004.07.001] [PMID: 15474058]
[18]
Yang, Z.M.; Huang, J.; Qin, J.K.; Dai, Z.K.; Lan, W.L.; Su, G.F.; Tang, H.; Yang, F. Design, synthesis and biological evaluation of novel 1-hydroxyl-3-aminoalkoxy xanthone derivatives as potent anticancer agents. Eur. J. Med. Chem., 2014, 85, 487-497.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.076] [PMID: 25113877]
[19]
Chae, S.W.; Woo, S.; Park, J.H.; Kwon, Y.; Na, Y.; Lee, H.J. Xanthone analogues as potent modulators of intestinal P-glycoprotein. Eur. J. Med. Chem., 2015, 93, 237-245.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.006] [PMID: 25686592]
[20]
Chibale, K.; Visser, M.; van Schalkwyk, D.; Smith, P.J.; Saravanamuthu, A.; Fairlamb, A.H. Exploring the potential of xanthene deriva-tives as trypanothione reductase inhibitors and chloroquine potentiating agents. Tetrahedron, 2003, 59, 2289-2296.
[http://dx.doi.org/10.1016/S0040-4020(03)00240-0]
[21]
Sekar, N. Developments in xanthene dyes: An update. Colourage, 1999, 46, 43-45.
[22]
Sarma, R.J.; Baruah, J.B. One step synthesis of dibenzoxanthenes. Dyes Pigm, 2005, 64, 91-92.
[http://dx.doi.org/10.1016/j.dyepig.2004.03.010]
[23]
Kikuchi, K.; Komatsu, K.; Nagano, T. Zinc sensing for cellular application. Curr. Opin. Chem. Biol., 2004, 8(2), 182-191.
[http://dx.doi.org/10.1016/j.cbpa.2004.02.007] [PMID: 15062780]
[24]
Knight, C.G.; Stephens, T. Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesi-cles. Biochem. J., 1989, 258(3), 683-687.
[http://dx.doi.org/10.1042/bj2580683] [PMID: 2471509]
[25]
Liu, J.; Diwu, Z.; Leung, W.Y. Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indi-cators. Bioorg. Med. Chem. Lett., 2001, 11(22), 2903-2905.
[http://dx.doi.org/10.1016/S0960-894X(01)00595-9] [PMID: 11677123]
[26]
Pouramiri, B.; Shirvani, M.; Kermani, E.T. Facile and rapid synthesis of divers xanthene derivatives using lanthanum(III) chlo-ride/chloroacetic acid as an efficient and reusable catalytic system under solvent-free conditions. J. Serb. Chem. Soc., 2017, 82, 483-493.
[http://dx.doi.org/10.2298/JSC160803034P]
[27]
Khurana, J.M.; Magoo, D. pTSA-catalyzed one-pot synthesis of 12-aryl-8, 9, 10, 12-tetrahydrobenzo [a] xanthen-11-ones in ionic liquid and neat conditions. Tetrahedron Lett., 2009, 50, 4777-4780.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.029]
[28]
Shaterian, H.R.; Ghashang, M.; Assankhani, H.A. One-pot synthesis of aryl 14H-dibenzo [a, j] xanthene leuco-dye derivatives. Dyes Pigm, 2008, 76, 564-568.
[http://dx.doi.org/10.1016/j.dyepig.2006.11.004]
[29]
Moosavi-Zare, A.R. AliZolfigol, M.A.; Zarei, M.; Zare, A.; Khakyzadeh, V. Preparation, characterization and application of ionic liquid sulfonic acid functionalized pyridinium chloride as an efficient catalyst for the solvent-free synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]-xanthen-11-ones. J. Mol. Liq., 2013, 186, 63-69.
[http://dx.doi.org/10.1016/j.molliq.2013.05.009]
[30]
Safaei-Ghomi, J.; Ghasemzadeh, M.A. Simple and efficient synthesis of 12-aryl-8,9,10,12- tetrahydrobenzo[a]xanthen-11-ones by ZnO nanoparticles catalyzed three component coupling reaction of aldehydes, 2-naphthol and dimedone. S. Afr. J. Chem., 2014, 67, 27-32.
[31]
Khazaei, A.; Zolfigol, M.A.; Moosavi-Zare, A.R.; Zare, A.; Khojasteh, M.; Asgari, Z.; Khakyzadeh, V.; Khalafi-Nezhad, A. Organocatalyst trityl chloride efficiently promoted the solvent-free synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]-xanthen-11-ones by in situ for-mation of carbocationic system in neutral media. Catal. Commun., 2012, 20, 54-57.
[http://dx.doi.org/10.1016/j.catcom.2012.01.001]
[32]
Tavakoli, Z.; Albadi, J. Efficient one-pot synthesis of 12-aryl-8,9,10, 12-tetrahydrobenzo[a]xanthen-11-ones catalyzed by CuO-CeO2 nanocomposite under solvent-free conditions. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2017, 44, 1497-1503.
[33]
Singh, H.; Kumari, S.; Khurana, J.M. A new green approach for the synthesis of 12-aryl-8, 9, 10, 12-tetrahydrobenzo [a] xanthene-11-one derivatives using task specific acidic ionic liquid [NMP] H2PO4. Chin. Chem. Lett., 2014, 25, 1336-1340.
[http://dx.doi.org/10.1016/j.cclet.2014.05.014]
[34]
Khurana, J.M.; Magoo, D.; Aggarwal, K.; Aggarwal, N.; Kumar, R.; Srivastava, C. Synthesis of novel 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-thiones and evaluation of their biocidal effects. Eur. J. Med. Chem., 2012, 58, 470-477.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.025] [PMID: 23153816]
[35]
Shirini, F.; Akbari-Dadamahaleh, S.; Mohammad-Khah, A.; Aliakbar, A.R. Rice husk: A mild, efficient, green and recyclable catalyst for the synthesis of 12-Aryl-8, 9, 10, 12-tetrahydro [a] xanthene-11-ones and quinoxaline derivatives. C. R. Chim., 2013, 16, 207-216.
[http://dx.doi.org/10.1016/j.crci.2012.12.004]
[36]
Habibi, D.; Kaamyabi, S.; Hazarkhani, H. Fe3O4 nanoparticles as an efficient and reusable catalyst for the solvent‐free synthesis of 9,9‐dimethyl‐9,10‐dihydro‐8H‐ benzo‐ [a] xanthen‐11(12H)‐ones. Chin. J. Catal., 2015, 36, 362-366.
[http://dx.doi.org/10.1016/S1872-2067(14)60238-2]
[37]
Gao, S.; Tsai, C.H.; Yao, C.F. A simple and green approach for the synthesis of tetrahydrobenzo[a]-xanthen-11-one derivatives using tetrabutyl ammonium fluoride in water. Synlett, 2009, 6, 949-954.
[38]
Mirjalili, B.F.; Bamoniri, A.; Akbari, A. BF3•SiO2: An efficient alternative for the synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes. Tetrahedron Lett., 2008, 49, 6454-6456.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.101]
[39]
Tabatabaeian, K.; Khorshidi, A.; Mamaghani, M.; Dadashi, A.; Khoshnood Jalali, M. One-pot synthesis of tetrahydrobenzo[a]xanthen-11-one derivatives catalyzed by ruthenium chloride hydrate as a homogeneous catalyst. Can. J. Chem., 2011, 89, 623-627.
[http://dx.doi.org/10.1139/v11-042]
[40]
Zhang, Z.H.; Zhang, P.; Yang, S.H.; Wang, H.J.; Deng, J. Multicomponent, solvent-free synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]-xanthen-11-one derivatives catalysed by cyanuric chloride. J. Chem. Sci., 2010, 122, 427-432.
[http://dx.doi.org/10.1007/s12039-010-0049-0]
[41]
Ghorbani‐Vaghei, R.; Malaekepoor, S.M. Facile one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and aryl-14H-dibenzo[a.j]xanthenes. Org. Prep. Proced. Int., 2010, 42, 494-498.
[http://dx.doi.org/10.1080/00304948.2010.514802]
[42]
Nazeruddin, G.M.; Al‐Kadasi, A.M.A. Ultrasound assisted one-pot synthesis of 12-aryl -8, 9, 10,12-tetrahydrobenzo[a]xanthen-11-one derivatives using chlorosulphonic acid as a catalyst under solvent-free conditions. Res. J. Pharm. Biol. Chem. Sci., 2011, 2, 71-76.
[43]
Li, J.T.; Li, Y.W.; Song, Y.L. Efficient synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives catalyzed by p-dodecylbenzenesulfonic acid in aqueous media under ultrasound irradiation. Synth. Commun., 2012, 42, 2161-2170.
[http://dx.doi.org/10.1080/00397911.2011.555048]
[44]
Mo, L.P.; Chen, H.L. One-pot, three-component condensation of aldehydes, 2-naphthol and 1,3-dicarbonyl compounds. J. Chin. Chem. Soc. (Taipei), 2010, 57, 157-161.
[http://dx.doi.org/10.1002/jccs.201000025]
[45]
Nandi, G.C.; Samai, S.; Kumar, R.; Singh, M.S. An efficient one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and di-azabenzo[a]anthracene-9,11-dione derivatives under solvent free condition. Tetrahedron, 2009, 65, 7129-7134.
[http://dx.doi.org/10.1016/j.tet.2009.06.024]
[46]
Poronik, Y.M.; Shandura, M.P.; Kovtun, Y.P. Substituted xanthylocyanines. III. Dyes containing non-symmetrically substituted xanthylium core. Dyes Pigm, 2007, 72, 199-207.
[http://dx.doi.org/10.1016/j.dyepig.2005.08.017]
[47]
Das, B.; Laxminarayana, K.; Krishnaiah, M.; Srinivas, Y. An efficient and convenient protocol for the synthesis of novel 12-aryl- or 12-alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives. Synlett, 2007, 20, 3107-3112.
[http://dx.doi.org/10.1055/s-2007-990922]
[48]
Karimi, N.; Oskooie, H.A.; Heravi, M.M.; Tahershamsi, L. Caro’s acid-silica gel-catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a] xanthen-11-ones. Synth. Commun., 2011, 41, 307-312.
[http://dx.doi.org/10.1080/00397910903537372]
[49]
Li, J.J.; Lu, L.M.; Su, W.K. A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water. Tetrahedron Lett., 2010, 51, 2434-2437.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.149]
[50]
Kalena, G.P.; Jain, A.; Banerji, A. Amberlyst 15 catalyzed prenylation of phenols: One-step synthesis of benzopyrans. Molecules, 1997, 2, 100-105.
[http://dx.doi.org/10.3390/20700100]
[51]
Li, J.J.; Tang, W.Y.; Lu, L.M.; Su, W.K. Strontium triflate catalyzed one-pot condensation of β-naphthol, aldehydes and cyclic 1,3-dicarbonyl compounds. Tetrahedron Lett., 2008, 49, 7117-7120.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.129]
[52]
Zhang, Z.H.; Wang, H.J.; Ren, X.Q.; Zhang, Y.Y. A facile and efficient method for synthesis of xanthone derivatives catalyzed by HBF4/SiO2 under solvent-free conditions. Monatsh. Chem., 2009, 140, 1481-1483.
[http://dx.doi.org/10.1007/s00706-009-0204-9]
[53]
Dongamanti, A.; Gandhi Devulapally, M.; Kumar Aamate, V.; Gundu, S.; Adam, S.; Murthy, S.D.S.; Balasubramanian, S.; Baindlad, N.; Tigullad, P. Novel pyrano [3,2-b]xanthen-7(2H)-ones: Synthesis, antimicrobial, antioxidant and molecular docking studies. J. Mol. Struct., 2019, 1177, 215-228.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.091]
[54]
Sauers, R.R.; Husain, S.N.; Piechowski, A.P.; Bird, G.R. Shaping the absorption and fluorescence bands of a class of efficient, photoactive chromophores: Synthesis and properties of some new 3H-xanthen-3-. Dyes Pigm, 1987, 8, 35-53.
[http://dx.doi.org/10.1016/0143-7208(87)85004-0]
[55]
Wang, H.J.; Ren, X.Q.; Zhang, Y.Y.; Zhang, Z.H. Synthesis of 12-aryl or 12-alkyl-8,9,10,12-tetrahydrobenzo[α]xanthen-11-one deriva-tives catalyzed by dodecatungsto phosphoric acid. J. Braz. Chem. Soc., 2009, 20, 1939-1943.
[http://dx.doi.org/10.1590/S0103-50532009001000025]
[56]
Hassankhani, A.; Mosaddegh, E.; Ebrahimipour, S.Y.H. 4SiW12O40 catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a] xanthen-11-ones under solvent-free conditions. E-J. Chem., 2012, 9, 786-790.
[http://dx.doi.org/10.1155/2012/930251]
[57]
Foroughifar, N.; Mobinikhaledi, A.; Moghanian, H. catalytic and green procedure for synthesis of 12Aryl or 12Alkyl8,9,10,12-tetrahydrobenzo[α]xanthen-11-one derivatives under solvent-free conditions. Int J Green Nanotechnol. Phys Chem., 2009, 1, 57-63.
[58]
Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J.M. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesopo-rous silica. Nature, 1995, 378, 159-162.
[http://dx.doi.org/10.1038/378159a0]
[59]
Ballini, R.; Bordoni, M.; Bosica, G.; Maggi, R.; Sartori, G. Solvent free synthesis and deprotection of 1, 1-diacetates over a commercially available zeolite Y as a reusable catalyst. Tetrahedron Lett., 1998, 39, 7587-7590.
[http://dx.doi.org/10.1016/S0040-4039(98)01649-9]
[60]
Vahdat, S.M.; Ghafouri Raz, S.; Baghery, S. Application of nano SnO2 as a green and recyclable catalyst for the synthesis of 2-aryl or alkylbenzoxazole derivatives under ambient temperature. J. Chem. Sci., 2014, 126, 579-585.
[http://dx.doi.org/10.1007/s12039-013-0544-1]
[61]
Vahdat, S.M.; Chekin, F.; Hatami, M.; Khavarpour, M.; Baghery, S.; Roshan-Kouhi, Z. Synthesis of polyhydroquinoline derivatives via a four-component Hantzsch condensation catalyzed by tin dioxide nanoparticles. Chin. J. Catal., 2013, 34, 758-763.
[http://dx.doi.org/10.1016/S1872-2067(11)60518-4]
[62]
Zolfigol, M.A.; Baghery, S.; Moosavi-Zare, A.R.; Vahdat, S.M. Synthesis and characterization of new 1-(α-aminoalkyl)-2-naphthols using pyrazine-1,4-diium trinitromethanide {[1,4-DHPyrazine][C(NO2)3]2} as a novel nano-structured molten salt and catalyst in compared with Ag-TiO2 nano composite. J. Mol. Catal. Chem., 2015, 409, 216-226.
[http://dx.doi.org/10.1016/j.molcata.2015.09.001]
[63]
Maleki, B.; Baghayeri, M.; Vahdat, S.M.; Mohammadzadeh, A.; Akhoondi, S. Ag@TiO2 nanocomposite; synthesis, characterization and its application as a novel and recyclable catalyst for the one-pot synthesis of benzoxazole derivatives in aqueous media. RSC Advances, 2015, 5, 46545-46551.
[http://dx.doi.org/10.1039/C5RA06618B]
[64]
Chekin, F.; Vahdat, S.M.; Asadi, M.J. Green synthesis and characterization of cobalt oxide nanoparticles and its electrocatalytic behavior. Russ. J. Appl. Chem., 2016, 89, 816-822.
[http://dx.doi.org/10.1134/S1070427216050219]
[65]
Yazdani, S.; Hatami, M.; Vahdat, S.M. The chemistry concerned with the sonochemical-assisted synthesis of CeO2/poly (amic acid) nano-composites. Turk. J. Chem., 2014, 38, 388-401.
[http://dx.doi.org/10.3906/kim-1306-33]
[66]
Vahdat, S.M.; Khavarpour, M.; Mohanazadeh, F. A facile and highly efficient three component synthesis of pyran and chromene deriva-tives in the presence of nano SnO2 as a catalyst. J. Appl. Chem, 2015, 9, 41-46.
[67]
Asghari, S.; Ramezani, S.; Ahmadipour, M.; Hatami, M. Fabrication and morphological characterizations of immobilized silver-loaded titanium dioxide nanoparticles/polyvinyl alcohol nanocomposites. Des. Monomers Polym., 2013, 16, 349-357.
[http://dx.doi.org/10.1080/15685551.2012.747152]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy