Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

2,4-Dioxochroman Moiety Linked to 1,2,3-triazole Derivatives as Novel α-glucosidase Inhibitors: Synthesis, In vitro Biological Evaluation, and Docking Study

Author(s): Marjan Mollazadeh, Maryam Mohammadi-Khanaposhtani, Yousef Valizadeh, Afsaneh Zonouzi, Mohammad Ali Faramarzi, Parsa Hariri, Mahmood Biglar, Bagher Larijani, Haleh Hamedifar, Mohammad Mahdavi* and Nima Sepehri*

Volume 24, Issue 17, 2020

Page: [2019 - 2027] Pages: 9

DOI: 10.2174/1385272824999200802181634

Price: $65

Abstract

In this study, a novel series of 2,4-dioxochroman-1,2,3-triazole hybrids 8a-l was synthesized by click reaction. These compounds were screened against α-glucosidase through in vitro and in silico evaluations. All the synthesized hybrids exhibited excellent α-glucosidase inhibition in comparison to standard drug acarbose. Representatively, 3-((((1-(3,4-dichlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)amino)methylene)chroman-2,4- dione 8h with IC50 = 20.1 ± 1.5 μM against α-glucosidase, was 37-times more potent than acarbose. Enzyme kinetic study revealed that compound 8h was a competitive inhibitor against α-glucosidase. In silico docking study on chloro derivatives 8h, 8g, and 8i were also performed in the active site of α -glucosidase. Evaluations on obtained interaction modes and binding energies of these compounds confirmed the results obtained through in vitro α-glucosidase inhibition.

Keywords: 2, 4-Dioxochroman, 1, 2, 3-Triazole, In vitro evaluation, α-Glucosidase, In silico docking study, Diabetes.

« Previous
Graphical Abstract

[1]
Tao, Z.; Shi, A.; Zhao, J. Epidemiological perspectives of diabetes. Cell Biochem. Biophys., 2015, 73(1), 181-185.
[http://dx.doi.org/10.1007/s12013-015-0598-4] [PMID: 25711186]
[2]
Desai, S.; Deshmukh, A. Mapping of type 1 diabetes mellitus. Curr. Diabetes Rev., 2019, 16(5), 438-441.
[http://dx.doi.org/10.2174/15733998156661910041 12647PMID: 31584373]
[3]
Díaz, R.A.G.; Nieto, N.G.; Rodarte, N.W.; Salinas, C.A.A. Epidemiology of type 1 diabetes in Latin America. Curr. Diabetes Rev., 2014, 10(2), 75-85.
[http://dx.doi.org/10.2174/1573399810666140223183936] [PMID: 24568292]
[4]
Classen, J.B. Review of evidence that epidemics of type 1 diabetes and type 2 diabetes/metabolic syndrome are polar opposite responses to iatrogenic inflammation. Curr. Diabetes Rev., 2012, 8(6), 413-418.
[http://dx.doi.org/10.2174/157339912803529869] [PMID: 22934546]
[5]
Dimova, E.D.; Ward, A.; Swanson, V.; Evans, J.M.M. Patients’ illness perceptions of type 2 diabetes: a scoping review. Curr. Diabetes Rev., 2019, 15(1), 15-30.
[http://dx.doi.org/10.2174/1573399814666171227214845] [PMID: 29283073]
[6]
Reusens, B.; Ozanne, S.E.; Remacle, C. Fetal determinants of type 2 diabetes. Curr. Drug Targets, 2007, 8(8), 935-941.
[http://dx.doi.org/10.2174/138945007781386866] [PMID: 17691930]
[7]
Kohei, K.A.K.U. Pathophysiology of type 2 diabetes and its treatment policy. Japan Med. Assoc. J., 2010, 53, 41-46.
[8]
Elizabeth, M.M.; Aguilar, A.; Francisco, J.; Clara, O.C.; Villanueva, E.; Carmen, M. Pancreatic β-cells and type 2 diabetes development. Curr. Diabetes Rev., 2017, 13(2), 108-121.
[http://dx.doi.org/10.2174/1573399812666151020101222] [PMID: 28917077]
[9]
Valaiyapathi, B.; Gower, B.; Ashraf, A.P. Pathophysiology of type 2 diabetes in children and adolescents. Curr. Diabetes Rev., 2020, 16(3), 220-229.
[http://dx.doi.org/10.2174/1573399814666180608074510 ] [PMID: 29879890]
[10]
Yu, C.G.; Fu, Y.; Fang, Y.; Zhang, N.; Sun, R.X.; Zhao, D.; Feng, Y.M.; Zhang, B.Y. Fighting type-2 diabetes: present and future perspectives. Curr. Med. Chem., 2019, 26(10), 1891-1907.
[http://dx.doi.org/10.2174/0929867324666171009115356] [PMID: 28990512]
[11]
Talchai, C.; Xuan, S.; Lin, H.V.; Sussel, L.; Accili, D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell, 2012, 150(6), 1223-1234.
[http://dx.doi.org/10.1016/j.cell.2012.07.029] [PMID: 22980982]
[12]
Sum, C.F.; Webster, J.M.; Johnson, A.B.; Catalano, C.; Cooper, B.G.; Taylor, R. The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes. Diabet. Med., 1992, 9(1), 61-65.
[http://dx.doi.org/10.1111/j.1464-5491.1992.tb01716.x] [PMID: 1551312]
[13]
Sharma, B.R.; Rhyu, D.Y. Anti-diabetic effects of Caulerpa lentillifera: stimulation of insulin secretion in pancreatic β-cells and enhancement of glucose uptake in adipocytes. Asian Pac. J. Trop. Biomed., 2014, 4(7), 575-580.
[http://dx.doi.org/10.12980/APJTB.4.2014APJTB-2014-0091] [PMID: 25183280]
[14]
Kumar, S.; Boulton, A.J.M.; Beck-Nielsen, H.; Berthezene, F.; Muggeo, M.; Persson, B.; Spinas, G.A.; Donoghue, S.; Lettis, S.; Long, P.S. Troglitazone study group Troglitazone, an insulin action enhancer, improves metabolic control in NIDDM patients. Diabetologia, 1996, 39(6), 701-709.
[http://dx.doi.org/10.1007/BF00418542] [PMID: 8781766]
[15]
Bischoff, H.B.A.B. Pharmacology of α‐glucosidase inhibition. Eur. J. Clin. Invest., 1994, 24, 3-10.
[PMID: 8001624] [http://dx.doi.org/10.1111/j.1365-2362.1994.tb02249.x]]
[16]
Kane, M.P.; Abu-Baker, A.; Busch, R.S. The utility of oral diabetes medications in type 2 diabetes of the young. Curr. Diabetes Rev., 2005, 1(1), 83-92.
[http://dx.doi.org/10.2174/1573399052952569] [PMID: 18220585]
[17]
El-Kaissi, S.; Sherbeeni, S. Pharmacological management of type 2 diabetes mellitus: an update. Curr. Diabetes Rev., 2011, 7(6), 392-405.
[http://dx.doi.org/10.2174/157339911797579160] [PMID: 21846326]
[18]
Correia, S.; Carvalho, C.; Santos, M.S.; Seiça, R.; Oliveira, C.R.; Moreira, P.I. Mechanisms of action of metformin in type 2 diabetes and associated complications: an overview. Mini Rev. Med. Chem., 2008, 8(13), 1343-1354.
[http://dx.doi.org/10.2174/138955708786369546] [PMID: 18991752]
[19]
Moneva, M.H.; Jack, S.D. Multiple drug targets in the management of type 2 diabetes. Curr. Drug Targets, 2002, 3(3), 203-221.
[http://dx.doi.org/10.2174/1389450023347803] [PMID: 12041735]
[20]
Cai, W.; Jiang, L.; Xie, Y.; Liu, Y.; Liu, W.; Zhao, G. Jiang, L.; Xie, Y.; Liu, Y.; Liu, W.; Zhao, G. Design of SGLT2 inhibitors for the treatment of type 2 diabetes: a history driven by biology to chemistry. Med. Chem., 2015, 11(4), 317-328.
[http://dx.doi.org/10.2174/1573406411666150105105529] [PMID: 25557661]
[21]
Sharma, N.; Bhagat, S.; Chundawat, T.S. Recent advances in development of GPR40 modulators (FFA1/FFAR1): an emerging target for type 2 diabetes. Mini Rev. Med. Chem., 2017, 17(11), 947-958.
[http://dx.doi.org/10.2174/1389557517666170120152917] [PMID: 28117025]
[22]
van de Laar, F.A.; Lucassen, P.L.; Akkermans, R.P.; van de Lisdonk, E.H.; Rutten, G.E.; van Weel, C. α-glucosidase inhibitors for patients with type 2 diabetes: results from a cochrane systematic review and meta-analysis. Diabetes Care, 2005, 28(1), 154-163.
[http://dx.doi.org/10.2337/diacare.28.1.154] [PMID: 15616251]
[23]
Reuser, A.J.J.; Wisselaar, H.A. An evaluation of the potential side-effects of α-glucosidase inhibitors used for the management of diabetes mellitus. Eur. J. Clin. Invest., 1994, 24(Suppl. 3), 19-24.
[http://dx.doi.org/10.1111/j.1365-2362.1994.tb02251.x] [PMID: 8001622]
[24]
Storr, S.J.; Royle, L.; Chapman, C.J.; Hamid, U.M.A.; Robertson, J.F.; Murray, A.; Dwek, R.A.; Rudd, P.M. The O-linked glycosylation of secretory/shed MUC1 from an advanced breast cancer patient’s serum. Glycobiology, 2008, 18(6), 456-462.
[http://dx.doi.org/10.1093/glycob/cwn022] [PMID: 18332077]
[25]
Mehta, A.; Zitzmann, N.; Rudd, P.M.; Block, T.M.; Dwek, R.A. α-glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett., 1998, 430(1-2), 17-22.
[http://dx.doi.org/10.1016/S0014-5793(98)00525-0] [PMID: 9678587]
[26]
Khanam, H. Shamsuzzaman. Bioactive benzofuran derivatives: a review. Eur. J. Med. Chem., 2015, 97, 483-504.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.039] [PMID: 25482554]
[27]
Pinto, M.M.M.; Sousa, M.E.; Nascimento, M.S.J. Xanthone derivatives: new insights in biological activities. Curr. Med. Chem., 2005, 12(21), 2517-2538.
[http://dx.doi.org/10.2174/092986705774370691] [PMID: 16250875]
[28]
Thomas, N.; Zachariah, S.M. Pharmacological activities of chromene derivatives: an overview. Asian J. Pharm. Clin. Res., 2013, 6, 11-15.
[29]
Kontogiorgis, C.; Detsi, A.; Litina, D.H. Coumarin-based drugs: a patent review (2008 -- present). Expert Opin. Ther. Pat., 2012, 22(4), 437-454.
[http://dx.doi.org/10.1517/13543776.2012.678835] [PMID: 22475457]
[30]
Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Rahim, F.; Saad, S.M.; Khan, K.M.; Nasir, A. Synthesis, molecular docking and α-glucosidase inhibition of 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles. Bioorg. Chem., 2016, 66, 117-123.
[http://dx.doi.org/10.1016/j.bioorg.2016.04.006] [PMID: 27149363]
[31]
Olomola, T.O.; Mphahlele, M.J.; Gildenhuys, S. Benzofuran-selenadiazole hybrids as novel α-glucosidase and cyclooxygenase-2 inhibitors with antioxidant and cytotoxic properties. Bioorg. Chem., 2020, 100103945
[http://dx.doi.org/10.1016/j.bioorg.2020.103945] [PMID: 32450390]
[32]
Perumal, O.; Peddakotla, S.V.K.; Suresh, L.; Chandramouli, G.V.P.; Pydisetty, Y. α-Glucosidase inhibitory activity, molecular docking, QSAR and ADMET properties of novel 2-amino-phenyldiazenyl-4H-chromene derivatives. J. Biomol. Struct. Dyn., 2017, 35(12), 2620-2630.
[http://dx.doi.org/10.1080/07391102.2016.1227278] [PMID: 27555333]
[33]
Ye, G.J.; Lan, T.; Huang, Z.X.; Cheng, X.N.; Cai, C.Y.; Ding, S.M.; Xie, M.L.; Wang, B. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-glucosidase inhibition and glucose uptake promotion. Eur. J. Med. Chem., 2019, 177, 362-373.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.045] [PMID: 31158750]
[34]
Ding, S.M.; Lan, T.; Ye, G.J.; Huang, J.J.; Hu, Y.; Zhu, Y.R.; Wang, B. Novel oxazolxanthone derivatives as a new type of α-glucosidase inhibitor: synthesis, activities, inhibitory modes and synergetic effect. Bioorg. Med. Chem., 2018, 26(12), 3370-3378.
[http://dx.doi.org/10.1016/j.bmc.2018.05.008] [PMID: 29776833]
[35]
Santos, C.M.M.; Freitas, M.; Fernandes, E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2018, 157, 1460-1479.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.073] [PMID: 30282319]
[36]
Dinparast, L.; Hemmati, S.; Alizadeh, A.A.; Zengin, G.; Kafil, H.S.; Bahadori, M.B.; Dastmalchi, S. An efficient, catalyst-free, one-pot synthesis of 4H-chromene derivatives and investigating their biological activities and mode of interactions using molecular docking studies. J. Mol. Struct., 2020, 1203127426
[http://dx.doi.org/10.1016/j.molstruc.2019.127426]
[37]
Spasov, A.A.; Babkov, D.A.; Osipov, D.V.; Klochkov, V.G.; Prilepskaya, D.R.; Demidov, M.R.; Osyanin, V.A.; Klimochkin, Y.N. Synthesis, in vitro and in vivo evaluation of 2-aryl-4H-chromene and 3-aryl-1H-benzo[f]chromene derivatives as novel α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(1), 119-123.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.018] [PMID: 30340897]
[38]
Zhao, B.T.; Le, D.D.; Nguyen, P.H.; Ali, M.Y.; Choi, J.S.; Min, B.S.; Shin, H.M.; Rhee, H.I.; Woo, M.H. PTP1B, α-glucosidase, and DPP-IV inhibitory effects for chromene derivatives from the leaves of Smilax china L. Chem. Biol. Interact., 2016, 253, 27-37.
[http://dx.doi.org/10.1016/j.cbi.2016.04.012] [PMID: 27060210]
[39]
Hosseini Ghazvini, S.M.B.; Safari, P.; Mobinikhaledi, A.; Moghanian, H.; Rasouli, H. Synthesis, characterization, anti-diabetic potential and DFT studies of 7-hydroxy-4-methyl-2-oxo-2H-chromene-8-carbaldehyde oxime. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 205, 111-131.
[http://dx.doi.org/10.1016/j.saa.2018.07.009] [PMID: 30015017]
[40]
Tafesse, T.B.; Bule, M.H.; Khoobi, M.; Faramarzi, M.A.; Abdollahi, M.; Amini, M. Coumarin-based scaffold as α-glucosidase inhibitory activity: implication for development of potent antidiabetic agents. Mini Rev. Med. Chem., 2019, 20(2), 134-151.
[http://dx.doi.org/10.2174/1389557519666190925162536 ] [PMID: 31553294]
[41]
Xu, X.T.; Deng, X.Y.; Chen, J.; Liang, Q.M.; Zhang, K.; Li, D.L.; Wu, P.P.; Zheng, X.; Zhou, R.P.; Jiang, Z.Y.; Ma, A.J.; Chen, W.H.; Wang, S.H. Synthesis and biological evaluation of coumarin derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2020, 189112013
[http://dx.doi.org/10.1016/j.ejmech.2019.112013] [PMID: 31972390]
[42]
Trinh, D.H.; Tran, P.T.; Trinh, B.T.; Nguyen, H.T.; Nguyen, H.D.; Ha, L.D.; Nguyen, L.H.D. Coumarins and acridone alkaloids with α-glucosidase inhibitory and antioxidant activity from the roots of Paramignya trimera. Phytochem. Lett., 2020, 35, 94-98.
[http://dx.doi.org/10.1016/j.phytol.2019.10.010]
[43]
Gabr, M.T.; Celik, S.; Akyuz, S.; Ozel, A.E. Coumarin-benzothiazole hybrid as a new scaffold for human gliomas. Drug Discov. Ther., 2020, 7100012
[http://dx.doi.org/10.1016/j.medidd.2020.100012]
[44]
Salar, U.; Khan, K.M.; Chigurupati, S.; Syed, S.; Vijayabalan, S.; Wadood, A.; Riaz, M.; Ghufran, M.; Perveen, S. New hybrid scaffolds based on hydrazinyl thiazole substituted coumarin; as novel leads of dual potential; in vitro α-amylase inhibitory and antioxidant (DPPH and ABTS radical scavenging) activities. Med. Chem., 2019, 15(1), 87-101.
[http://dx.doi.org/10.2174/1573406414666180903162243] [PMID: 30179139]
[45]
Singh, P.; Ngcoya, N.; Mopuri, R.; Kerru, N.; Manhas, N.; Ebenezer, O.; Islam, M.S. α-Glucosidase inhibition, antioxidant and docking studies of hydroxycoumarins and their mono and bis o-alkylated/acetylated analogs. Lett. Drug Des. Discov., 2018, 15, 127-135.
[http://dx.doi.org/10.2174/1570180814666170602081941]
[46]
Asgari, M.S.; Mohammadi-Khanaposhtani, M.; Kiani, M.; Ranjbar, P.R.; Zabihi, E.; Pourbagher, R.; Rahimi, R.; Faramarzi, M.A.; Biglar, M.; Larijani, B.; Mahdavi, M.; Hamedifar, H.; Hajimiri, M.H. Biscoumarin-1,2,3-triazole hybrids as novel anti-diabetic agents: design, synthesis, in vitro α-glucosidase inhibition, kinetic, and docking studies. Bioorg. Chem., 2019, 92103206
[http://dx.doi.org/10.1016/j.bioorg.2019.103206] [PMID: 31445191]
[47]
Khan, M.A.; Javaid, K.; Wadood, A.; Jamal, A.; Batool, F.; Fazal-Ur-Rehman, S.; Basha, F.Z.; Choudhary, M.I. In vitro α-glucosidase inhibition by non-sugar based triazoles of dibenzoazepine, their structure-activity relationship, and molecular docking. Med. Chem., 2017, 13(7), 698-704.
[http://dx.doi.org/10.2174/1573406413666170726142949] [PMID: 28745232]
[48]
Celik, F.; Unver, Y.; Barut, B.; Ozel, A.; Sancak, K. Synthesis, characterization and biological activities of new symmetric bis-1, 2, 3-triazoles with Click chemistry. Med. Chem., 2018, 14(3), 230-241.
[http://dx.doi.org/10.2174/1573406413666171120165226] [PMID: 29165092]
[49]
Shaikh, M.; Siddiqui, S.; Zafar, H.; Naqeeb, U.; Subzwari, F.; Imad, R.; Khan, K.M.; Choudhary, M.I. Antiglycation activity of triazole Schiff’s bases against fructose-mediated glycation: in vitro and in silico study. Med. Chem., 2019, 16(4), 575-591.
[http://dx.doi.org/10.2174/1573406415666190212105718 ] [PMID: 30747076]
[50]
Asemanipoor, N.; Mohammadi-Khanaposhtani, M.; Moradi, S.; Vahidi, M.; Asadi, M.; Faramarzi, M.A.; Mahdavi, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Hajimiri, M.H. Synthesis and biological evaluation of new benzimidazole-1,2,3-triazole hybrids as potential α-glucosidase inhibitors. Bioorg. Chem., 2020, 95103482
[http://dx.doi.org/10.1016/j.bioorg.2019.103482] [PMID: 31838286]
[51]
Bakherad, Z.; Khanaposhtani, M.M.; Aliabadi, H.S.; Rezaei, S.; Fassihi, A.; Bakherad, M.; Rastegar, H.; Biglar, M.; Saghaie, L.; Larijani, B.; Mahdavi, M. New thiosemicarbazide-1,2,3-triazole hybrids as potent α-glucosidase inhibitors: design, synthesis, and biological evaluation. J. Mol. Struct., 2019, 1192, 192-200.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.082]
[52]
Saeedi, M.; Khanaposhtani, M.M.; Pourrabia, P.; Razzaghi, N.; Ghadimi, R.; Imanparast, S.; Faramarzi, M.A.; Bandarian, F.; Esfahani, E.N.; Safavi, M.; Rastegar, H.; Larijani, B.; Mahdavi, M.; Akbarzadeh, T. Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: in vitro α-glucosidase inhibition, kinetic, and docking study. Bioorg. Chem., 2019, 83, 161-169.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.023] [PMID: 30366316]
[53]
Kumar, L.; Lal, K.; Yadav, P.; Kumar, A.; Paul, A.K. Synthesis, characterization, α-glucosidase inhibiton and molecular modeling studies of some pyrazoline-1H-1,2,3-triazole hybrids. J. Mol. Struct., 2020, 1216128253
[http://dx.doi.org/10.1016/j.molstruc.2020.128253]
[54]
Saeedi, M.; Khanaposhtani, M.M.; Asgari, M.S.; Eghbalnejad, N.; Imanparast, S.; Faramarzi, M.A.; Larijani, B.; Mahdavi, M.; Akbarzadeh, T. Design, synthesis, in vitro, and in silico studies of novel diarylimidazole-1,2,3-triazole hybrids as potent α-glucosidase inhibitors. Bioorg. Med. Chem., 2019, 27(23)115148
[http://dx.doi.org/10.1016/j.bmc.2019.115148] [PMID: 31679980]
[55]
Zhao, Y.; Zhou, Y.; O’Boyle, K.M.; Murphy, P.V. Hybrids of 1-deoxynojirimycin and aryl-1,2,3-triazoles and biological studies related to angiogenesis. Bioorg. Med. Chem., 2008, 16(12), 6333-6337.
[http://dx.doi.org/10.1016/j.bmc.2008.05.012] [PMID: 18504133]
[56]
Zhou, Y.; Zhao, Y.; O’ Boyle, K.M.; Murphy, P.V. Hybrid angiogenesis inhibitors: synthesis and biological evaluation of bifunctional compounds based on 1-deoxynojirimycin and aryl-1,2,3-triazoles. Bioorg. Med. Chem. Lett., 2008, 18(3), 954-958.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.034] [PMID: 18166456]
[57]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. andSharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[58]
Mollazadeh, M.; Mohammadi-Khanaposhtani, M.; Zonouzi, A.; Nadri, H.; Najafi, Z.; Larijani, B.; Mahdavi, M. New benzyl pyridinium derivatives bearing 2,4-dioxochroman moiety as potent agents for treatment of Alzheimer’s disease: design, synthesis, biological evaluation, and docking study. Bioorg. Chem., 2019, 87, 506-515.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.012] [PMID: 30928873]
[59]
Khanaposhtani, M.M.; Saeedi, M.; Zafarghandi, N.S.; Mahdavi, M.; Sabourian, R.; Razkenari, E.K.; Alinezhad, H.; Khanavi, M.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Potent acetylcholinesterase inhibitors: design, synthesis, biological evaluation, and docking study of acridone linked to 1,2,3-triazole derivatives. Eur. J. Med. Chem., 2015, 92, 799-806.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.044] [PMID: 25636055]
[60]
Metwally, M.A.; Bondock, S.; El-Desouky, E.I.; Abdou, M.M. Synthesis, structure elucidation and application of some new azo disperse dyes derived from 4-hydroxycoumarin for dyeing polyester fabrics. Am. J. Chem., 2012, 2, 347-354.
[http://dx.doi.org/10.5923/j.chemistry.20120206.09]
[61]
Olyaei, A.; Javarsineh, S.; Sadeghpour, M. Green synthesis and Z/E-isomerization of novel coumarin enamines induced by organic solvents. Chem. Heterocycl. Compd., 2018, 54, 934-939.
[http://dx.doi.org/10.1007/s10593-018-2376-x]
[62]
Adib, M.; Peytam, F.; Rahmanian-Jazi, M.; Mahernia, S.; Bijanzadeh, H.R.; Jahani, M.; Khanaposhtani, M.M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Larijani, B. New 6-amino-pyrido[2,3-d]pyrimidine-2,4-diones as novel agents to treat type 2 diabetes: a simple and efficient synthesis, α-glucosidase inhibition, molecular modeling and kinetic study. Eur. J. Med. Chem., 2018, 155, 353-363.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.046] [PMID: 29902721]
[63]
Khanaposhtani, M.M.; Yahyavi, H.; Barzegaric, E.; Imanparast, S.; Heravi, M.M.; Ali Faramarzi, M.; Foroumadi, A.; Adibi, H.; Larijani, B.; Mahdavi, M. New biscoumarin derivatives as potent α-glucosidase inhibitors: synthesis, biological evaluation, kinetic analysis, and docking study. Polycycl. Aromat. Compd., 2018, 2018, 1-12.
[http://dx.doi.org/10.1080/10406638.2018.1509359 ]
[64]
Adib, M.; Peytam, F.; Jazi, M.R.; Khanaposhtani, M.M.; Mahernia, S.; Bijanzadeh, H.R.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Larijani, B. Design, synthesis and in vitro α-glucosidase inhibition of novel coumarin-pyridines as potent antidiabetic agents. New J. Chem., 2018, 42, 17268-17278.
[http://dx.doi.org/10.1039/C8NJ02495B]
[65]
Heydari, Z.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Ranjbar, P.R.; Larijani, B. Pyrano [3, 2-c] quinoline derivatives as new class of α-glucosidase inhibitors to treat type 2 diabetes: synthesis, in vitro biological evaluation and kinetic study. Med. Chem., 2019, 15(1), 8-16.
[http://dx.doi.org/10.2174/1573406414666180528110104] [PMID: 29807519]
[66]
Khanaposhtani, M.M.; Yahyavi, H.; Imanparast, S.; Harandi, F.N.; Faramarzi, M.A.; Foroumadi, A.; Larijani, B.; Biglar, M.; Mahdavi, M. Benzoylquinazolinone derivatives as new potential antidiabetic agents: α‐Glucosidase inhibition, kinetic, and docking studies. J. Chin. Chem. Soc. (Taipei), 2019, 67(5), 856-863.
[http://dx.doi.org/10.1002/jccs.201900268]
[67]
Esfahani, E.N.; Khanaposhtani, M.M.; Rezaei, S.; Sarrafi, Y.; Sharafi, Z.; Samadi, N.; Faramarzi, M.A.; Bandarian, F.; Hamedifar, H.; Larijani, B.; Hajimiri, M.; Mahdavi, M. A new series of Schiff base derivatives bearing 1,2,3-triazole: Design, synthesis, molecular docking, and α-glucosidase inhibition. Arch. Pharm. (Weinheim), 2019, 352(8)e1900034
[http://dx.doi.org/10.1002/ardp.201900034] [PMID: 31330079]
[68]
Peytam, F.; Adib, M.; Shourgeshty, R.; Khanaposhtani, M.M.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Moghadamnia, A.A.; Rastegar, H.; Larijani, B. Design and synthesis of new imidazo[1,2-b]pyrazole derivatives, in vitro α-glucosidase inhibition, kinetic and docking studies. Mol. Divers., 2020, 24(1), 69-80.
[http://dx.doi.org/10.1007/s11030-019-09925-8] [PMID: 30825061]
[69]
Adib, M.; Peytam, F.; Shourgeshty, R.; Khanaposhtani, M.M.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Larijani, B.; Moghadamnia, A.A.; Esfahani, E.N.; Bandarian, F.; Mahdavi, M. Design and synthesis of new fused carbazole-imidazole derivatives as anti-diabetic agents: in vitro α-glucosidase inhibition, kinetic, and in silico studies. Bioorg. Med. Chem. Lett., 2019, 29(5), 713-718.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.012] [PMID: 30661823]
[70]
Asgari, M.S.; Khanaposhtani, M.M.; Sharafi, Z.; Faramarzi, M.A.; Rastegar, H.; Esfahani, E.N.; Bandarian, F.; Ranjbar Rashidi, P.; Rahimi, R.; Biglar, M.; Mahdavi, M.; Larijani, B. Design and synthesis of 4,5-diphenyl-imidazol-1,2,3-triazole hybrids as new anti-diabetic agents: in vitro α-glucosidase inhibition, kinetic and docking studies. Mol. Divers., 2020, 2020, 1-12.
[http://dx.doi.org/10.1007/s11030-020-10072-8] [PMID: 32189236]
[71]
Ellman, G.L.; Courtney, K.D.; Andres, V.; Stone, R.M.F. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[72]
Hosseini, F.; Khanaposhtani, M.M.; Azizian, H.; Ramazani, A.; Tehrani, M.B.; Nadri, H.; Larijani, B.; Biglar, M.; Adibi, H.; Mahdavi, M. 4-Oxobenzo [d] 1, 2, 3-triazin-pyridinium-phenylacetamide derivatives as new anti-Alzheimer agents: design, synthesis, in vitro evaluation, molecular modeling, and molecular dynamic study. Struct. Chem., 2020, 2020, 1-14.
[http://dx.doi.org/10.1007/s11224-019-01472-0]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy