Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Potential Benefits of Tricetin in Medicine for the Treatment of Cancers and Other Health-Related Disorders: Medicinal Importance and Therapeutic Benefit

Author(s): Dinesh Kumar Patel*

Volume 12, Issue 6, 2022

Published on: 02 March, 2022

Article ID: e211221199198 Pages: 8

DOI: 10.2174/2210315512666211221113117

Price: $65

Abstract

Background: Medicinal plants have been used in medicine for the treatment of numerous diseases due to their medicinal properties and pharmacological activities. The popularity of herbal- based drugs in the health sector has been increasing due to patient compliance and cost-effectiveness. Herbal drugs derived from plant and animal sources have been used in the Ayurvedic, Homeopathic, and Naturopathic systems of medicine. Medicinal plants have been used as fuel, clothing, shelter, and food material worldwide since a very early age. Phytoconstituents are pure plant chemicals found in different parts of the plant material. Flavonoids are an important class of phytochemicals found in medicinal plants and their derived products.

Methods: In order to understand the biological significance of tricetin, the present study collected and analyzed scientific data on tricetin medicinal importance and pharmacological activities. Literature databases such as Google, PubMed, Science Direct, and Scopus have been searched using terms tricetin and flavonoid. All the scientific information has been collected from these databases to know the biological importance of tricetin. Analytical data of tricetin have also been collected and analyzed in the present work to know the isolation, separation, and identification procedure of tricetin.

Results: Scientific data analysis of different research work revealed the presence of tricetin in Triticum dicoccum, Lathyrus pratensis, Eucalyptus globules, Thuja occidentalis, and Metasequoia glyptostroboides. Scientific data analysis signified the biological importance of tricetin against different forms of cancerous disorders, human osteosarcoma, glioblastoma multiforme, human breast adenocarcinoma, human non-small cell lung cancer, and liver cancer. Scientific data analysis also signified the biological potential of tricetin against inflammation, neurodegenerative diseases, atherosclerosis, diabetes, and respiratory syncytial virus infection. Scientific data analysis revealed the biological importance of tricetin against multidrug resistance and free radicals.

Conclusion: Scientific data analysis revealed the biological importance and pharmacological activities of tricetin against various forms of human disorders, including cancer, inflammation, neurodegeneration, atherosclerosis, and diabetes.

Keywords: Cancer, flavonoid, tricetin, inflammation, neurodegenerative, atherosclerosis, diabetes.

Graphical Abstract

[1]
Orief, Y.I.; Farghaly, N.F.; Ibrahim, M.I.A. Use of herbal medicines among pregnant women attending family health centers in Alexandria. Middle East Fertil. Soc. J., 2014, 19, 42-50.
[http://dx.doi.org/10.1016/j.mefs.2012.02.007]
[2]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery. Recent Pat. Antiinfect. Drug Discov., 2019, 14(1), 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[3]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med., 2013, 19(10), 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[4]
Firenzuoli, F.; Gori, L. Herbal medicine today: Clinical and research issues. Evid. Based Complement. Alternat. Med., 2007, 4(Suppl. 1), 37-40.
[http://dx.doi.org/10.1093/ecam/nem096] [PMID: 18227931]
[5]
Patel, K.; Jain, A.; Patel, D.K. Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: A concise report. J. Acute Dis., 2013, 2, 169-178.
[http://dx.doi.org/10.1016/S2221-6189(13)60123-7]
[6]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[7]
Singh, B.; Sahu, P.M.; Sharma, R.A. Flavonoids from Heliotropium subulatum exudate and their evaluation for antioxidant, antineoplastic and cytotoxic activities II. Cytotechnology, 2017, 69(1), 103-115.
[http://dx.doi.org/10.1007/s10616-016-0041-8] [PMID: 27905025]
[8]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7, 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[9]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4, 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[10]
Yuan, Y.; Wang, N.; Zhu, F.; Shen, M.; Chen, K. Exploration of the protein targets and function mechanism of tricetin based on surface plasmon resonance and reverse molecular docking. Front. Drug, Chem. Clin. Res. (Alex.), 2019, 2, 1-9.
[11]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[12]
Martos, I.; Ferreres, F.; Tomás-Barberán, F.A. Identification of flavonoid markers for the botanical origin of Eucalyptus honey. J. Agric. Food Chem., 2000, 48(5), 1498-1502.
[http://dx.doi.org/10.1021/jf991166q] [PMID: 10820049]
[13]
Devi, A.; Jangir, J.; K.A., Anu-Appaiah. Chemical characterization complemented with chemometrics for the botanical origin identification of unifloral and multifloral honeys from India. Food Res. Int., 2018, 107, 216-226.
[http://dx.doi.org/10.1016/j.foodres.2018.02.017] [PMID: 29580480]
[14]
Sergiel, I.; Pohl, P.; Biesaga, M. Characterisation of honeys according to their content of phenolic compounds using high performance liquid chromatography/tandem mass spectrometry. Food Chem., 2014, 145, 404-408.
[http://dx.doi.org/10.1016/j.foodchem.2013.08.068] [PMID: 24128495]
[15]
Yao, L.; Jiang, Y.; D’Arcy, B.; Singanusong, R.; Datta, N.; Caffin, N.; Raymont, K. Quantitative high-performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys. J. Agric. Food Chem., 2004, 52(2), 210-214.
[http://dx.doi.org/10.1021/jf034990u] [PMID: 14733497]
[16]
Freire, K.R.L.; Lins, A.C.S.; Dórea, M.C.; Santos, F.A.R.; Camara, C.A.; Silva, T.M.S. Palynological origin, phenolic content, and antioxidant properties of honeybee-collected pollen from Bahia, Brazil. Molecules, 2012, 17(2), 1652-1664.
[http://dx.doi.org/10.3390/molecules17021652] [PMID: 22314384]
[17]
Shao, L.; Huang, W.H.; Zhang, C.F.; Wang, L.; Zhang, M.; Wang, Z.T. Study on chemical constituents from stem of Dendrobium aphyllum. Zhongguo Zhongyao Zazhi, 2008, 33(14), 1693-1695.
[PMID: 18841768]
[18]
Wollenweber, E.; Wehde, R.; Dörr, M.; Stevens, J.F. On the occurrence of exudate flavonoids in the borage family (Boraginaceae). Z. Naturforsch. C J. Biosci., 2002, 57(5-6), 445-448.
[http://dx.doi.org/10.1515/znc-2002-5-607] [PMID: 12132682]
[19]
Greenham, J.; Harborne, J.B.; Williams, C.A. Identification of lipophilic flavones and flavonols by comparative HPLC, TLC and UV spectral analysis. Phytochem. Anal., 2003, 14(2), 100-118.
[http://dx.doi.org/10.1002/pca.693] [PMID: 12693635]
[20]
Greenham, J.; Vassiliades, D.D.; Harborne, J.B.; Williams, C.A.; Eagles, J.; Grayer, R.J.; Veitch, N.C. A distinctive flavonoid chemistry for the anomalous genus Biebersteinia. Phytochemistry, 2001, 56(1), 87-91.
[http://dx.doi.org/10.1016/S0031-9422(00)00355-1] [PMID: 11198823]
[21]
Lee, M.H.; Son, Y.K.; Han, Y.N. Tissue factor inhibitory flavonoids from the fruits of Chaenomeles sinensis. Arch. Pharm. Res., 2002, 25(6), 842-850.
[http://dx.doi.org/10.1007/BF02977002] [PMID: 12510836]
[22]
Griffiths, L.A.; Smith, G.E. Metabolism of myricetin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. Biochem. J., 1972, 130(1), 141-151.
[http://dx.doi.org/10.1042/bj1300141] [PMID: 4655415]
[23]
Abourashed, E.A.; Toyang, N.J.; Choinski, J., Jr; Khan, I.A. Two new flavone glycosides from paullinia pinnata. J. Nat. Prod., 1999, 62(8), 1179-1181.
[http://dx.doi.org/10.1021/np990063z] [PMID: 10479333]
[24]
Yoshikawa, M.; Shimada, H.; Shimoda, H.; Murakami, N.; Yamahara, J.; Matsuda, H. Bioactive constituents of Chinese natural medicines. II. Rhodiolae radix. (1). Chemical structures and antiallergic activity of rhodiocyanosides A and B from the underground part of Rhodiola quadrifida (Pall.) Fisch. et Mey. (Crassulaceae). Chem. Pharm. Bull. (Tokyo), 1996, 44(11), 2086-2091.
[http://dx.doi.org/10.1248/cpb.44.2086] [PMID: 8945774]
[25]
Pistelli, L.; Bertoli, A.; Noccioli, C.; Mendez, J.; Musmanno, R.A.; Di Maggio, T. Antimicrobial Activity of Inga fendleriana Extracts and Isolated Flavonoids. Nat. Prod. Commun., 2009, 4, 1934578X0900401.
[http://dx.doi.org/10.1177/1934578X0900401214]
[26]
Wang, H-B.; Yao, H.; Bao, G-H.; Zhang, H-P.; Qin, G-W. Flavone glucosides with immunomodulatory activity from the leaves of Pleioblastus amarus. Phytochemistry, 2004, 65(7), 969-974.
[http://dx.doi.org/10.1016/j.phytochem.2003.11.013] [PMID: 15081303]
[27]
Campos, M.G.; Webby, R.F.; Markham, K.R. The unique occurrence of the flavone aglycone tricetin in Myrtaceae pollen. Z. Naturforsch. C J. Biosci., 2002, 57(9-10), 944-946.
[http://dx.doi.org/10.1515/znc-2002-9-1031]
[28]
Martos, I.; Ferreres, F.; Yao, L.; D’Arcy, B.; Caffin, N.; Tomás-Barberán, F.A. Flavonoids in monospecific eucalyptus honeys from Australia. J. Agric. Food Chem., 2000, 48(10), 4744-4748.
[http://dx.doi.org/10.1021/jf000277i] [PMID: 11052728]
[29]
Krauze-Baranowska, M. Flavonoids from Metasequoia glyptostroboides. Acta Pol. Pharm., 2004, 61(3), 199-202.
[PMID: 15481245]
[30]
Su, X.; Wang, W.; Xia, T.; Gao, L.; Shen, G.; Pang, Y. Characterization of a heat responsive UDP: Flavonoid glucosyltransferase gene in tea plant (Camellia sinensis). PLoS One, 2018, 13(11), e0207212.
[http://dx.doi.org/10.1371/journal.pone.0207212] [PMID: 30475819]
[31]
Chien, M-H.; Chow, J-M.; Lee, W-J.; Chen, H-Y.; Tan, P.; Wen, Y-C.; Lin, Y.W.; Hsiao, P.C.; Yang, S.F. Tricetin induces apoptosis of human leukemic HL-60 cells through a reactive Oxygen species-mediated c-Jun N-Terminal Kinase activation pathway. Int. J. Mol. Sci., 2017, 18(8), 1667.
[http://dx.doi.org/10.3390/ijms18081667] [PMID: 28758971]
[32]
Sun, F-F.; Hu, P-F.; Xiong, Y.; Bao, J-P.; Qian, J.; Wu, L-D. Tricetin protects rat chondrocytes against IL-1 β-induced inflammation and apoptosis. Oxid. Med. Cell. Longev., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/4695381]
[33]
Hung, J-Y.; Chang, W-A.; Tsai, Y-M.; Hsu, Y-L.; Chiang, H-H.; Chou, S-H.; Huang, M.S.; Kuo, P.L. Tricetin, a dietary flavonoid, suppresses benzo(a)pyrene-induced human non-small cell lung cancer bone metastasis. Int. J. Oncol., 2015, 46(5), 1985-1993.
[http://dx.doi.org/10.3892/ijo.2015.2915] [PMID: 25738754]
[34]
Lam, P.Y.; Liu, H.; Lo, C. Completion of Tricin biosynthesis pathway in rice: Cytochrome P450 75B4 is a unique Chrysoeriol 5′-Hydroxylase. Plant Physiol., 2015, 168(4), 1527-1536.
[http://dx.doi.org/10.1104/pp.15.00566] [PMID: 26082402]
[35]
Wollenweber, E.; Dörr, M. Occurrence and distribution of the Flavone Tricetin and its Methyl derivatives as free aglycones. Nat. Prod. Commun., 2008, 3, 1934578X0800300.
[http://dx.doi.org/10.1177/1934578X0800300812]
[36]
Cai, L.; Zhang, X.; Hou, M.; Gao, F. Natural flavone tricetin suppresses oxidized LDL-induced endothelial inflammation mediated by Egr-1. Int. Immunopharmacol., 2020, 80, 106224.
[http://dx.doi.org/10.1016/j.intimp.2020.106224] [PMID: 31991371]
[37]
Chao, R.; Chow, J-M.; Hsieh, Y-H.; Chen, C-K.; Lee, W-J.; Hsieh, F-K.; Yu, N.Y.; Chou, M.C.; Cheng, C.W.; Yang, S.F.; Chien, M.H. Tricetin suppresses the migration/invasion of human glioblastoma multiforme cells by inhibiting matrix metalloproteinase-2 through modulation of the expression and transcriptional activity of specificity protein 1. Expert Opin. Ther. Targets, 2015, 19(10), 1293-1306.
[http://dx.doi.org/10.1517/14728222.2015.1075509] [PMID: 26245494]
[38]
Chang, P-Y.; Hsieh, M-J.; Hsieh, Y-S.; Chen, P-N.; Yang, J-S.; Lo, F-C.; Yang, S.F.; Lu, K.H. Tricetin inhibits human osteosarcoma cells metastasis by transcriptionally repressing MMP-9 via p38 and Akt pathways. Environ. Toxicol., 2017, 32(8), 2032-2040.
[http://dx.doi.org/10.1002/tox.22380] [PMID: 27860196]
[39]
Hsu, Y-L.; Uen, Y-H.; Chen, Y.; Liang, H-L.; Kuo, P-L. Tricetin, a dietary flavonoid, inhibits proliferation of human breast adenocarcinoma MCF-7 cells by blocking cell cycle progression and inducing apoptosis. J. Agric. Food Chem., 2009, 57(18), 8688-8695.
[http://dx.doi.org/10.1021/jf901053x] [PMID: 19705844]
[40]
Hsu, Y-L.; Hou, M-F.; Tsai, E-M.; Kuo, P-L. Tricetin, a dietary flavonoid, induces apoptosis through the reactive oxygen species/c-Jun NH2-terminal kinase pathway in human liver cancer cells. J. Agric. Food Chem., 2010, 58(23), 12547-12556.
[http://dx.doi.org/10.1021/jf103159r] [PMID: 21067180]
[41]
Shi, M-D.; Liao, Y-C.; Shih, Y-W.; Tsai, L-Y. Nobiletin attenuates metastasis via both ERK and PI3K/Akt pathways in HGF-treated liver cancer HepG2 cells. Phytomedicine, 2013, 20(8-9), 743-752.
[http://dx.doi.org/10.1016/j.phymed.2013.02.004] [PMID: 23537747]
[42]
Chobot, V.; Hadacek, F.; Bachmann, G.; Weckwerth, W.; Kubicova, L. In vitro evaluation of pro- and antioxidant effects of Flavonoid Tricetin in comparison to myricetin. Molecules, 2020, 25(24), 5850.
[http://dx.doi.org/10.3390/molecules25245850] [PMID: 33322312]
[43]
Geraets, L.; Haegens, A.; Brauers, K.; Haydock, J.A.; Vernooy, J.H.J.; Wouters, E.F.M.; Bast, A.; Hageman, G.J. Inhibition of LPS-induced pulmonary inflammation by specific flavonoids. Biochem. Biophys. Res. Commun., 2009, 382(3), 598-603.
[http://dx.doi.org/10.1016/j.bbrc.2009.03.071] [PMID: 19292976]
[44]
Wang, X.; Wang, Z.; Sidhu, P.S.; Desai, U.R.; Zhou, Q. 6-Hydroxyflavone and derivatives exhibit potent anti-inflammatory activity among mono-, di- and polyhydroxylated flavones in kidney mesangial cells. PLoS One, 2015, 10(3), e0116409.
[http://dx.doi.org/10.1371/journal.pone.0116409] [PMID: 25790236]
[45]
Weseler, A.R.; Geraets, L.; Moonen, H.J.J.; Manders, R.J.F.; van Loon, L.J.C.; Pennings, H-J.; Wouters, E.F.; Bast, A.; Hageman, G.J. Poly (ADP-ribose) polymerase-1-inhibiting flavonoids attenuate cytokine release in blood from male patients with chronic obstructive pulmonary disease or type 2 diabetes. J. Nutr., 2009, 139(5), 952-957.
[http://dx.doi.org/10.3945/jn.108.102756] [PMID: 19321592]
[46]
Geraets, L.; Moonen, H.J.J.; Brauers, K.; Wouters, E.F.M.; Bast, A.; Hageman, G.J. Dietary flavones and flavonoles are inhibitors of poly(ADP-ribose)polymerase-1 in pulmonary epithelial cells. J. Nutr., 2007, 137(10), 2190-2195.
[http://dx.doi.org/10.1093/jn/137.10.2190] [PMID: 17884996]
[47]
Ren, J.; Yuan, L.; Wang, W.; Zhang, M.; Wang, Q.; Li, S.; Zhang, L.; Hu, K. Tricetin protects against 6-OHDA-induced neurotoxicity in Parkinson’s disease model by activating Nrf2/HO-1 signaling pathway and preventing mitochondria-dependent apoptosis pathway. Toxicol. Appl. Pharmacol., 2019, 378, 114617.
[http://dx.doi.org/10.1016/j.taap.2019.114617] [PMID: 31176653]
[48]
Kuppusamy, A.; Arumugam, M.; George, S. Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer’s disease. Int. J. Biol. Macromol., 2017, 95, 199-203.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.062] [PMID: 27871793]
[49]
Wang, N.; Zhu, F.; Shen, M.; Qiu, L.; Tang, M.; Xia, H.; Chen, L.; Yuan, Y.; Ma, S.; Chen, K. Network pharmacology-based analysis on bioactive anti-diabetic compounds in Potentilla discolor bunge. J. Ethnopharmacol., 2019, 241, 111905.
[http://dx.doi.org/10.1016/j.jep.2019.111905] [PMID: 31022565]
[50]
Wu, S.; Tian, L. A new flavone glucoside together with known ellagitannins and flavones with anti-diabetic and anti-obesity activities from the flowers of pomegranate (Punica granatum). Nat. Prod. Res., 2019, 33(2), 252-257.
[http://dx.doi.org/10.1080/14786419.2018.1446009] [PMID: 29502447]
[51]
Ge, Q.; Chen, L.; Tang, M.; Zhang, S.; Liu, L.; Gao, L.; Ma, S.; Kong, M.; Yao, Q.; Feng, F.; Chen, K. Analysis of mulberry leaf components in the treatment of diabetes using network pharmacology. Eur. J. Pharmacol., 2018, 833, 50-62.
[http://dx.doi.org/10.1016/j.ejphar.2018.05.021] [PMID: 29782863]
[52]
Nishina, A.; Ukiya, M.; Fukatsu, M.; Koketsu, M.; Ninomiya, M.; Sato, D.; Yamamoto, J.; Kobayashi-Hattori, K.; Okubo, T.; Tokuoka, H.; Kimura, H. Effects of various 5,7-Dihydroxyflavone analogs on adipogenesis in 3T3-L1 Cells. Biol. Pharm. Bull., 2015, 38(11), 1794-1800.
[http://dx.doi.org/10.1248/bpb.b15-00489] [PMID: 26521830]
[53]
Vargas, J.E.; Puga, R.; de Faria Poloni, J.; Saraiva Macedo Timmers, L.F.; Porto, B.N.; Norberto de Souza, O.; Bonatto, D.; Condessa Pitrez, P.M.; Tetelbom Stein, R. A network flow approach to predict protein targets and flavonoid backbones to treat respiratory syncytial virus infection. BioMed Res. Int., 2015, 2015, 301635.
[http://dx.doi.org/10.1155/2015/301635] [PMID: 25879022]
[54]
Tan, K.W.; Li, Y.; Paxton, J.W.; Birch, N.P.; Scheepens, A. Identification of novel dietary phytochemicals inhibiting the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Food Chem., 2013, 138(4), 2267-2274.
[http://dx.doi.org/10.1016/j.foodchem.2012.12.021] [PMID: 23497885]
[55]
Alsamhary, K.; Al-Enazi, N.; Alshehri, W.A.; Ameen, F. Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial nanomedicine to treat respiratory infections causing opportunistic bacterial pathogens. Microb. Pathog., 2020, 139, 103928.
[http://dx.doi.org/10.1016/j.micpath.2019.103928] [PMID: 31843547]
[56]
Švecová, M.; Ulbrich, P.; Dendisová, M.; Matějka, P. SERS study of riboflavin on green-synthesized silver nanoparticles prepared by reduction using different flavonoids: What is the role of flavonoid used? Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 195, 236-245.
[http://dx.doi.org/10.1016/j.saa.2018.01.083] [PMID: 29428644]
[57]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2016, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[58]
Pathak, K.; Das, R.J. Herbal medicine- A rational approach in health care system. Int. J. Herb. Med., 2013, 1, 86-89.
[59]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosgenin: A concise report. Nat. Prod. Bioprospect., 2012, 2, 46-52.
[http://dx.doi.org/10.1007/s13659-012-0014-3]
[60]
Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed. Pharmacol., 2018, 7, 1-7.
[http://dx.doi.org/10.15171/jhp.2018.01]
[61]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Kumar Patel, D. Health benefits of furanocoumarins ‘Psoralidin’ an active phytochemical of Psoralea corylifolia: The present, past and future scenario. Curr. Bioact. Compd., 2019, 15, 369-376.
[http://dx.doi.org/10.2174/1573407214666180511153438]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy