Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Discovery of Novel Small Molecule HDAC1, 2, 3 Inhibitors -- Combined Receptor-Based and Ligand-Based Virtual Screening Strategy

Author(s): Yi Wu, Bo Zhang, Xiaowu Dong, Shenglin Ma* and Shengquan Hu*

Volume 19, Issue 7, 2022

Published on: 27 January, 2022

Page: [627 - 636] Pages: 10

DOI: 10.2174/1570180819666211220124300

Price: $65

Abstract

Aims: This study aims to investigate and validate the potential drug target to HDAC1.

Background: Human histone deacetylase 1 (HDAC1) can catalyze the deacetylation of histones belonging to the family of human histone deacetylases (HDACs). Amide hydrolase HDAC1 plays a key role in the development of many serious cancers such as prostate cancer, gastric cancer, lung cancer, esophageal cancer, colon cancer, and breast cancer. Therefore, HDAC1 inhibitors, promoting the transcription of a series of key genes such as the p53 gene and inhibiting the development of cancer through various downstream mechanisms, have great potential for the treatment of cancer.

Objective: The objective of this study is to discover new skeleton HDAC1 inhibitors efficiently and conveniently with therapeutic potential for cancer.

Methods: Based on the crystal structure of HDAC1, through the combination of receptor-based and ligand- based virtual screening from the commercial compound library, the top-ranked compounds are selected for purchase through binding modes analysis, and their activities were verified through in vitro HDAC1 inhibitory biological experiments.

Results: Based on LeDock, 5ICN showed good distinguishing ability and was used as the receptor. According to the results of the LeDock docking scoring from receptor-based virtual screening, 69 compounds with binding energy less than -7.5 kcal/mol were obtained and used for ligand-based virtual screening. A total of 21 novel compounds with high potential HDAC1 inhibitory activity were collected by combining the similarity searching (NN) and the multinomial Naive Bayes machine learning model (NB) methods. Through binding modes analysis, 10 compounds with different structures with potential HDAC1 inhibitory activity were selected and screened HDAC1 inhibitory in vitro. May267 showed moderate HDAC1 inhibitory activity, and the inhibition rate was 48% at a concentration of 20 μM.

Conclusion: This study discovers novel small molecule HDAC1 inhibitors by combined receptor-based and ligand-based virtual screening strategy, which provides an efficient method for the discovery of other small molecule drugs. May267 shows moderate HDAC1 inhibitory activity, which can be further optimized as a lead compound. However, it still has the problem of poor kinase selectivity to be solved.

Keywords: HDAC1, inhibitors, RBVS, LBVS, cancer, deacetylation.

Graphical Abstract

[1]
Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis, 2010, 31(1), 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[2]
Cao, L-L.; Song, X.; Pei, L.; Liu, L.; Wang, H.; Jia, M. Histone deacetylase HDAC1 expression correlates with the progression and prog-nosis of lung cancer: A meta-analysis. Medicine (Baltimore), 2017, 96(31): e7663.
[http://dx.doi.org/10.1097/MD.0000000000007663] [PMID: 28767587]
[3]
Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692.
[http://dx.doi.org/10.1016/j.cell.2007.01.029] [PMID: 17320506]
[4]
Park, S.Y.; Jun, J.A.; Jeong, K.J.; Heo, H.J.; Sohn, J.S.; Lee, H.Y.; Park, C.G.; Kang, J. Histone deacetylases 1, 6 and 8 are critical for inva-sion in breast cancer. Oncol. Rep., 2011, 25(6), 1677-1681.
[http://dx.doi.org/10.3892/or.2011.1236] [PMID: 21455583]
[5]
Gartel, A.L.; Radhakrishnan, S.K. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res., 2005, 65(10), 3980-3985.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3995] [PMID: 15899785]
[6]
Linggi, B.; Müller-Tidow, C.; van de Locht, L.; Hu, M.; Nip, J.; Serve, H.; Berdel, W.E.; van der Reijden, B.; Quelle, D.E.; Rowley, J.D.; Cleveland, J.; Jansen, J.H.; Pandolfi, P.P.; Hiebert, S.W. The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat. Med., 2002, 8(7), 743-750.
[http://dx.doi.org/10.1038/nm726] [PMID: 12091906]
[7]
Kim, M.S.; Kwon, H.J.; Lee, Y.M.; Baek, J.H.; Jang, J-E.; Lee, S-W.; Moon, E.J.; Kim, H.S.; Lee, S.K.; Chung, H.Y.; Kim, C.W.; Kim, K.W. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat. Med., 2001, 7(4), 437-443.
[http://dx.doi.org/10.1038/86507] [PMID: 11283670]
[8]
Kuwajima, A.; Iwashita, J.; Murata, J.; Abe, T. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel. Anticancer Res., 2007, 27(6B), 4163-4169.
[PMID: 18225587]
[9]
Serebryannyy, L.A.; Cruz, C.M.; de Lanerolle, P. A role for nuclear actin in HDAC 1 and 2 regulation. Sci. Rep., 2016, 6(1), 28460.
[http://dx.doi.org/10.1038/srep28460] [PMID: 27345839]
[10]
Halkidou, K.; Gaughan, L.; Cook, S.; Leung, H.Y.; Neal, D.E.; Robson, C.N. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate, 2004, 59(2), 177-189.
[http://dx.doi.org/10.1002/pros.20022] [PMID: 15042618]
[11]
Choi, J.H.; Kwon, H.J.; Yoon, B.I.; Kim, J.H.; Han, S.U.; Joo, H.J.; Kim, D.Y. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn. J. Cancer Res., 2001, 92(12), 1300-1304.
[http://dx.doi.org/10.1111/j.1349-7006.2001.tb02153.x] [PMID: 11749695]
[12]
Zhang, Z.; Yamashita, H.; Toyama, T.; Sugiura, H.; Ando, Y.; Mita, K.; Hamaguchi, M.; Hara, Y.; Kobayashi, S.; Iwase, H. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast. Breast Cancer Res. Treat., 2005, 94(1), 11-16.
[http://dx.doi.org/10.1007/s10549-005-6001-1] [PMID: 16172792]
[13]
Dawson, M.A.; Kouzarides, T. Cancer epigenetics: From mechanism to therapy. Cell, 2012, 150(1), 12-27.
[http://dx.doi.org/10.1016/j.cell.2012.06.013] [PMID: 22770212]
[14]
Hesham, H.M.; Lasheen, D.S.; Abouzid, K.A.M. Chimeric HDAC inhibitors: Comprehensive review on the HDAC-based strategies devel-oped to combat cancer. Med. Res. Rev., 2018, 38(6), 2058-2109.
[http://dx.doi.org/10.1002/med.21505] [PMID: 29733427]
[15]
Srinivas, N.R. Clinical pharmacokinetics of panobinostat, a novel histone deacetylase (HDAC) inhibitor: review and perspectives. Xenobiotica, 2017, 47(4), 354-368.
[http://dx.doi.org/10.1080/00498254.2016.1184356] [PMID: 27226420]
[16]
McClure, J.J.; Li, X.; Chou, C.J. Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv. Cancer Res., 2018, 138, 183-211.
[http://dx.doi.org/10.1016/bs.acr.2018.02.006] [PMID: 29551127]
[17]
Chuang, D-M.; Leng, Y.; Marinova, Z.; Kim, H-J.; Chiu, C-T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci., 2009, 32(11), 591-601.
[http://dx.doi.org/10.1016/j.tins.2009.06.002] [PMID: 19775759]
[18]
Bertrand, P. Inside HDAC with HDAC inhibitors. Eur. J. Med. Chem., 2010, 45(6), 2095-2116.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.030] [PMID: 20223566]
[19]
Grant, S.; Easley, C.; Kirkpatrick, P. Vorinostat. Nat. Rev. Drug Discov., 2007, 6(1), 21-22.
[http://dx.doi.org/10.1038/nrd2227] [PMID: 17269160]
[20]
Bertino, E.M.; Otterson, G.A. Romidepsin: A novel histone deacetylase inhibitor for cancer. Expert Opin. Investig. Drugs, 2011, 20(8), 1151-1158.
[http://dx.doi.org/10.1517/13543784.2011.594437] [PMID: 21699444]
[21]
Lee, H-Z.; Kwitkowski, V.E.; Del Valle, P.L.; Ricci, M.S.; Saber, H.; Habtemariam, B.A.; Bullock, J.; Bloomquist, E.; Li, Shen Y.; Chen, X.H.; Brown, J.; Mehrotra, N.; Dorff, S.; Charlab, R.; Kane, R.C.; Kaminskas, E.; Justice, R.; Farrell, A.T.; Pazdur, R. FDA approval: Beli-nostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Clin. Cancer Res., 2015, 21(12), 2666-2670.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3119] [PMID: 25802282]
[22]
Laubach, J.P.; Moreau, P.; San-Miguel, J.F.; Richardson, P.G. Panobinostat for the treatment of multiple myeloma. Clin. Cancer Res., 2015, 21(21), 4767-4773.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0530] [PMID: 26362997]
[23]
Shi, Y.; Jia, B.; Xu, W.; Li, W.; Liu, T.; Liu, P.; Zhao, W.; Zhang, H.; Sun, X.; Yang, H.; Zhang, X.; Jin, J.; Jin, Z.; Li, Z.; Qiu, L.; Dong, M.; Huang, X.; Luo, Y.; Wang, X.; Wang, X.; Wu, J.; Xu, J.; Yi, P.; Zhou, J.; He, H.; Liu, L.; Shen, J.; Tang, X.; Wang, J.; Yang, J.; Zeng, Q.; Zhang, Z.; Cai, Z.; Chen, X.; Ding, K.; Hou, M.; Huang, H.; Li, X.; Liang, R.; Liu, Q.; Song, Y.; Su, H.; Gao, Y.; Liu, L.; Luo, J.; Su, L.; Sun, Z.; Tan, H.; Wang, H.; Wang, J.; Wang, S.; Zhang, H.; Zhang, X.; Zhou, D.; Bai, O.; Wu, G.; Zhang, L.; Zhang, Y. Chidamide in re-lapsed or refractory peripheral T cell lymphoma: A multicenter real-world study in China. J. Hematol. Oncol., 2017, 10(1), 69.
[http://dx.doi.org/10.1186/s13045-017-0439-6] [PMID: 28298231]
[24]
Di Micco, S.; Chini, M.G.; Terracciano, S.; Bruno, I.; Riccio, R.; Bifulco, G. Structural basis for the design and synthesis of selective HDAC inhibitors. Bioorg. Med. Chem., 2013, 21(13), 3795-3807.
[http://dx.doi.org/10.1016/j.bmc.2013.04.036] [PMID: 23693069]
[25]
De Souza, C.; Chatterji, B.P.P. Chatterji B. HDAC inhibitors as novel anti-cancer therapeutics. Recent Patents Anticancer Drug Discov., 2015, 10(2), 145-162.
[http://dx.doi.org/10.2174/1574892810666150317144511] [PMID: 25782916]
[26]
Garber, K. HDAC inhibitors overcome first hurdle. Nature Publishing Group, 2007, 25(1), 17-20.
[http://dx.doi.org/10.1038/nbt0107-17]
[27]
Cerqueira, N.M.; Gesto, D.; Oliveira, E.F.; Santos-Martins, D.; Brás, N.F.; Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Receptor-based vir-tual screening protocol for drug discovery. Arch. Biochem. Biophys., 2015, 582, 56-67.
[http://dx.doi.org/10.1016/j.abb.2015.05.011] [PMID: 26045247]
[28]
Ripphausen, P.; Nisius, B.; Bajorath, J. State-of-the-art in ligand-based virtual screening. Drug Discov. Today, 2011, 16(9-10), 372-376.
[http://dx.doi.org/10.1016/j.drudis.2011.02.011] [PMID: 21349346]
[29]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Auto-mated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[30]
Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M.P.; Overington, J.P.; Papadatos, G.; Smit, I.; Leach, A.R. The ChEMBL database in 2017. Nucleic Acids Res., 2017, 45(D1), D945-D954.
[http://dx.doi.org/10.1093/nar/gkw1074] [PMID: 27899562]
[31]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3, 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[32]
Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem., 2012, 55(14), 6582-6594.
[http://dx.doi.org/10.1021/jm300687e] [PMID: 22716043]
[33]
Zhao, H.; Huang, D. Hydrogen bonding penalty upon ligand binding. PLoS One, 2011, 6(6): e19923.
[http://dx.doi.org/10.1371/journal.pone.0019923] [PMID: 21698148]
[34]
Awale, M.; Reymond, J-L. Polypharmacology browser PPB2: Target prediction combining nearest neighbors with machine learning. J. Chem. Inf. Model., 2019, 59(1), 10-17.
[http://dx.doi.org/10.1021/acs.jcim.8b00524] [PMID: 30558418]
[35]
Su, M.; Yang, Q.; Du, Y.; Feng, G.; Liu, Z.; Li, Y.; Wang, R. Comparative assessment of scoring functions: The CASF-2016 update. J. Chem. Inf. Model., 2019, 59(2), 895-913.
[http://dx.doi.org/10.1021/acs.jcim.8b00545] [PMID: 30481020]
[36]
Zhang, N.; Zhao, H. Enriching screening libraries with bioactive fragment space. Bioorg. Med. Chem. Lett., 2016, 26(15), 3594-3597.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.013] [PMID: 27311891]
[37]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[38]
Lang, P.T.; Brozell, S.R.; Mukherjee, S.; Pettersen, E.F.; Meng, E.C.; Thomas, V.; Rizzo, R.C.; Case, D.A.; James, T.L.; Kuntz, I.D. DOCK 6: Combining techniques to model RNA-small molecule complexes. RNA, 2009, 15(6), 1219-1230.
[http://dx.doi.org/10.1261/rna.1563609] [PMID: 19369428]
[39]
Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys., 2016, 18(18), 12964-12975.
[http://dx.doi.org/10.1039/C6CP01555G] [PMID: 27108770]
[40]
Cereto-Massagué, A.; Ojeda, M.J.; Valls, C.; Mulero, M.; Garcia-Vallvé, S.; Pujadas, G. Molecular fingerprint similarity search in virtual screening. Methods, 2015, 71, 58-63.
[http://dx.doi.org/10.1016/j.ymeth.2014.08.005] [PMID: 25132639]
[41]
Chen, Z.; Tian, G.; Wang, Z.; Jiang, H.; Shen, J.; Zhu, W. Multiple pharmacophore models combined with molecular docking: A reliable way for efficiently identifying novel PDE4 inhibitors with high structural diversity. J. Chem. Inf. Model., 2010, 50(4), 615-625.
[http://dx.doi.org/10.1021/ci9004173] [PMID: 20353193]
[42]
Neves, B.J.; Braga, R.C.; Melo-Filho, C.C.; Moreira-Filho, J.T.; Muratov, E.N.; Andrade, C.H. QSAR-based virtual screening: Advances and applications in drug discovery. Front. Pharmacol., 2018, 9, 1275.
[http://dx.doi.org/10.3389/fphar.2018.01275] [PMID: 30524275]
[43]
da Silva Rocha, S.F.L.; Olanda, C.G.; Fokoue, H.H.; Sant’Anna, C.M.R. Virtual screening techniques in drug discovery: Review and recent applications. Curr. Top. Med. Chem., 2019, 19(19), 1751-1767.
[http://dx.doi.org/10.2174/1568026619666190816101948] [PMID: 31418662]

© 2025 Bentham Science Publishers | Privacy Policy