Review Article

系统生物学中的代谢组学工作流和分析

卷 22, 期 10, 2022

发表于: 31 January, 2022

页: [870 - 881] 页: 12

弟呕挨: 10.2174/1566524022666211217102105

价格: $65

摘要

代谢组学是一种系统生物学的组学方法,涉及开发和评估生物系统中代谢物的大规模、全面的生化分析工具。这篇综述描述了代谢组学的工作流程,并概述了目前用于代谢谱定量分析的分析工具。我们解释的分析工具有质谱(MS),核磁共振(NMR)光谱,电离技术,以及数据提取和分析的方法。

关键词: 生物标志物、液相色谱、代谢组学、质谱学、核磁共振谱学、蛋白质组学。

[1]
Koal T, Deigner H-P. Challenges in mass spectrometry based targeted metabolomics. Curr Mol Med 2010; 10(2): 216-26.
[http://dx.doi.org/10.2174/156652410790963312] [PMID: 20196726]
[2]
Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 2009; 15(2): 431-40.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1059] [PMID: 19147747]
[3]
Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer 2004; 4(7): 551-61.
[http://dx.doi.org/10.1038/nrc1390] [PMID: 15229480]
[4]
Ryan D, Robards K. Metabolomics: The greatest omics of them all? Anal Chem 2006; 78(23): 7954-8.
[http://dx.doi.org/10.1021/ac0614341] [PMID: 17134127]
[5]
Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG. Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 2005; 3(7): 557-65.
[http://dx.doi.org/10.1038/nrmicro1177] [PMID: 15953932]
[6]
Böcker S, Letzel MC, Lipták Z, Pervukhin A. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics 2009; 25(2): 218-24.
[http://dx.doi.org/10.1093/bioinformatics/btn603] [PMID: 19015140]
[7]
Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol 1998; 16(9): 373-8.
[http://dx.doi.org/10.1016/S0167-7799(98)01214-1] [PMID: 9744112]
[8]
Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci USA 1971; 68(10): 2374-6.
[http://dx.doi.org/10.1073/pnas.68.10.2374] [PMID: 5289873]
[9]
Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001; 291(5507): 1304-51.
[http://dx.doi.org/10.1126/science.1058040] [PMID: 11181995]
[10]
van der Greef J, Stroobant P, van der Heijden R. The role of analytical sciences in medical systems biology. Curr Opin Chem Biol 2004; 8(5): 559-65.
[http://dx.doi.org/10.1016/j.cbpa.2004.08.013] [PMID: 15450501]
[11]
Katajamaa M. Orešič M. Data processing for mass spectrometry-based metabolomics. J Chromatogr A 2007; 1158(1-2): 318-28.
[http://dx.doi.org/10.1016/j.chroma.2007.04.021] [PMID: 17466315]
[12]
Bingol K, Zhang F, Bruschweiler-Li L, Brüschweiler R. Carbon backbone topology of the metabolome of a cell. J Am Chem Soc 2012; 134(21): 9006-11.
[http://dx.doi.org/10.1021/ja3033058] [PMID: 22540339]
[13]
Clendinen CS, Pasquel C, Ajredini R, Edison AS. (13)C NMR metabolomics: INADEQUATE network analysis. Anal Chem 2015; 87(11): 5698-706.
[http://dx.doi.org/10.1021/acs.analchem.5b00867] [PMID: 25932900]
[14]
Komatsu T, Ohishi R, Shino A, Kikuchi J. Structure and metabolic-flow analysis of molecular complexity in a 13C-labeled tree by 2D and 3D NMR. Angew Chem 2016; 128(20): 6104-7.
[http://dx.doi.org/10.1002/ange.201600334]
[15]
Lindon JC, Holmes E, Nicholson JK. Metabonomics in pharmaceutical R&D. FEBS J 2007; 274(5): 1140-51.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05673.x] [PMID: 17298438]
[16]
Wishart DS, Lewis MJ, Morrissey JA, et al. The human cerebrospinal fluid metabolome. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 871(2): 164-73.
[http://dx.doi.org/10.1016/j.jchromb.2008.05.001] [PMID: 18502700]
[17]
Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A 1990; 499: 177-96.
[http://dx.doi.org/10.1016/S0021-9673(00)96972-3] [PMID: 2324207]
[18]
T’kindt R, Storme M, Deforce D, Van Bocxlaer J. Evaluation of hydrophilic interaction chromatography versus reversed-phase chromatography in a plant metabolomics perspective. J Sep Sci 2008; 31(9): 1609-14.
[http://dx.doi.org/10.1002/jssc.200700539] [PMID: 18428188]
[19]
Tolstikov VV, Fiehn O, Tanaka N. Application of liquid chromatography-mass spectrometry analysis in metabolomics: Reversed-phase monolithic capillary chromatography and hydrophilic chromatography coupled to electrospray ionization-mass spectrometry. Methods Mol Biol 2007; 358: 141-55.
[http://dx.doi.org/10.1007/978-1-59745-244-1_9] [PMID: 17035685]
[20]
Vorkas PA, Isaac G, Anwar MA, et al. Untargeted UPLC-MS profiling pipeline to expand tissue metabolome coverage: application to cardiovascular disease. Anal Chem 2015; 87(8): 4184-93.
[http://dx.doi.org/10.1021/ac503775m] [PMID: 25664760]
[21]
Wang X, Lv H, Sun H, et al. Metabolic urinary profiling of alcohol hepatotoxicity and intervention effects of Yin Chen Hao Tang in rats using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. J Pharm Biomed Anal 2008; 48(4): 1161-8.
[http://dx.doi.org/10.1016/j.jpba.2008.07.028] [PMID: 18835123]
[22]
Ramautar R, Somsen GW, de Jong GJ. CE-MS in metabolomics. Electrophoresis 2009; 30(1): 276-91.
[http://dx.doi.org/10.1002/elps.200800512] [PMID: 19107702]
[23]
Xu Y, Du L, Rose MJ, Fu I, Woolf EJ, Musson DG. Concerns in the development of an assay for determination of a highly conjugated adsorption-prone compound in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 818(2): 241-8.
[http://dx.doi.org/10.1016/j.jchromb.2005.01.004] [PMID: 15734165]
[24]
Want EJ, O’Maille G, Smith CA, et al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem 2006; 78(3): 743-52.
[http://dx.doi.org/10.1021/ac051312t] [PMID: 16448047]
[25]
Yanes O, Woo H-K, Northen TR, et al. Nanostructure initiator mass spectrometry: tissue imaging and direct biofluid analysis. Anal Chem 2009; 81(8): 2969-75.
[http://dx.doi.org/10.1021/ac802576q] [PMID: 19301920]
[26]
Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud 2015; 1(1): a000588.
[http://dx.doi.org/10.1101/mcs.a000588] [PMID: 27148576]
[27]
Sansone S-A, Fan T, Goodacre R, et al. The metabolomics standards initiative. Nat Biotechnol 2007; 25(8): 846-8.
[http://dx.doi.org/10.1038/nbt0807-846b] [PMID: 17687353]
[28]
Sumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 2007; 3(3): 211-21.
[http://dx.doi.org/10.1007/s11306-007-0082-2] [PMID: 24039616]
[29]
Nordström A, Lewensohn R. Metabolomics: moving to the clinic. J Neuroimmune Pharmacol 2010; 5(1): 4-17.
[http://dx.doi.org/10.1007/s11481-009-9156-4] [PMID: 19399626]
[30]
Rauh M. Steroid measurement with LC-MS/MS in pediatric endocrinology. Mol Cell Endocrinol 2009; 301(1-2): 272-81.
[http://dx.doi.org/10.1016/j.mce.2008.10.007] [PMID: 19007847]
[31]
Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 2016; 17(7): 451-9.
[http://dx.doi.org/10.1038/nrm.2016.25] [PMID: 26979502]
[32]
Ivanisevic J, Elias D, Deguchi H, et al. Arteriovenous blood metabolomics: A readout of intra-tissue metabostasis. Sci Rep 2015; 5: 12757.
[http://dx.doi.org/10.1038/srep12757] [PMID: 26244428]
[33]
Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev 2007; 26(1): 51-78.
[http://dx.doi.org/10.1002/mas.20108] [PMID: 16921475]
[34]
Higashi RM, Fan TW-M, Lorkiewicz PK, Moseley HNB, Lane AN. Stable isotope-labeled tracers for metabolic pathway elucidation by GC-MS and FT-MS. Methods Mol Biol 2014; 1198: 147-67.
[http://dx.doi.org/10.1007/978-1-4939-1258-2_11] [PMID: 25270929]
[35]
Fan TW-M, Lorkiewicz PK, Sellers K, Moseley HNB, Higashi RM, Lane AN. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther 2012; 133(3): 366-91.
[http://dx.doi.org/10.1016/j.pharmthera.2011.12.007] [PMID: 22212615]
[36]
Fan TWM, Lane AN, Higashi RM, et al. Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer 2009; 8: 41.
[http://dx.doi.org/10.1186/1476-4598-8-41] [PMID: 19558692]
[37]
Fan TW-M, Lane AN, Higashi RM, Yan J. Stable isotope resolved metabolomics of lung cancer in a SCID mouse model. Metabolomics 2011; 7(2): 257-69.
[http://dx.doi.org/10.1007/s11306-010-0249-0] [PMID: 21666826]
[38]
Fan TW-M, Lane AN. NMR-based stable isotope resolved metabolomics in systems biochemistry. J Biomol NMR 2011; 49(3-4): 267-80.
[http://dx.doi.org/10.1007/s10858-011-9484-6] [PMID: 21350847]
[39]
Ceglarek U, Leichtle A, Brügel M, et al. Challenges and developments in tandem mass spectrometry based clinical metabolomics. Mol Cell Endocrinol 2009; 301(1-2): 266-71.
[http://dx.doi.org/10.1016/j.mce.2008.10.013] [PMID: 19007853]
[40]
Martin DB, Holzman T, May D, et al. MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments. Mol Cell Proteomics 2008; 7(11): 2270-8.
[http://dx.doi.org/10.1074/mcp.M700504-MCP200] [PMID: 18641041]
[41]
Dunn WB, Bailey NJC, Johnson HE. Measuring the metabolome: Current analytical technologies. Analyst (Lond) 2005; 130(5): 606-25.
[http://dx.doi.org/10.1039/b418288j] [PMID: 15852128]
[42]
De Vos RCH, Moco S, Lommen A, Keurentjes JJB, Bino RJ, Hall RD. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2007; 2(4): 778-91.
[http://dx.doi.org/10.1038/nprot.2007.95] [PMID: 17446877]
[43]
Allwood JW, Goodacre R. An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem Anal 2010; 21(1): 33-47.
[http://dx.doi.org/10.1002/pca.1187] [PMID: 19927296]
[44]
Günther H. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry. 3rd Eds; John Wiley & Sons : Hoboken, 2013.
[45]
Lindon JC, Holmes E, Bollard ME, Stanley EG, Nicholson JK. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 2004; 9(1): 1-31.
[http://dx.doi.org/10.1080/13547500410001668379] [PMID: 15204308]
[46]
Ott K-H, Aranibar N. Nuclear Magnetic Resonance Metabonomics. In: Weckwerth W. (eds) Metabolomics; Methods in Molecular BiologyTM. Vol 358, Humana Press: Totowa, 2007; pp. 247-71..
[47]
Purcell EM. Nuclear magnetism in relation to problems of the liquid and solid states. Science 1948; 107(2783): 433-40.
[http://dx.doi.org/10.1126/science.107.2783.433] [PMID: 17844446]
[48]
Bottomley PA, Herfkens RJ, Smith LS, Bashore TM. Altered phosphate metabolism in myocardial infarction: P-31 MR spectroscopy. Radiology 1987; 165(3): 703-7.
[http://dx.doi.org/10.1148/radiology.165.3.2961004] [PMID: 2961004]
[49]
Schaefer S. Cardiovascular applications of nuclear magnetic resonance spectroscopy. Am J Cardiol 1989; 64(9): 38E-45E.
[http://dx.doi.org/10.1016/0002-9149(89)90733-9] [PMID: 2672766]
[50]
Emwas A-HM, Salek RM, Griffin JL, Merzaban J. NMR-Based Metabolomics in human disease diagnosis: Applications, limitations, and recommendations. Metabolomics 2013; 9(5): 1048-72.
[http://dx.doi.org/10.1007/s11306-013-0524-y]
[51]
Lin Y, Schiavo S, Orjala J, Vouros P, Kautz R. Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal Chem 2008; 80(21): 8045-54.
[http://dx.doi.org/10.1021/ac801049k] [PMID: 18834150]
[52]
Farag MA, Porzel A, Wessjohann LA. Unraveling the active hypoglycemic agent trigonelline in Balanites aegyptiaca date fruit using metabolite fingerprinting by NMR. J Pharm Biomed Anal 2015; 115: 383-7.
[http://dx.doi.org/10.1016/j.jpba.2015.08.003] [PMID: 26275727]
[53]
Ramos AS, Mar JM, da Silva LS, et al. Pedra-ume caá fruit: An Amazon cherry rich in phenolic compounds with antiglycant and antioxidant properties. Food Res Int 2019; 123: 674-83.
[http://dx.doi.org/10.1016/j.foodres.2019.05.042] [PMID: 31285017]
[54]
Haseeb S, Alexander B, Santi RL, Liprandi AS, Baranchuk A. What’s in wine? A clinician’s perspective. Trends Cardiovasc Med 2019; 29(2): 97-106.
[http://dx.doi.org/10.1016/j.tcm.2018.06.010] [PMID: 30104174]
[55]
Haseeb S, Alexander B, Baranchuk A. Wine and cardiovascular health: A comprehensive review. Circulation 2017; 136(15): 1434-48.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030387] [PMID: 28993373]
[56]
Harrison AG. Chemical Ionization Mass Spectrometry CRC Press: Boca Raton, 1992.
[57]
Fenselau C. Chemical aspects of fast atom bombardment. Chem Rev 1987; 87(3): 501-12.
[http://dx.doi.org/10.1021/cr00079a002]
[58]
Keough T, Youngquist RS, Lacey MP. A method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry. Proc Natl Acad Sci USA 1999; 96(13): 7131-6.
[http://dx.doi.org/10.1073/pnas.96.13.7131] [PMID: 10377380]
[59]
Kaufmann R, Kirsch D, Spengler B. Sequenching of peptides in a time-of-flight mass spectrometer: Evaluation of postsource decay following matrix-assisted laser desorption ionisation (MALDI). Int J Mass Spectrom Ion Process 1994; 131: 355-85.
[http://dx.doi.org/10.1016/0168-1176(93)03876-N]
[60]
Mirsaleh-Kohan N, Robertson WD, Compton RN. Electron ionization time-of-flight mass spectrometry: Historical review and current applications. Mass Spectrom Rev 2008; 27(3): 237-85.
[http://dx.doi.org/10.1002/mas.20162] [PMID: 18320595]
[61]
El-Aneed A, Cohen A, Banoub J. Mass spectrometry, review of the basics: Electrospray, MALDI, and commonly used mass analyzers. Appl Spectrosc Rev 2009; 44(3): 210-30.
[http://dx.doi.org/10.1080/05704920902717872]
[62]
Ledingham KWD, Singhal RP. High intensity laser mass spectrometry — a review. Int J Mass Spectrom Ion Process 1997; 163(3): 149-68.
[http://dx.doi.org/10.1016/S0168-1176(97)00015-3]
[63]
Brown RS, Lennon JJ. Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Anal Chem 1995; 67(13): 1998-2003.
[http://dx.doi.org/10.1021/ac00109a015] [PMID: 8694246]
[64]
Dawson PH. Quadrupole Mass Spectrometry and Its Applications Elsevier: Amsterdams 1976.
[http://dx.doi.org/10.1016/C2013-0-04436-2]
[65]
Gray GA. Ion Cyclotron Resonance. Adv Chem Phys 2009; 19: 141.
[66]
Marshall AG, Hendrickson CL, Jackson GS. Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom Rev 1998; 17(1): 1-35.
[http://dx.doi.org/10.1002/(SICI)1098-2787(1998)17:1<1::AIDMAS1>3.0.CO;2-K] [PMID: 9768511]
[67]
Comisarow MB, Marshall AG. Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 1974; 25(2): 282-3.
[http://dx.doi.org/10.1016/0009-2614(74)89137-2]
[68]
Long NP, Yoon SJ, Anh NH, et al. A systematic review on metabolomics-based diagnostic biomarker discovery and validation in pancreatic cancer. Metabolomics 2018; 14(8): 109.
[http://dx.doi.org/10.1007/s11306-018-1404-2] [PMID: 30830397]
[69]
Patti GJ, Tautenhahn R, Siuzdak G. Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nat Protoc 2012; 7(3): 508-16.
[http://dx.doi.org/10.1038/nprot.2011.454] [PMID: 22343432]
[70]
Broadhurst DI, Kell DB. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2006; 2(4): 171-96.
[http://dx.doi.org/10.1007/s11306-006-0037-z]
[71]
Wehrens R, Hageman JA, van Eeuwijk F, et al. Improved batch correction in untargeted MS-based metabolomics. Metabolomics 2016; 12: 88.
[http://dx.doi.org/10.1007/s11306-016-1015-8] [PMID: 27073351]
[72]
Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 2006; 78(3): 779-87.
[http://dx.doi.org/10.1021/ac051437y] [PMID: 16448051]
[73]
Lippi G, Betsou F, Cadamuro J, et al. Preanalytical challenges - time for solutions. Clin Chem Lab Med 2019; 57(7): 974-81.
[http://dx.doi.org/10.1515/cclm-2018-1334] [PMID: 30710481]
[74]
Robin T, Barnes A, Dulaurent S, et al. Fully automated sample preparation procedure to measure drugs of abuse in plasma by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2018; 410(20): 5071-83.
[http://dx.doi.org/10.1007/s00216-018-1159-7] [PMID: 29947899]
[75]
Ziegel ER. Statistics and chemometrics for analytical chemistry. Technometrics 2004; 46(4): 498-9.
[http://dx.doi.org/10.1198/tech.2004.s248]
[76]
Trainor PJ, DeFilippis AP, Rai SN. Evaluation of classifier performance for multiclass phenotype discrimination in untargeted metabolomics. Metabolites 2017; 7(2): E30.
[http://dx.doi.org/10.3390/metabo7020030] [PMID: 28635678]
[77]
Wishart DS, Tzur D, Knox C, et al. HMDB: The human metabolome database. Nucleic Acids Res 2007; 35(Database issue): D521-6.
[http://dx.doi.org/10.1093/nar/gkl923] [PMID: 17202168]
[78]
Human Metabolome Database. Available from: http://www.hmdb.ca/.
[79]
Sud M, Fahy E, Cotter D, et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res 2007; 35(Database issue): D527-32.
[http://dx.doi.org/10.1093/nar/gkl838] [PMID: 17098933]
[80]
Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008; 36(Database issue): D480-4.
[http://dx.doi.org/10.1093/nar/gkm882] [PMID: 18077471]
[81]
Caspi R, Foerster H, Fulcher CA, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2008; 36(Database issue): D623-31.
[http://dx.doi.org/10.1093/nar/gkm900] [PMID: 17965431]
[82]
Brown M, Dunn WB, Dobson P, et al. Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst (Lond) 2009; 134(7): 1322-32.
[http://dx.doi.org/10.1039/b901179j] [PMID: 19562197]
[83]
Long NP, Nghi TD, Kang YP, et al. Toward a standardized strategy of clinical metabolomics for the advancement of precision medicine. Metabolites 2020; 10(2): E51.
[http://dx.doi.org/10.3390/metabo10020051] [PMID: 32013105]
[84]
Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med 2011; 17(4): 448-53.
[http://dx.doi.org/10.1038/nm.2307] [PMID: 21423183]
[85]
Urpi-Sarda M, Almanza-Aguilera E, Llorach R, et al. Non-targeted metabolomic biomarkers and metabotypes of type 2 diabetes: A cross-sectional study of PREDIMED trial participants. Diabetes Metab 2019; 45(2): 167-74.
[http://dx.doi.org/10.1016/j.diabet.2018.02.006] [PMID: 29555466]
[86]
Shi L, Brunius C, Lehtonen M, et al. Plasma metabolites associated with type 2 diabetes in a Swedish population: A case-control study nested in a prospective cohort. Diabetologia 2018; 61(4): 849-61.
[http://dx.doi.org/10.1007/s00125-017-4521-y] [PMID: 29349498]
[87]
Zhou W, Sailani MR, Contrepois K, et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 2019; 569(7758): 663-71.
[http://dx.doi.org/10.1038/s41586-019-1236-x] [PMID: 31142858]
[88]
Sancesario GM, Bernardini S. Alzheimer’s disease in the omics era. Clin Biochem 2018; 59: 9-16.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.06.011] [PMID: 29920246]
[89]
Koal T, Klavins K, Seppi D, Kemmler G, Humpel C, Sphingomyelin SM. D18:1/18:0) Is significantly enhanced in cerebrospinal fluid samples dichotomized by pathological amyloid-B42, tau, and phospho-tau-181 levels. J Alzheimers Dis JAD 2015; 44(4): 1193-201.
[http://dx.doi.org/10.3233/JAD-142319] [PMID: 25408209]
[90]
Guiraud SP, Montoliu I, Da Silva L, et al. High-throughput and simultaneous quantitative analysis of homocysteine-methionine cycle metabolites and co-factors in blood plasma and cerebrospinal fluid by isotope dilution LC-MS/MS. Anal Bioanal Chem 2017; 409(1): 295-305.
[http://dx.doi.org/10.1007/s00216-016-0003-1] [PMID: 27757515]
[91]
Toledo JB, Arnold M, Kastenmüller G, et al. Metabolic network failures in Alzheimer’s disease: A biochemical road map. Alzheimers Dement 2017; 13(9): 965-84.
[http://dx.doi.org/10.1016/j.jalz.2017.01.020] [PMID: 28341160]
[92]
Darst BF, Lu Q, Johnson SC, Engelman CD. Integrated analysis of genomics, longitudinal metabolomics, and Alzheimer’s risk factors among 1,111 cohort participants. Genet Epidemiol 2019; 43(6): 657-74.
[http://dx.doi.org/10.1002/gepi.22211] [PMID: 31104335]
[93]
Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 2016; 15(7): 473-84.
[http://dx.doi.org/10.1038/nrd.2016.32] [PMID: 26965202]
[94]
Yousri NA, Fakhro KA, Robay A, et al. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population. Nat Commun 2018; 9(1): 333.
[http://dx.doi.org/10.1038/s41467-017-01972-9] [PMID: 29362361]
[95]
Mastrangelo A, Armitage EG, García A, Barbas C. Metabolomics as a tool for drug discovery and personalised medicine. A review. Curr Top Med Chem 2014; 14(23): 2627-36.
[http://dx.doi.org/10.2174/1568026614666141215124956] [PMID: 25515755]
[96]
Mapstone M, Cheema AK, Fiandaca MS. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 2014; 20(4): 415-8.
[http://dx.doi.org/10.1038/nm.3466] [PMID: 24608097]
[97]
Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19(5): 576-85.
[http://dx.doi.org/10.1038/nm.3145] [PMID: 23563705]
[98]
Brown JM, Hazen SL. The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annu Rev Med 2015; 66: 343-59.
[http://dx.doi.org/10.1146/annurev-med-060513-093205] [PMID: 25587655]
[99]
Chace DH, Spitzer AR. Altered metabolism and newborn screening using tandem mass spectrometry: Lessons learned from the bench to bedside. Curr Pharm Biotechnol 2011; 12(7): 965-75.
[http://dx.doi.org/10.2174/138920111795909104] [PMID: 21466463]
[100]
Lehotay DC, Hall P, Lepage J, Eichhorst JC, Etter ML, Greenberg CR. LC-MS/MS progress in newborn screening. Clin Biochem 2011; 44(1): 21-31.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.08.007] [PMID: 20709048]
[101]
Drucker E, Krapfenbauer K. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J 2013; 4(1): 7.
[http://dx.doi.org/10.1186/1878-5085-4-7] [PMID: 23442211]
[102]
Taegtmeyer H, Young ME, Lopaschuk GD, et al. Assessing cardiac metabolism: A scientific statement from the American heart association. Circ Res 2016; 118(10): 1659-701.
[http://dx.doi.org/10.1161/RES.0000000000000097] [PMID: 27012580]
[103]
Griffin JL, Atherton H, Shockcor J, Atzori L. Metabolomics as a tool for cardiac research. Nat Rev Cardiol 2011; 8(11): 630-43.
[http://dx.doi.org/10.1038/nrcardio.2011.138] [PMID: 21931361]
[104]
McGarrah RW, Crown SB, Zhang G-F, Shah SH, Newgard CB. Cardiovascular metabolomics. Circ Res 2018; 122(9): 1238-58.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311002] [PMID: 29700070]
[105]
Chalkias A, Fanos V, Noto A, et al. 1H NMR-metabolomics: can they be a useful tool in our understanding of cardiac arrest? Resuscitation 2014; 85(5): 595-601.
[http://dx.doi.org/10.1016/j.resuscitation.2014.01.025] [PMID: 24513156]
[106]
Chacko S, Haseeb S, Glover BM, Wallbridge D, Harper A. The role of biomarkers in the diagnosis and risk stratification of acute coronary syndrome. Future Sci OA 2017; 4(1): FSO251.
[http://dx.doi.org/10.4155/fsoa-2017-0036] [PMID: 29255623]
[107]
Sabatine MS, Liu E, Morrow DA, et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 2005; 112(25): 3868-75.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.569137] [PMID: 16344383]
[108]
Barba I, de León G, Martín E, et al. Nuclear magnetic resonance-based metabolomics predicts exercise-induced ischemia in patients with suspected coronary artery disease. Magn Reson Med 2008; 60(1): 27-32.
[http://dx.doi.org/10.1002/mrm.21632] [PMID: 18581408]
[109]
Vignoli A, Tenori L, Giusti B, et al. NMR-based metabolomics identifies patients at high risk of death within two years after acute myocardial infarction in the AMI-Florence II cohort. BMC Med 2019; 17(1): 3.
[http://dx.doi.org/10.1186/s12916-018-1240-2] [PMID: 30616610]
[110]
Sun M, Gao X, Zhang D, et al. Identification of biomarkers for unstable angina by plasma metabolomic profiling. Mol Biosyst 2013; 9(12): 3059-67.
[http://dx.doi.org/10.1039/c3mb70216b] [PMID: 24061630]
[111]
Cui S, Li K, Ang L, et al. Plasma Phospholipids and sphingolipids identify stent restenosis after percutaneous coronary intervention. JACC Cardiovasc Interv 2017; 10(13): 1307-16.
[http://dx.doi.org/10.1016/j.jcin.2017.04.007] [PMID: 28624380]
[112]
Chacko S, Mamas MA, El-Omar M, et al. Perturbations in cardiac metabolism in a human model of acute myocardial ischaemia. Metabolomics 2021; 17(9): 76.
[http://dx.doi.org/10.1007/s11306-021-01827-x] [PMID: 34424431]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy