Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Diagnostic, Prognostic, and Therapeutic Value of miR-148b in Human Cancers

Author(s): Afsane Bahrami * and Gordon A. Ferns

Volume 22, Issue 10, 2022

Published on: 12 January, 2022

Page: [860 - 869] Pages: 10

DOI: 10.2174/1566524021666211213123315

Price: $65

Abstract

MicroRNAs (miRs) is a class of conserved, small, noncoding RNA molecules that modulate gene expression post-transcriptionally. miR-148b is a member of miR- 148/152 family generally known to be a tumor suppressor via its effect on different signaling pathways and regulatory genes. Aberrant expression of miR-148b has recently been shown to be responsible for tumorigenesis of several different cancer types. This review discusses the current evidence regarding the involvement of miR-148b expression in human cancers and its potential clinical importance for tumor diagnosis, prognosis, and therapeutics.

Keywords: miR-148/152, KIT, Cyclin D1, ALCAM, WNT, cancer.

[1]
Bahrami A, Hassanian SM. ShahidSales S, et al. Targeting RAS signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol 2018; 233(3): 2058-66.
[http://dx.doi.org/10.1002/jcp.25890] [PMID: 28262927]
[2]
Bahrami A, Amerizadeh F. ShahidSales S, et al. Therapeutic potential of targeting Wnt/β‐catenin pathway in treatment of colorectal cancer: Rational and progress. J Cell Biochem 2017; 118(8): 1979-83.
[http://dx.doi.org/10.1002/jcb.25903] [PMID: 28109136]
[3]
Bahrami A, Khazaei M, Bagherieh F, et al. Targeting stroma in pancreatic cancer: Promises and failures of targeted therapies. J Cell Physiol 2017; 232(11): 2931-7.
[http://dx.doi.org/10.1002/jcp.25798] [PMID: 28083912]
[4]
Bahrami A, Hasanzadeh M, Shahidsales S, et al. Genetic susceptibility in cervical cancer: from bench to bedside. J Cell Physiol 2018; 233(3): 1929-39.
[http://dx.doi.org/10.1002/jcp.26019] [PMID: 28542881]
[5]
Di Leva G, Croce CM. Roles of small RNAs in tumor formation. Trends Mol Med 2010; 16(6): 257-67.
[http://dx.doi.org/10.1016/j.molmed.2010.04.001] [PMID: 20493775]
[6]
Bahrami A, Aledavood A, Anvari K, et al. The prognostic and therapeutic application of microRNAs in breast cancer: Tissue and circulating microRNAs. J Cell Physiol 2018; 233(2): 774-86.
[http://dx.doi.org/10.1002/jcp.25813] [PMID: 28109133]
[7]
Bahreyni A, Rezaei M, Bahrami A, et al. Diagnostic, prognostic, and therapeutic potency of microRNA 21 in the pathogenesis of colon cancer, current status and prospective. J Cell Physiol 2019; 234(6): 8075-81.
[http://dx.doi.org/10.1002/jcp.27580] [PMID: 30317621]
[8]
Aboutalebi H, Bahrami A, Soleimani A, et al. The diagnostic, prognostic and therapeutic potential of circulating microRNAs in ovarian cancer. Int J Biochem Cell Biol 2020; 124: 105765.
[http://dx.doi.org/10.1016/j.biocel.2020.105765] [PMID: 32428568]
[9]
Bahrami A, Khazaei M, Avan A. Long Non-coding RNA and microRNAs as novel potential biomarker and therapeutic target in the treatment of gastrointestinal cancers. Curr Pharm Des 2018; 24(39): 4599-600.
[http://dx.doi.org/10.2174/138161282439190314091937] [PMID: 30924419]
[10]
Fabbri M. MicroRNAs and cancer: towards a personalized medicine. Curr Mol Med 2013; 13(5): 751-6.
[http://dx.doi.org/10.2174/1566524011313050006] [PMID: 23642056]
[11]
Xu Q, Jiang Y, Yin Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol 2013; 5(1): 3-13.
[http://dx.doi.org/10.1093/jmcb/mjs049] [PMID: 22935141]
[12]
Chang H, Zhou X, Wang ZN, et al. Increased expression of MIR-148B in ovarian carcinoma and its clinical significance. Mol Med Rep 2012; 5(5): 1277-80.
[PMID: 22344713]
[13]
Li R, Qian N, Tao K, You N, Wang X, Dou K. MicroRNAs involved in neoplastic transformation of liver cancer stem cells. J Exp Clin Cancer Res 2010; 29(1): 169.
[http://dx.doi.org/10.1186/1756-9966-29-169] [PMID: 21176238]
[14]
Mou Z, Xu X, Dong M, Xu J. MicroRNA-148b acts as a tumor suppressor in cervical cancer by inducing G1/S-Phase cell cycle arrest and apoptosis in a caspase-3-dependent manner. Med Sci Monit 2016; 22: 2809-15.
[http://dx.doi.org/10.12659/MSM.896862] [PMID: 27505047]
[15]
Song Y-X, Yue ZY, Wang ZN, et al. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol Cancer 2011; 10(1): 1.
[http://dx.doi.org/10.1186/1476-4598-10-1] [PMID: 21205300]
[16]
Cimino D, De Pittà C, Orso F, et al. miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB J 2013; 27(3): 1223-35.
[http://dx.doi.org/10.1096/fj.12-214692] [PMID: 23233531]
[17]
Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007; 297(17): 1901-8.
[http://dx.doi.org/10.1001/jama.297.17.1901] [PMID: 17473300]
[18]
Liu G-L, Liu X, Lv XB, Wang XP, Fang XS, Sang Y. MIR-148B functions as a tumor suppressor in non-small cell lung cancer by targeting carcinoembryonic antigen (CEA). Int J Clin Exp Med 2014; 7(8): 1990-9.
[PMID: 25232379]
[19]
He W, Huang L, Li M, Yang Y, Chen Z, Shen X. MIR-148B, MiR-152/ALCAM axis regulates the proliferation and invasion of pituitary adenomas cells. Cell Physiol Biochem 2017; 44(2): 792-803.
[http://dx.doi.org/10.1159/000485342] [PMID: 29176323]
[20]
Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299(4): 425-36.
[http://dx.doi.org/10.1001/jama.299.4.425] [PMID: 18230780]
[21]
Yu T, Wang XY, Gong RG, et al. The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster. J Exp Clin Cancer Res 2009; 28(1): 64.
[http://dx.doi.org/10.1186/1756-9966-28-64] [PMID: 19435529]
[22]
Wang G, Li Z, Tian N, et al. MIR-148B-3p inhibits malignant biological behaviors of human glioma cells induced by high HOTAIR expression. Oncol Lett 2016; 12(2): 879-86.
[http://dx.doi.org/10.3892/ol.2016.4743] [PMID: 27446363]
[23]
Xiao D, Ohlendorf J, Chen Y, et al. Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PLoS One 2012; 7(10): e46874.
[http://dx.doi.org/10.1371/journal.pone.0046874] [PMID: 23056502]
[24]
Zhang Z, Zheng W, Hai J. MicroRNA-148b expression is decreased in hepatocellular carcinoma and associated with prognosis. Med Oncol 2014; 31(6): 984.
[http://dx.doi.org/10.1007/s12032-014-0984-6] [PMID: 24805877]
[25]
Wu M, Ye X, Wang S, Li Q, Lai Y, Yi Y. MicroRNA-148b suppresses proliferation, migration, and invasion of nasopharyngeal carcinoma cells by targeting metastasis-associated gene 2. OncoTargets Ther 2017; 10: 2815-22.
[http://dx.doi.org/10.2147/OTT.S135664] [PMID: 28652762]
[26]
Wang R, Ye F, Zhen Q, et al. MicroRNA-148b is a potential prognostic biomarker and predictor of response to radiotherapy in non-small-cell lung cancer. J Physiol Biochem 2016; 72(2): 337-43.
[http://dx.doi.org/10.1007/s13105-016-0485-5] [PMID: 27083571]
[27]
Nie F, Liu T, Zhong L, et al. MicroRNA-148b enhances proliferation and apoptosis in human renal cancer cells via directly targeting MAP3K9. Mol Med Rep 2016; 13(1): 83-90.
[http://dx.doi.org/10.3892/mmr.2015.4555] [PMID: 26573018]
[28]
Azizi M, Teimoori-Toolabi L, Arzanani MK, Azadmanesh K, Fard-Esfahani P, Zeinali S. MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biol Ther 2014; 15(4): 419-27.
[http://dx.doi.org/10.4161/cbt.27630] [PMID: 24448385]
[29]
Wang G, Cao X, Lai S, et al. Altered p53 regulation of MIR-148B and p55PIK contributes to tumor progression in colorectal cancer. Oncogene 2015; 34(7): 912-21.
[http://dx.doi.org/10.1038/onc.2014.30] [PMID: 24632606]
[30]
Deb B, Uddin A, Chakraborty S. miRNAs and ovarian cancer: An overview. J Cell Physiol 2018; 233(5): 3846-54.
[http://dx.doi.org/10.1002/jcp.26095] [PMID: 28703277]
[31]
Farooqi AA, Fayyaz S, Shatynska-Mytsyk I, et al. Is miR-34a a well-equipped swordsman to conquer temple of molecular oncology? Chem Biol Drug Des 2016; 87(3): 321-34.
[http://dx.doi.org/10.1111/cbdd.12634] [PMID: 26259537]
[32]
Zhang JG, Shi Y, Hong DF, et al. MIR-148B suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/β-catenin pathway. Sci Rep 2015; 5: 8087.
[http://dx.doi.org/10.1038/srep08087] [PMID: 25627001]
[33]
Zhou Z, Su Y, Fa X. Restoration of BRG1 inhibits proliferation and metastasis of lung cancer by regulating tumor suppressor MIR-148B. OncoTargets Ther 2015; 8: 3603-12.
[PMID: 26664144]
[34]
Patel S. Exploring novel therapeutic targets in GIST: Focus on the PI3K/Akt/mTOR pathway. Curr Oncol Rep 2013; 15(4): 386-95.
[http://dx.doi.org/10.1007/s11912-013-0316-6] [PMID: 23605780]
[35]
Li F, Huynh H, Li X, et al. FGFR-Mediated reactivation of MAPK signaling attenuates antitumor effects of imatinib in gastrointestinal stromal tumors. Cancer Discov 2015; 5(4): 438-51.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0763] [PMID: 25673643]
[36]
Wang Y. MIR-148B-3p functions as a tumor suppressor in GISTs by directly targeting KIT. Cell Commun Signal 2018; 16(1): 16.
[37]
Song Y, Xu Y, Wang Z, et al. MicroRNA-148b suppresses cell growth by targeting cholecystokinin-2 receptor in colorectal cancer. Int J Cancer 2012; 131(5): 1042-51.
[http://dx.doi.org/10.1002/ijc.26485] [PMID: 22020560]
[38]
Li K, Lu Y, Liang J, et al. RhoE enhances multidrug resistance of gastric cancer cells by suppressing bax. Biochem Biophys Res Commun 2009; 379(2): 212-6.
[http://dx.doi.org/10.1016/j.bbrc.2008.12.044] [PMID: 19101510]
[39]
Liu N, Zhang G, Bi F, et al. RhoC is essential for the metastasis of gastric cancer. J Mol Med (Berl) 2007; 85(10): 1149-56.
[http://dx.doi.org/10.1007/s00109-007-0217-y] [PMID: 17549441]
[40]
Pan Y, Bi F, Liu N, et al. Expression of seven main rho family members in gastric carcinoma. Biochem Biophys Res Commun 2004; 315(3): 686-91.
[http://dx.doi.org/10.1016/j.bbrc.2004.01.108] [PMID: 14975755]
[41]
Li X, Jiang M, Chen D, et al. MIR-148B-3p inhibits gastric cancer metastasis by inhibiting the Dock6/Rac1/Cdc42 axis. J Exp Clin Cancer Res 2018; 37(1): 71.
[http://dx.doi.org/10.1186/s13046-018-0729-z] [PMID: 29587866]
[42]
Zhang H, Ye Q, Du Z, Huang M, Zhang M, Tan H. MIR-148B-3p inhibits renal carcinoma cell growth and pro-angiogenic phenotype of endothelial cell potentially by modulating FGF2. Biomed Pharmacother 2018; 107: 359-67.
[http://dx.doi.org/10.1016/j.biopha.2018.07.054] [PMID: 30099339]
[43]
Brooks AN, Kilgour E, Smith PD. Molecular pathways: Fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res 2012; 18(7): 1855-62.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0699] [PMID: 22388515]
[44]
Lu L, Liu Q, Wang P, et al. MicroRNA-148b regulates tumor growth of non-small cell lung cancer through targeting MAPK/JNK pathway. BMC Cancer 2019; 19(1): 209.
[http://dx.doi.org/10.1186/s12885-019-5400-3] [PMID: 30849960]
[45]
Lu H, Hu J, Li J, Lu W, Deng X, Wang X. miR-328-3p overexpression attenuates the malignant proliferation and invasion of liver cancer via targeting endoplasmic reticulum metallo protease 1 to inhibit AKT phosphorylation. Ann Transl Med 2020; 8(12): 754.
[http://dx.doi.org/10.21037/atm-20-3749] [PMID: 32647679]
[46]
Malec V, Gottschald OR, Li S, Rose F, Seeger W, Hänze J. HIF-1 α signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free Radic Biol Med 2010; 48(12): 1626-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.03.008] [PMID: 20347035]
[47]
Espinosa-Diez C, Miguel V, Mennerich D, et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 2015; 6: 183-97.
[http://dx.doi.org/10.1016/j.redox.2015.07.008] [PMID: 26233704]
[48]
Jiang Z, Zhang J, Chen F, Sun Y. MIR-148B suppressed non-small cell lung cancer progression via inhibiting ALCAM through the NF-κB signaling pathway. Thorac Cancer 2020; 11(2): 415-25.
[http://dx.doi.org/10.1111/1759-7714.13285] [PMID: 31883226]
[49]
Serramito-Gómez I, Boada-Romero E, Slowicka K, Vereecke L, Van Loo G, Pimentel-Muiños FX. The anti-inflammatory protein TNFAIP3/A20 binds the WD40 domain of ATG16L1 to control the autophagic response, NFKB/NF-κB activation and intestinal homeostasis. Autophagy 2019; 15(9): 1657-9.
[http://dx.doi.org/10.1080/15548627.2019.1628549] [PMID: 31184523]
[50]
Xing Y, Zhang Z, Chi F, et al. AEBP1, a prognostic indicator, promotes colon adenocarcinoma cell growth and metastasis through the NF-κB pathway. Mol Carcinog 2019; 58(10): 1795-808.
[http://dx.doi.org/10.1002/mc.23066] [PMID: 31219650]
[51]
Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 1993; 7(5): 812-21.
[http://dx.doi.org/10.1101/gad.7.5.812] [PMID: 8491378]
[52]
Bae D-S, Cho SB, Kim YJ, et al. Aberrant expression of cyclin D1 is associated with poor prognosis in early stage cervical cancer of the uterus. Gynecol Oncol 2001; 81(3): 341-7.
[http://dx.doi.org/10.1006/gyno.2001.6196] [PMID: 11371120]
[53]
Moradi Binabaj M, Bahrami A, Khazaei M, et al. The prognostic value of cyclin D1 expression in the survival of cancer patients: a meta-analysis. Gene 2020; 728: 144283.
[http://dx.doi.org/10.1016/j.gene.2019.144283] [PMID: 31838249]
[54]
Li BL, Lu W, Qu JJ, Ye L, Du GQ, Wan XP. Loss of exosomal MIR-148B from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J Cell Physiol 2019; 234(3): 2943-53.
[http://dx.doi.org/10.1002/jcp.27111] [PMID: 30146796]
[55]
Kurita S, Higuchi H, Saito Y, et al. DNMT1 and DNMT3b silencing sensitizes human hepatoma cells to TRAIL-mediated apoptosis via up-regulation of TRAIL-R2/DR5 and caspase-8. Cancer Sci 2010; 101(6): 1431-9.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01565.x] [PMID: 20398055]
[56]
Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464(7291): 1071-6.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[57]
Hu N. LncRNA HOTAIRM1 is involved in the progression of acute myeloid leukemia through targeting MIR-148B. RSC Advances 2019; 9(18): 10352-9.
[http://dx.doi.org/10.1039/C9RA00142E]
[58]
Seo SI, Yoon JH, Byun HJ, Lee SK. HOTAIR induces methylation of PCDH10, a tumor suppressor gene, by regulating DNMT1 and sponging with MIR-148B in gastric adenocarcinoma. Yonsei Med J 2021; 62(2): 118-28.
[http://dx.doi.org/10.3349/ymj.2021.62.2.118] [PMID: 33527791]
[59]
Bae N, Gao M, Li X, et al. A transcriptional coregulator, SPIN·DOC, attenuates the coactivator activity of spindlin1. J Biol Chem 2017; 292(51): 20808-17.
[http://dx.doi.org/10.1074/jbc.M117.814913] [PMID: 29061846]
[60]
Wang J-X, Zeng Q, Chen L, et al. SPINDLIN1 promotes cancer cell proliferation through activation of WNT/TCF-4 signaling. Mol Cancer Res 2012; 10(3): 326-35.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0440] [PMID: 22258766]
[61]
Chen X, Wang Y-W, Gao P. SPIN1, negatively regulated by miR-148/152, enhances Adriamycin resistance via upregulating drug metabolizing enzymes and transporter in breast cancer. J Exp Clin Cancer Res 2018; 37(1): 100.
[http://dx.doi.org/10.1186/s13046-018-0748-9] [PMID: 29743122]
[62]
Oh B, Hwang SY, Solter D, Knowles BB. Spindlin, a major maternal transcript expressed in the mouse during the transition from oocyte to embryo. Development 1997; 124(2): 493-503.
[http://dx.doi.org/10.1242/dev.124.2.493] [PMID: 9053325]
[63]
Liu Q, Xu Y, Wei S, et al. miRNA-148b suppresses hepatic cancer stem cell by targeting neuropilin-1. Biosci Rep 2015; 35(4): e00229.
[http://dx.doi.org/10.1042/BSR20150084] [PMID: 25997710]
[64]
Zhao G, Zhang JG, Liu Y, et al. MIR-148B functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1. Mol Cancer Ther 2013; 12(1): 83-93.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0534-T] [PMID: 23171948]
[65]
Vecchio E, Fiume G, Correnti S, et al. Insights about MYC and apoptosis in B-Lymphomagenesis: an update from murine models. Int J Mol Sci 2020; 21(12): 4265.
[http://dx.doi.org/10.3390/ijms21124265] [PMID: 32549409]
[66]
Zhao X, Tian X. Knockdown of long noncoding RNA HOTAIR inhibits cell growth of human lymphoma cells by upregulation of MIR-148B. J Cell Biochem 2019; 120(8): 12348-59.
[http://dx.doi.org/10.1002/jcb.28500] [PMID: 30848513]
[67]
Haflidadóttir BS, Bergsteinsdóttir K, Praetorius C, Steingrímsson E. miR-148 regulates mitf in melanoma cells. PLoS One 2010; 5(7): e11574.
[http://dx.doi.org/10.1371/journal.pone.0011574] [PMID: 20644734]
[68]
Zhang C, Wang C, Chen X, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem 2010; 56(12): 1871-9.
[http://dx.doi.org/10.1373/clinchem.2010.147553] [PMID: 20943850]
[69]
Ge H, Li B, Hu WX, et al. MicroRNA-148b is down-regulated in non-small cell lung cancer and associated with poor survival. Int J Clin Exp Pathol 2015; 8(1): 800-5.
[PMID: 25755777]
[70]
Duan F, Liu W, Fu X, et al. Evaluating the prognostic value of miR-148/152 family in cancers: based on a systemic review of observational studies. Oncotarget 2017; 8(44): 77999-8010.
[http://dx.doi.org/10.18632/oncotarget.20830] [PMID: 29100442]
[71]
Fattahi F, Kiani J, Alemrajabi M, et al. Overexpression of DDIT4 and TPTEP1 are associated with metastasis and advanced stages in colorectal cancer patients: a study utilizing bioinformatics prediction and experimental validation. Cancer Cell Int 2021; 21(1): 303.
[http://dx.doi.org/10.1186/s12935-021-02002-x] [PMID: 34107956]
[72]
Li L, Chen YY, Li SQ, Huang C, Qin YZ. Expression of miR-148/152 family as potential biomarkers in non-small-cell lung cancer. Med Sci Monit 2015; 21: 1155-61.
[http://dx.doi.org/10.12659/MSM.892940] [PMID: 25904302]
[73]
Yang JS, Li BJ, Lu HW, et al. Serum miR-152, miR-148a, MIR-148B, and miR-21 as novel biomarkers in non-small cell lung cancer screening. Tumour Biol 2015; 36(4): 3035-42.
[http://dx.doi.org/10.1007/s13277-014-2938-1] [PMID: 25501703]
[74]
Shen J, Hu Q, Schrauder M, et al. Circulating MIR-148B and miR-133a as biomarkers for breast cancer detection. Oncotarget 2014; 5(14): 5284-94.
[http://dx.doi.org/10.18632/oncotarget.2014] [PMID: 25051376]
[75]
Mangolini A, Ferracin M, Zanzi MV, et al. Diagnostic and prognostic microRNAs in the serum of breast cancer patients measured by droplet digital PCR. Biomark Res 2015; 3(1): 12.
[http://dx.doi.org/10.1186/s40364-015-0037-0] [PMID: 26120471]
[76]
Arámbula-Meraz E, Bergez-Hernández F, Leal-León E, et al. Expression of MIR-148B-3p is correlated with overexpression of biomarkers in prostate cancer. Genet Mol Biol 2020; 43(1): e20180330.
[http://dx.doi.org/10.1590/1678-4685-gmb-2018-0330] [PMID: 32154827]
[77]
Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013; 13(10): 714-26.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[78]
Honma K, Iwao-Koizumi K, Takeshita F, et al. RPN2 gene confers docetaxel resistance in breast cancer. Nat Med 2008; 14(9): 939-48.
[http://dx.doi.org/10.1038/nm.1858] [PMID: 18724378]
[79]
Liu Y, Bailey JT, Abu-Laban M, et al. Photocontrolled MIR-148B nanoparticles cause apoptosis, inflammation and regression of Ras induced epidermal squamous cell carcinomas in mice. Biomaterials 2020; 256: 120212.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120212] [PMID: 32736169]
[80]
Hummel R, Watson DI, Smith C, et al. Mir-148a improves response to chemotherapy in sensitive and resistant oesophageal adenocarcinoma and squamous cell carcinoma cells. J Gastrointest Surg 2011; 15(3): 429-38.
[http://dx.doi.org/10.1007/s11605-011-1418-9] [PMID: 21246413]
[81]
Fujita Y, Kojima K, Ohhashi R, et al. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem 2010; 285(25): 19076-84.
[http://dx.doi.org/10.1074/jbc.M109.079525] [PMID: 20406806]
[82]
Sui C, Meng F, Li Y, Jiang Y. MIR-148B reverses cisplatin-resistance in non-small cell cancer cells via negatively regulating DNA (cytosine-5)-methyltransferase 1(DNMT1) expression. J Transl Med 2015; 13(1): 132.
[http://dx.doi.org/10.1186/s12967-015-0488-y] [PMID: 25927928]
[83]
Luo H, Liang C. MicroRNA-148b inhibits proliferation and the epithelial-mesenchymal transition and increases radiosensitivity in non-small cell lung carcinomas by regulating ROCK1. Exp Ther Med 2018; 15(4): 3609-16.
[http://dx.doi.org/10.3892/etm.2018.5845] [PMID: 29545890]
[84]
Zhang L, Komurov K, Wright WE, Shay JW. Identification of novel driver tumor suppressors through functional interrogation of putative passenger mutations in colorectal cancer. Int J Cancer 2013; 132(3): 732-7.
[http://dx.doi.org/10.1002/ijc.27705] [PMID: 22753261]
[85]
Wu Y, Liu GL, Liu SH, et al. MicroRNA-148b enhances the radiosensitivity of non-Hodgkin’s lymphoma cells by promoting radiation-induced apoptosis. J Radiat Res (Tokyo) 2012; 53(4): 516-25.
[http://dx.doi.org/10.1093/jrr/rrs002] [PMID: 22843616]
[86]
Sun N, Wang CY, Sun YQ, et al. Down-regulated MIR-148B increases resistance to CHOP in diffuse large B-cell lymphoma cells by rescuing ezrin. Biomed Pharmacother 2018; 106: 267-74.
[http://dx.doi.org/10.1016/j.biopha.2018.06.093] [PMID: 29966970]
[87]
Zhang Y, Huo W, Sun L, et al. Targeting MIR-148B-5p inhibits immunity microenvironment and gastric cancer progression. Front Immunol 2021; 12: 590447.
[http://dx.doi.org/10.3389/fimmu.2021.590447] [PMID: 33717068]
[88]
Li T, Wang B, Zhang L, Cui M, Sun B. Silencing of long noncoding RNA LINC00346 inhibits the tumorigenesis of colorectal cancer through targeting microRNA-148b. OncoTargets Ther 2020; 13: 3247-57.
[http://dx.doi.org/10.2147/OTT.S242715] [PMID: 32368083]
[89]
Lai Y, Chen Y, Lin Y, Ye L. Down-regulation of LncRNA CCAT1 enhances radiosensitivity via regulating MIR-148B in breast cancer. Cell Biol Int 2018; 42(2): 227-36.
[http://dx.doi.org/10.1002/cbin.10890] [PMID: 29024383]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy