Review Article

表儿茶素对骨骼肌的影响

卷 29, 期 6, 2022

发表于: 27 January, 2022

页: [1110 - 1123] 页: 14

弟呕挨: 10.2174/0929867329666211217100020

价格: $65

摘要

骨骼肌 (SkM) 质量的损失与不同的临床状况有关,例如衰老、糖尿病、肥胖、癌症和心力衰竭。 营养研究的重点是识别天然存在的分子,以减轻由病理或综合征引起的 SkM 质量损失。 在这种情况下,虽然很少进行人体研究,但表儿茶素 (Epi) 是一种主要候选物质,可能通过其减轻肌肉质量损失的潜在能力对 SkM 质量产生积极影响。 这似乎是其抗氧化和抗炎特性及其刺激线粒体生物发生以增加肌原性分化的结果,以及其对参与 SkM 结构、功能、代谢和生长的关键蛋白的调节。 总之,Epi可以预防、减轻、延缓甚至治疗由衰老和疾病引起的肌肉相关疾病。 然而,需要对人类进行研究。

关键词: 肌肉营养不良、抗氧化剂、炎症、氧化应激、肌肉质量、表儿茶素 (Epi)。

[1]
DeFronzo, R.A.; Jacot, E.; Jequier, E.; Maeder, E.; Wahren, J.; Felber, J.P. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes, 1981, 30(12), 1000-1007.
[http://dx.doi.org/10.2337/diab.30.12.1000] [PMID: 7030826]
[2]
Lipina, C.; Hundal, H.S. Lipid modulation of skeletal muscle mass and function. J. Cachexia Sarcopenia Muscle, 2017, 8(2), 190-201.
[http://dx.doi.org/10.1002/jcsm.12144] [PMID: 27897400]
[3]
Yiu, E.M.; Kornberg, A.J. Duchenne muscular dystrophy. J. Paediatr. Child Health, 2015, 51(8), 759-764.
[http://dx.doi.org/10.1111/jpc.12868] [PMID: 25752877]
[4]
Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; Davis, M.; Muscaritoli, M.; Ottery, F.; Radbruch, L.; Ravasco, P.; Walsh, D.; Wilcock, A.; Kaasa, S.; Baracos, V.E. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol, 2011, 12(5), 489-495.
[http://dx.doi.org/10.1016/S1470-2045(10)70218-7] [PMID: 21296615]
[5]
Park, S.W.; Goodpaster, B.H.; Lee, J.S.; Kuller, L.H.; Boudreau, R.; de Rekeneire, N.; Harris, T.B.; Kritchevsky, S.; Tylavsky, F.A.; Nevitt, M.; Cho, Y.W.; Newman, A.B. Health, aging, and body composition study. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care, 2009, 32(11), 1993-1997.
[http://dx.doi.org/10.2337/dc09-0264] [PMID: 19549734]
[6]
Tieland, M.; Trouwborst, I.; Clark, B.C. Skeletal muscle performance and ageing. J. Cachexia Sarcopenia Muscle, 2018, 9(1), 3-19.
[http://dx.doi.org/10.1002/jcsm.12238] [PMID: 29151281]
[7]
Livshits, G.; Gao, F.; Malkin, I.; Needhamsen, M.; Xia, Y.; Yuan, W.; Bell, C.G.; Ward, K.; Liu, Y.; Wang, J.; Bell, J.T.; Spector, T.D. Contribution of heritability and epigenetic factors to skeletal muscle mass variation in united kingdom twins. J. Clin. Endocrinol. Metab, 2016, 101(6), 2450-2459.
[http://dx.doi.org/10.1210/jc.2016-1219] [PMID: 27144936]
[8]
McGlory, C.; van Vliet, S.; Stokes, T.; Mittendorfer, B.; Phillips, S.M. The impact of exercise and nutrition on the regulation of skeletal muscle mass. J. Physiol., 2019, 597(5), 1251-1258.
[http://dx.doi.org/10.1113/JP275443] [PMID: 30010196]
[9]
Langer, H.T.; Mossakowski, A.A.; Willis, B.J.; Grimsrud, K.N.; Wood, J.A.; Lloyd, K.C.K.; Zbinden-Foncea, H.; Baar, K. Generation of desminopathy in rats using CRISPR-Cas9. J. Cachexia Sarcopenia Muscle, 2020, 11(5), 1364-1376.
[http://dx.doi.org/10.1002/jcsm.12619] [PMID: 32893996]
[10]
Emery, A.E. The muscular dystrophies. Lancet, 2002, 359(9307), 687-695.
[http://dx.doi.org/10.1016/S0140-6736(02)07815-7] [PMID: 11879882]
[11]
Bär, H.; Strelkov, S.V.; Sjöberg, G.; Aebi, U.; Herrmann, H. The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation? J. Struct. Biol., 2004, 148(2), 137-152.
[http://dx.doi.org/10.1016/j.jsb.2004.04.003] [PMID: 15477095]
[12]
Winter, L.; Wittig, I.; Peeva, V.; Eggers, B.; Heidler, J.; Chevessier, F.; Kley, R.A.; Barkovits, K.; Strecker, V.; Berwanger, C.; Herrmann, H.; Marcus, K.; Kornblum, C.; Kunz, W.S.; Schröder, R.; Clemen, C.S. Mutant desmin substantially perturbs mitochondrial morphology, function and maintenance in skeletal muscle tissue. Acta Neuropathol, 2016, 132(3), 453-473.
[http://dx.doi.org/10.1007/s00401-016-1592-7] [PMID: 27393313]
[13]
Hughes, D.C.; Wallace, M.A.; Baar, K. Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am. J. Physiol. Endocrinol. Metab, 2015, 309(1), E1-E10.
[http://dx.doi.org/10.1152/ajpendo.00095.2015] [PMID: 25968577]
[14]
Mulvey, C.; Mullen, E.; Ohlendieck, K. The pathobiochemical role of the dystrophin-dystroglycan complex and the Ca2+-handling apparatus in diabetes-related muscle weakness (Review). Mol. Med. Rep., 2008, 1(3), 297-306.
[http://dx.doi.org/10.3892/mmr.1.3.297] [PMID: 21479410]
[15]
Durbeej, M.; Campbell, K.P. Muscular dystrophies involving the dystrophin-glycoprotein complex: An overview of current mouse models. Curr. Opin. Genet. Dev., 2002, 12(3), 349-361.
[http://dx.doi.org/10.1016/S0959-437X(02)00309-X] [PMID: 12076680]
[16]
Jannas-Vela, S.; Langer, H.T.; Marambio, H.; Baar, K.; Zbinden-Foncea, H. Effect of a 12-week endurance training program on force transfer and membrane integrity proteins in lean, obese, and type 2 diabetic subjects. Physiol. Rep., 2020, 8(9), e14429.
[http://dx.doi.org/10.14814/phy2.14429] [PMID: 32358862]
[17]
Hughes, D.C.; Marcotte, G.R.; Marshall, A.G.; West, D.W.D.; Baehr, L.M.; Wallace, M.A.; Saleh, P.M.; Bodine, S.C.; Baar, K. Age-related differences in dystrophin: Impact on force transfer proteins, membrane integrity, and neuromuscular junction stability. J. Gerontol. A Biol. Sci. Med. Sci., 2017, 72(5), 640-648.
[PMID: 27382038]
[18]
Tezze, C.; Romanello, V.; Desbats, M.A.; Fadini, G.P.; Albiero, M.; Favaro, G.; Ciciliot, S.; Soriano, M.E.; Morbidoni, V.; Cerqua, C.; Loefler, S.; Kern, H.; Franceschi, C.; Salvioli, S.; Conte, M.; Blaauw, B.; Zampieri, S.; Salviati, L.; Scorrano, L.; Sandri, M. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab., 2017, 25(6), 1374-1389.e6.
[http://dx.doi.org/10.1016/j.cmet.2017.04.021] [PMID: 28552492]
[19]
Sebastián, D.; Sorianello, E.; Segalés, J.; Irazoki, A.; Ruiz-Bonilla, V.; Sala, D.; Planet, E.; Berenguer-Llergo, A.; Muñoz, J.P.; Sánchez-Feutrie, M.; Plana, N.; Hernández-Álvarez, M.I.; Serrano, A.L.; Palacín, M.; Zorzano, A. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J., 2016, 35(15), 1677-1693.
[http://dx.doi.org/10.15252/embj.201593084] [PMID: 27334614]
[20]
Castro-Sepulveda, M.; Jannas-Vela, S.; Fernández-Verdejo, R.; Ávalos-Allele, D.; Tapia, G.; Villagrán, C.; Quezada, N.; Zbinden-Foncea, H. Relative lipid oxidation associates directly with mitochondrial fusion phenotype and mitochondria-sarcoplasmic reticulum interactions in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 2020, 318(6), E848-E855.
[http://dx.doi.org/10.1152/ajpendo.00025.2020] [PMID: 32369416]
[21]
Castro-Sepulveda, M; Fernández-Verdejo, R; Tuñón-Suárez, M; Morales-Zúñiga, J; Troncoso, M; Jannas-Vela, S; Zbinden-Foncea, H. Low abundance of Mfn2 protein correlates with reduced mitochondria-SR juxtaposition and mitochondrial cristae density in human men skeletal muscle: Examining organelle measurements from TEM images. FASEB J., 2021, 35(4), e21553.
[22]
Heymsfield, S.B.; Gonzalez, M.C.; Lu, J.; Jia, G.; Zheng, J. Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proc. Nutr. Soc., 2015, 74(4), 355-366.
[http://dx.doi.org/10.1017/S0029665115000129] [PMID: 25851205]
[23]
Bi, P.; Yue, F.; Sato, Y.; Wirbisky, S.; Liu, W.; Shan, T.; Wen, Y.; Zhou, D.; Freeman, J.; Kuang, S. Stage-specific effects of Notch activation during skeletal myogenesis. eLife, 2016, 5, e17355.
[http://dx.doi.org/10.7554/eLife.17355] [PMID: 27644105]
[24]
McGlory, C; Devries, MC; Phillips, SM Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling. J. Appl. Physiol. (1985), 2017, 122(3), 541-548.
[25]
Axelrod, C.L.; Fealy, C.E.; Mulya, A.; Kirwan, J.P. Exercise training remodels human skeletal muscle mitochondrial fission and fusion machinery towards a pro-elongation phenotype. Acta Physiol. (Oxf.), 2019, 225(4), e13216.
[http://dx.doi.org/10.1111/apha.13216] [PMID: 30408342]
[26]
Arribat, Y.; Broskey, N.T.; Greggio, C.; Boutant, M.; Conde Alonso, S.; Kulkarni, S.S.; Lagarrigue, S.; Carnero, E.A.; Besson, C.; Cantó, C.; Amati, F. Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training. Acta Physiol. (Oxf.), 2019, 225(2), e13179.
[http://dx.doi.org/10.1111/apha.13179] [PMID: 30144291]
[27]
Kozakowska, M.; Pietraszek-Gremplewicz, K.; Jozkowicz, A.; Dulak, J. The role of oxidative stress in skeletal muscle injury and regeneration: Focus on antioxidant enzymes. J. Muscle Res. Cell Motil., 2015, 36(6), 377-393.
[http://dx.doi.org/10.1007/s10974-015-9438-9] [PMID: 26728750]
[28]
Serra, A.J.; Prokić, M.D.; Vasconsuelo, A.; Pinto, J.R. Oxidative stress in muscle diseases: Current and future therapy. Oxid Med Cell Longev. Therapy 2019. Oxid. Med. Cell. Longev., 2020, 2020, 6030417.
[http://dx.doi.org/10.1155/2020/6030417] [PMID: 32377303]
[29]
Terrill, J.R.; Radley-Crabb, H.G.; Iwasaki, T.; Lemckert, F.A.; Arthur, P.G.; Grounds, M.D. Oxidative stress and pathology in muscular dystrophies: Focus on protein thiol oxidation and dysferlinopathies. FEBS J., 2013, 280(17), 4149-4164.
[http://dx.doi.org/10.1111/febs.12142] [PMID: 23332128]
[30]
Choi, M.H.; Ow, J.R.; Yang, N.D.; Taneja, R. Oxidative stress-mediated skeletal muscle degeneration: Molecules, mechanisms, and therapies. Oxid. Med. Cell. Longev., 2016, 2016, 6842568.
[http://dx.doi.org/10.1155/2016/6842568] [PMID: 26798425]
[31]
Petrillo, S.; Pelosi, L.; Piemonte, F.; Travaglini, L.; Forcina, L.; Catteruccia, M.; Petrini, S.; Verardo, M.; D’Amico, A.; Musarò, A.; Bertini, E. Oxidative stress in Duchenne muscular dystrophy: Focus on the NRF2 redox pathway. Hum. Mol. Genet., 2017, 26(14), 2781-2790.
[http://dx.doi.org/10.1093/hmg/ddx173] [PMID: 28472288]
[32]
Murphy, M.E.; Kehrer, J.P. Activities of antioxidant enzymes in muscle, liver and lung of chickens with inherited muscular dystrophy. Biochem. Biophys. Res. Commun., 1986, 134(2), 550-556.
[http://dx.doi.org/10.1016/S0006-291X(86)80455-7] [PMID: 3947339]
[33]
Haycock, J.W.; MacNeil, S.; Jones, P.; Harris, J.B.; Mantle, D. Oxidative damage to muscle protein in Duchenne muscular dystrophy. Neuroreport, 1996, 8(1), 357-361.
[http://dx.doi.org/10.1097/00001756-199612200-00070] [PMID: 9051810]
[34]
Ragusa, R.J.; Chow, C.K.; Porter, J.D. Oxidative stress as a potential pathogenic mechanism in an animal model of Duchenne muscular dystrophy. Neuromuscul. Disord., 1997, 7(6-7), 379-386.
[http://dx.doi.org/10.1016/S0960-8966(97)00096-5] [PMID: 9327402]
[35]
Powers, S.K.; Ji, L.L.; Kavazis, A.N.; Jackson, M.J. Reactive oxygen species: Impact on skeletal muscle. Compr. Physiol., 2011, 1(2), 941-969.
[http://dx.doi.org/10.1002/cphy.c100054] [PMID: 23737208]
[36]
Barbieri, E.; Sestili, P. Reactive oxygen species in skeletal muscle signaling. J. Signal Transduct., 2012, 2012, 982794.
[http://dx.doi.org/10.1155/2012/982794] [PMID: 22175016]
[37]
Loschen, G.; Azzi, A.; Richter, C.; Flohé, L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett., 1974, 42(1), 68-72.
[http://dx.doi.org/10.1016/0014-5793(74)80281-4] [PMID: 4859511]
[38]
Venditti, P.; Bari, A.; Di Stefano, L.; Di Meo, S. Role of mitochondria in exercise-induced oxidative stress in skeletal muscle from hyperthyroid rats. Arch. Biochem. Biophys., 2007, 463(1), 12-18.
[http://dx.doi.org/10.1016/j.abb.2007.02.004] [PMID: 17395147]
[39]
Shan, H.; Gao, X.; Zhang, M.; Huang, M.; Fang, X.; Chen, H.; Tian, B.; Wang, C.; Zhou, C.; Bai, J.; Zhou, X. Injectable ROS-scavenging hydrogel with MSCs promoted the regeneration of damaged skeletal muscle. J. Tissue Eng., 2021, 12, 20417314211031378.
[http://dx.doi.org/10.1177/20417314211031378] [PMID: 34345399]
[40]
Serra, A.J.; Prokić, M.D.; Vasconsuelo, A.; Pinto, J.R. Oxidative stress in muscle diseases: Current and future therapy. Oxid. Med. Cell. Longev., 2018, 2018, 6439138.
[http://dx.doi.org/10.1155/2018/6439138] [PMID: 29854088]
[41]
Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L.M. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget, 2018, 9(24), 17181-17198.
[http://dx.doi.org/10.18632/oncotarget.24729] [PMID: 29682215]
[42]
Therond, P. Oxidative stress and damages to biomolecules (lipids, proteins, DNA). Ann. Pharm. Fr., 2006, 64(6), 383-389.
[http://dx.doi.org/10.1016/S0003-4509(06)75333-0] [PMID: 17119467]
[43]
Ermak, G.; Davies, K.J. Calcium and oxidative stress: From cell signaling to cell death. Mol. Immunol., 2002, 38(10), 713-721.
[http://dx.doi.org/10.1016/S0161-5890(01)00108-0] [PMID: 11841831]
[44]
Tidball, JG; Wehling-Henricks, M The role of free radicals in the pathophysiology of muscular dystrophy. J. Appl. Physiol. (1985), J Appl Physiol (1985), 2007, 102(4), 1677-1686.
[45]
Deepa, S.S.; Van Remmen, H.; Brooks, S.V.; Faulkner, J.A.; Larkin, L.; McArdle, A.; Jackson, M.J.; Vasilaki, A.; Richardson, A. Accelerated sarcopenia in Cu/Zn superoxide dismutase knockout mice. Free Radic. Biol. Med., 2019, 132, 19-23.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.06.032] [PMID: 30670156]
[46]
Thoma, A.; Akter-Miah, T.; Reade, R.L.; Lightfoot, A.P. Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function. Biogerontology, 2020, 21(4), 475-484.
[http://dx.doi.org/10.1007/s10522-020-09883-x] [PMID: 32447556]
[47]
Sandoval-Acuña, C.; Ferreira, J.; Speisky, H. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys., 2014, 559, 75-90.
[http://dx.doi.org/10.1016/j.abb.2014.05.017] [PMID: 24875147]
[48]
Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci., 2018, 63(1), 68-78.
[http://dx.doi.org/10.1016/j.advms.2017.05.005] [PMID: 28822266]
[49]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[50]
Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; Scalbert, A. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford), 2010, 2010, bap024.
[http://dx.doi.org/10.1093/database/bap024] [PMID: 20428313]
[51]
Oteiza, P.I.; Fraga, C.G.; Mills, D.A.; Taft, D.H. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Aspects Med., 2018, 61, 41-49.
[http://dx.doi.org/10.1016/j.mam.2018.01.001] [PMID: 29317252]
[52]
Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods Enzymol., 1990, 186, 343-355.
[http://dx.doi.org/10.1016/0076-6879(90)86128-I] [PMID: 2172711]
[53]
Amić, D.; Davidović-Amić, D.; Beslo, D.; Rastija, V.; Lucić, B.; Trinajstić, N. SAR and QSAR of the antioxidant activity of flavonoids. Curr. Med. Chem., 2007, 14(7), 827-845.
[http://dx.doi.org/10.2174/092986707780090954] [PMID: 17346166]
[54]
Tsuji, P.A.; Stephenson, K.K.; Wade, K.L.; Liu, H.; Fahey, J.W. Structure-activity analysis of flavonoids: Direct and indirect antioxidant, and antiinflammatory potencies and toxicities. Nutr. Cancer, 2013, 65(7), 1014-1025.
[http://dx.doi.org/10.1080/01635581.2013.809127] [PMID: 24087992]
[55]
Zhou, Y.; Jiang, Z.; Lu, H.; Xu, Z.; Tong, R.; Shi, J.; Jia, G. recent advances of natural polyphenols activators for Keap1-Nrf2 signaling pathway. Chem. Biodivers., 2019, 16(11), e1900400.
[http://dx.doi.org/10.1002/cbdv.201900400] [PMID: 31482617]
[56]
Hider, R.C.; Liu, Z.D.; Khodr, H.H. Metal chelation of polyphenols. Methods Enzymol., 2001, 335, 190-203.
[http://dx.doi.org/10.1016/S0076-6879(01)35243-6] [PMID: 11400368]
[57]
Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev., 2016, 2016, 7432797.
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[58]
Carrasco-Pozo, C.; Castillo, R.L.; Beltrán, C.; Miranda, A.; Fuentes, J.; Gotteland, M. Molecular mechanisms of gastrointestinal protection by quercetin against indomethacin-induced damage: Role of NF-κB and Nrf2. J. Nutr. Biochem., 2016, 27, 289-298.
[http://dx.doi.org/10.1016/j.jnutbio.2015.09.016] [PMID: 26507542]
[59]
Fuentes, J.; de Camargo, A.C.; Atala, E.; Gotteland, M.; Olea-Azar, C.; Speisky, H. Quercetin oxidation metabolite present in onion peel protects Caco-2 cells against the oxidative stress, NF-kB activation, and loss of epithelial barrier function induced by NSAIDs. J. Agric. Food Chem., 2021, 69(7), 2157-2167.
[http://dx.doi.org/10.1021/acs.jafc.0c07085] [PMID: 33591188]
[60]
Salucci, S.; Falcieri, E. Polyphenols and their potential role in preventing skeletal muscle atrophy. Nutr. Res., 2020, 74, 10-22.
[http://dx.doi.org/10.1016/j.nutres.2019.11.004] [PMID: 31895993]
[61]
Mthembu, S.X.H.; Dludla, P.V.; Ziqubu, K.; Nyambuya, T.M.; Kappo, A.P.; Madoroba, E.; Nyawo, T.A.; Nkambule, B.B.; Silvestri, S.; Muller, C.J.F.; Mazibuko-Mbeje, S.E. The potential role of polyphenols in modulating mitochondrial bioenergetics within the skeletal muscle: A systematic review of preclinical models. Molecules, 2021, 26(9), 2791.
[http://dx.doi.org/10.3390/molecules26092791] [PMID: 34068459]
[62]
Peschek, K; Pritchett, R; Bergman, E; Pritchett, K The effects of acute post exercise consumption of two cocoa-based beverages with varying flavanol content on indices of muscle recovery following downhill treadmill running. Nutrients, 2013, 6(1), 50-62.
[http://dx.doi.org/10.3390/nu6010050]
[63]
Schwarz, N.A.; Blahnik, Z.J.; Prahadeeswaran, S.; McKinley-Barnard, S.K.; Holden, S.L.; Waldhelm, A. (-)-Epicatechin supplementation inhibits aerobic adaptations to cycling exercise in humans. Front. Nutr., 2018, 5, 132.
[http://dx.doi.org/10.3389/fnut.2018.00132] [PMID: 30622947]
[64]
Ristow, M.; Zarse, K.; Oberbach, A.; Klöting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Blüher, M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA, 2009, 106(21), 8665-8670.
[http://dx.doi.org/10.1073/pnas.0903485106] [PMID: 19433800]
[65]
Lee, W.H.; Loo, C.Y.; Bebawy, M.; Luk, F.; Mason, R.S.; Rohanizadeh, R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol., 2013, 11(4), 338-378.
[http://dx.doi.org/10.2174/1570159X11311040002] [PMID: 24381528]
[66]
Zhang, M.; Tang, J.; Li, Y.; Xie, Y.; Shan, H.; Chen, M.; Zhang, J.; Yang, X.; Zhang, Q.; Yang, X. Curcumin attenuates skeletal muscle mitochondrial impairment in COPD rats: PGC-1α/SIRT3 pathway involved. Chem. Biol. Interact., 2017, 277, 168-175.
[http://dx.doi.org/10.1016/j.cbi.2017.09.018] [PMID: 28951138]
[67]
Sadeghi, A.; Rostamirad, A.; Seyyedebrahimi, S.; Meshkani, R. Curcumin ameliorates palmitate-induced inflammation in skeletal muscle cells by regulating JNK/NF-kB pathway and ROS production. Inflammopharmacology, 2018, 26(5), 1265-1272.
[http://dx.doi.org/10.1007/s10787-018-0466-0] [PMID: 29644554]
[68]
Doan, K.V.; Ko, C.M.; Kinyua, A.W.; Yang, D.J.; Choi, Y.H.; Oh, I.Y.; Nguyen, N.M.; Ko, A.; Choi, J.W.; Jeong, Y.; Jung, M.H.; Cho, W.G.; Xu, S.; Park, K.S.; Park, W.J.; Choi, S.Y.; Kim, H.S.; Moh, S.H.; Kim, K.W. Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology, 2015, 156(1), 157-168.
[http://dx.doi.org/10.1210/en.2014-1354] [PMID: 25356824]
[69]
Nediani, C.; Ruzzolini, J.; Romani, A.; Calorini, L. Oleuropein, a bioactive compound from Olea europaea L., as a potential preventive and therapeutic agent in non-communicable diseases. Antioxidants, 2019, 8(12), 578.
[http://dx.doi.org/10.3390/antiox8120578] [PMID: 31766676]
[70]
Alkhateeb, H.; Al-Duais, M.; Qnais, E. Beneficial effects of oleuropein on glucose uptake and on parameters relevant to the normal homeostatic mechanisms of glucose regulation in rat skeletal muscle. Phytother. Res., 2018, 32(4), 651-656.
[http://dx.doi.org/10.1002/ptr.6012] [PMID: 29356144]
[71]
Perrone, D.; Fuggetta, M.P.; Ardito, F.; Cottarelli, A.; De Filippis, A.; Ravagnan, G.; De María, S.; Lo Muzio, L. Resveratrol (3,5,4′-trihydroxystilbene) and its properties in oral diseases. Exp. Ther. Med., 2017, 14(1), 3-9.
[http://dx.doi.org/10.3892/etm.2017.4472] [PMID: 28672886]
[72]
Huang, Y.; Zhu, X.; Chen, K.; Lang, H.; Zhang, Y.; Hou, P.; Ran, L.; Zhou, M.; Zheng, J.; Yi, L.; Mi, M.; Zhang, Q. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging (Albany NY), 2019, 11(8), 2217-2240.
[http://dx.doi.org/10.18632/aging.101910] [PMID: 30988232]
[73]
Lee, K.M.; Hur, J.; Lee, Y.; Yoon, B.R.; Choi, S.Y. Protective effects of tyrosol against oxidative damage in L6 muscle cells. Food Sci. Technol. Res., 2018, 24(5), 943-947.
[http://dx.doi.org/10.3136/fstr.24.943]
[74]
Chen, C.; Yang, J.S.; Lu, C.C.; Chiu, Y.J.; Chen, H.C.; Chung, M.I.; Wu, Y.T.; Chen, F.A. Effect of quercetin on dexamethasone-induced c2c12 skeletal muscle cell injury. Molecules, 2020, 25(14), 3267.
[http://dx.doi.org/10.3390/molecules25143267] [PMID: 32709024]
[75]
Liu, S.; Adewole, D.; Yu, L.; Sid, V.; Wang, B.; O, K.; Yang, C. Rutin attenuates inflammatory responses induced by lipopolysaccharide in an in vitro mouse muscle cell (C2C12) model. Poult. Sci., 2019, 98(7), 2756-2764.
[http://dx.doi.org/10.3382/ps/pez037] [PMID: 30753670]
[76]
Braicu, C.; Pilecki, V.; Balacescu, O.; Irimie, A.; Neagoe, I.B. The relationships between biological activities and structure of flavan-3-ols. Int. J. Mol. Sci., 2011, 12(12), 9342-9353.
[http://dx.doi.org/10.3390/ijms12129342] [PMID: 22272136]
[77]
Zhao, Y.; Liu, X.; Fu, X.; Mo, Z.; Jiang, Y.; Yan, Y. Protective effects of epigallocatechin gallate against ischemia reperfusion injury in rat skeletal muscle via activating Nrf2/HO-1 signaling pathway. Life Sci., 2019, 239, 117014.
[http://dx.doi.org/10.1016/j.lfs.2019.117014] [PMID: 31678278]
[78]
Fraga, C.G.; Oteiza, P.I. Dietary flavonoids: Role of (-)-epicatechin and related procyanidins in cell signaling. Free Radic. Biol. Med., 2011, 51(4), 813-823.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.002] [PMID: 21699974]
[79]
Prince, P.D.; Fraga, C.G.; Galleano, M. (-)-Epicatechin administration protects kidneys against modifications induced by short-term l-NAME treatment in rats. Food Funct., 2020, 11(1), 318-327.
[http://dx.doi.org/10.1039/C9FO02234A] [PMID: 31808777]
[80]
Tebay, LE; Robertson, H; Durant, ST; Vitale, SR; Penning, TM; Dinkova-Kostova, AT; Hayes, JD Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic. Biol. Med., 2015, 88(Pt B), 108-146.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.021]
[81]
Taub, P.R.; Ramirez-Sanchez, I.; Patel, M.; Higginbotham, E.; Moreno-Ulloa, A.; Román-Pintos, L.M.; Phillips, P.; Perkins, G.; Ceballos, G.; Villarreal, F. Beneficial effects of dark chocolate on exercise capacity in sedentary subjects: Underlying mechanisms. A double blind, randomized, placebo controlled trial. Food Funct., 2016, 7(9), 3686-3693.
[http://dx.doi.org/10.1039/C6FO00611F] [PMID: 27491778]
[82]
Ramirez-Sanchez, I.; Taub, P.R.; Ciaraldi, T.P.; Nogueira, L.; Coe, T.; Perkins, G.; Hogan, M.; Maisel, A.S.; Henry, R.R.; Ceballos, G.; Villarreal, F. (-)-Epicatechin rich cocoa mediated modulation of oxidative stress regulators in skeletal muscle of heart failure and type 2 diabetes patients. Int. J. Cardiol., 2013, 168(4), 3982-3990.
[http://dx.doi.org/10.1016/j.ijcard.2013.06.089] [PMID: 23870648]
[83]
Rossin, D.; Barbosa-Pereira, L.; Iaia, N.; Testa, G.; Sottero, B.; Poli, G.; Zeppa, G.; Biasi, F. A dietary mixture of oxysterols induces in vitro intestinal inflammation through tlr2/4 activation: The protective effect of cocoa bean shells. Antioxidants, 2019, 8(6), 151.
[http://dx.doi.org/10.3390/antiox8060151] [PMID: 31151323]
[84]
Prince, P.D.; Fischerman, L.; Toblli, J.E.; Fraga, C.G.; Galleano, M. LPS-induced renal inflammation is prevented by (-)-epicatechin in rats. Redox Biol., 2017, 11, 342-349.
[http://dx.doi.org/10.1016/j.redox.2016.12.023] [PMID: 28039839]
[85]
Chen, Z.; Liu, Y.; Sun, B.; Li, H.; Dong, J.; Zhang, L.; Wang, L.; Wang, P.; Zhao, Y.; Chen, C. Polyhydroxylated metallofullerenols stimulate IL-1β secretion of macrophage through TLRs/MyD88/NF-κB pathway and NLRP3 inflammasome activation. Small, 2014, 10(12), 2362-2372.
[http://dx.doi.org/10.1002/smll.201302825] [PMID: 24619705]
[86]
Brown, J.; Wang, H.; Hajishengallis, G.N.; Martin, M. TLR-signaling networks: An integration of adaptor molecules, kinases, and cross-talk. J. Dent. Res., 2011, 90(4), 417-427.
[http://dx.doi.org/10.1177/0022034510381264] [PMID: 20940366]
[87]
Hirao, K.; Yumoto, H.; Nakanishi, T.; Mukai, K.; Takahashi, K.; Takegawa, D.; Matsuo, T. Tea catechins reduce inflammatory reactions via mitogen-activated protein kinase pathways in toll-like receptor 2 ligand-stimulated dental pulp cells. Life Sci., 2010, 86(17-18), 654-660.
[http://dx.doi.org/10.1016/j.lfs.2010.02.017] [PMID: 20176036]
[88]
Senn, J.J. Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J. Biol. Chem., 2006, 281(37), 26865-26875.
[http://dx.doi.org/10.1074/jbc.M513304200] [PMID: 16798732]
[89]
Reyna, S.M.; Ghosh, S.; Tantiwong, P.; Meka, C.S.; Eagan, P.; Jenkinson, C.P.; Cersosimo, E.; Defronzo, R.A.; Coletta, D.K.; Sriwijitkamol, A.; Musi, N. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes, 2008, 57(10), 2595-2602.
[http://dx.doi.org/10.2337/db08-0038] [PMID: 18633101]
[90]
Navarrete-Yañez, V.; Garate-Carrillo, A.; Rodriguez, A.; Mendoza-Lorenzo, P.; Ceballos, G.; Calzada-Mendoza, C.; Hogan, M.C.; Villarreal, F.; Ramirez-Sanchez, I. Effects of (-)-epicatechin on neuroinflammation and hyperphosphorylation of tau in the hippocampus of aged mice. Food Funct., 2020, 11(12), 10351-10361.
[http://dx.doi.org/10.1039/D0FO02438D] [PMID: 33201160]
[91]
Deng, Y.T.; Chang, T.W.; Lee, M.S.; Lin, J.K. Suppression of free fatty acid-induced insulin resistance by phytopolyphenols in C2C12 mouse skeletal muscle cells. J. Agric. Food Chem., 2012, 60(4), 1059-1066.
[http://dx.doi.org/10.1021/jf204496f] [PMID: 22191431]
[92]
Hemdan, D.I.; Hirasaka, K.; Nakao, R.; Kohno, S.; Kagawa, S.; Abe, T.; Harada-Sukeno, A.; Okumura, Y.; Nakaya, Y.; Terao, J.; Nikawa, T. Polyphenols prevent clinorotation-induced expression of atrogenes in mouse C2C12 skeletal myotubes. J. Med. Invest., 2009, 56(1-2), 26-32.
[http://dx.doi.org/10.2152/jmi.56.26] [PMID: 19262011]
[93]
Hüttemann, M.; Lee, I.; Perkins, G.A.; Britton, S.L.; Koch, L.G.; Malek, M.H. (-)-Epicatechin is associated with increased angiogenic and mitochondrial signalling in the hindlimb of rats selectively bred for innate low running capacity. Clin. Sci. (Lond.), 2013, 124(11), 663-674.
[http://dx.doi.org/10.1042/CS20120469] [PMID: 23252598]
[94]
Moreno-Ulloa, A.; Miranda-Cervantes, A.; Licea-Navarro, A.; Mansour, C.; Beltrán-Partida, E.; Donis-Maturano, L.; Delgado De la Herrán, H.C.; Villarreal, F.; Álvarez-Delgado, C. (-)-Epicatechin stimulates mitochondrial biogenesis and cell growth in C2C12 myotubes via the G-protein coupled estrogen receptor. Eur. J. Pharmacol., 2018, 822, 95-107.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.014] [PMID: 29355558]
[95]
Gutierrez-Salmean, G.; Ciaraldi, T.P.; Nogueira, L.; Barboza, J.; Taub, P.R.; Hogan, M.C.; Henry, R.R.; Meaney, E.; Villarreal, F.; Ceballos, G.; Ramirez-Sanchez, I. Effects of (-)-epicatechin on molecular modulators of skeletal muscle growth and differentiation. J. Nutr. Biochem., 2014, 25(1), 91-94.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.007] [PMID: 24314870]
[96]
Mulvey, C.; Harno, E.; Keenan, A.; Ohlendieck, K. Expression of the skeletal muscle dystrophin-dystroglycan complex and syntrophin-nitric oxide synthase complex is severely affected in the type 2 diabetic Goto-Kakizaki rat. Eur. J. Cell Biol., 2005, 84(11), 867-883.
[http://dx.doi.org/10.1016/j.ejcb.2005.06.007] [PMID: 16323284]
[97]
Taub, P.R.; Ramirez-Sanchez, I.; Ciaraldi, T.P.; Gonzalez-Basurto, S.; Coral-Vazquez, R.; Perkins, G.; Hogan, M.; Maisel, A.S.; Henry, R.R.; Ceballos, G.; Villarreal, F. Perturbations in skeletal muscle sarcomere structure in patients with heart failure and type 2 diabetes: Restorative effects of (-)-epicatechin-rich cocoa. Clin. Sci. (Lond.), 2013, 125(8), 383-389.
[http://dx.doi.org/10.1042/CS20130023] [PMID: 23642227]
[98]
Sousa-Victor, P.; Muñoz-Cánoves, P. Regenerative decline of stem cells in sarcopenia. Mol. Aspects Med., 2016, 50, 109-117.
[http://dx.doi.org/10.1016/j.mam.2016.02.002] [PMID: 26921790]
[99]
Li, P.; Liu, A.; Liu, C.; Qu, Z.; Xiao, W.; Huang, J.; Liu, Z.; Zhang, S. Role and mechanism of catechin in skeletal muscle cell differentiation. J. Nutr. Biochem., 2019, 74, 108225.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108225] [PMID: 31629963]
[100]
Lee, S.J.; Leem, Y.E.; Go, G.Y.; Choi, Y.; Song, Y.J.; Kim, I.; Kim, D.Y.; Kim, Y.K.; Seo, D.W.; Kang, J.S.; Bae, G.U. Epicatechin elicits MyoD-dependent myoblast differentiation and myogenic conversion of fibroblasts. PLoS One, 2017, 12(4), e0175271.
[http://dx.doi.org/10.1371/journal.pone.0175271] [PMID: 28384253]
[101]
Dugar, S.; Villarreal, F.; Hollinger, F.H.; Mahajan, D.; Ramirez-Sanchez, I.; Moreno-Ulloa, A.; Ceballos, G.; Schreiner, G. 11-β-hydroxysterols as possible endogenous stimulators of mitochondrial biogenesis as inferred from epicatechin molecular mimicry. Pharmacol. Res., 2020, 151, 104540.
[http://dx.doi.org/10.1016/j.phrs.2019.104540] [PMID: 31722227]
[102]
Ramirez-Sanchez, I.; De los Santos, S.; Gonzalez-Basurto, S.; Canto, P.; Mendoza-Lorenzo, P.; Palma-Flores, C.; Ceballos-Reyes, G.; Villarreal, F.; Zentella-Dehesa, A.; Coral-Vazquez, R. (-)-Epicatechin improves mitochondrial-related protein levels and ameliorates oxidative stress in dystrophic δ-sarcoglycan null mouse striated muscle. FEBS J., 2014, 281(24), 5567-5580.
[http://dx.doi.org/10.1111/febs.13098] [PMID: 25284161]
[103]
McDonald, C.M.; Ramirez-Sanchez, I.; Oskarsson, B.; Joyce, N.; Aguilar, C.; Nicorici, A.; Dayan, J.; Goude, E.; Abresch, R.T.; Villarreal, F.; Ceballos, G.; Perkins, G.; Dugar, S.; Schreiner, G.; Henricson, E.K. (-)-Epicatechin induces mitochondrial biogenesis and markers of muscle regeneration in adults with Becker muscular dystrophy. Muscle Nerve, 2021, 63(2), 239-249.
[http://dx.doi.org/10.1002/mus.27108] [PMID: 33125736]
[104]
Zhang, S.; Cao, M.; Fang, F. The role of Epigallocatechin-3-Gallate in autophagy and endoplasmic reticulum stress (ERS)-induced apoptosis of human diseases. Med. Sci. Monit., 2020, 26, e924558.
[http://dx.doi.org/10.12659/MSM.924558] [PMID: 32952149]
[105]
Magyar, J.E.; Gamberucci, A.; Konta, L.; Margittai, E.; Mandl, J.; Bánhegyi, G.; Benedetti, A.; Csala, M. Endoplasmic reticulum stress underlying the pro-apoptotic effect of epigallocatechin gallate in mouse hepatoma cells. Int. J. Biochem. Cell Biol., 2009, 41(3), 694-700.
[http://dx.doi.org/10.1016/j.biocel.2008.08.006] [PMID: 18765294]
[106]
Afroze, D.; Kumar, A. ER stress in skeletal muscle remodeling and myopathies. FEBS J., 2019, 286(2), 379-398.
[http://dx.doi.org/10.1111/febs.14358] [PMID: 29239106]
[107]
Deldicque, L. Endoplasmic reticulum stress in human skeletal muscle: Any contribution to sarcopenia? Front. Physiol., 2013, 4, 236.
[http://dx.doi.org/10.3389/fphys.2013.00236] [PMID: 24027531]
[108]
Grounds, M.D.; Terrill, J.R.; Al-Mshhdani, B.A.; Duong, M.N.; Radley-Crabb, H.G.; Arthur, P.G. Biomarkers for Duchenne muscular dystrophy: Myonecrosis, inflammation and oxidative stress. Dis. Model. Mech., 2020, 13(2), dmm043638.
[http://dx.doi.org/10.1242/dmm.043638] [PMID: 32224496]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy