Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Prevention and Management of Type II Diabetes Chronic Complications: The Role of Polyphenols (Mini-Review)

Author(s): Arianna Pani, Francesco Baratta, Daniele Pastori, Mattia Coronati, Francesco Scaglione and Maria del Ben*

Volume 29, Issue 6, 2022

Published on: 06 January, 2022

Page: [1099 - 1109] Pages: 11

DOI: 10.2174/0929867328666210902131021

Price: $65

Abstract

The numerous complications of diabetes may be at least in part generated by the oxidative stress associated with the constant state of hyperglycemia. Polyphenols are plant-based secondary metabolites that have high potentials in the prevention and treatment of some diseases, in particular those that involve oxidative stress, such as complications of diabetes. The purpose of this narrative review is to show the main evidence regarding the role of polyphenols in treating and preventing these complications. For the bibliographic research, the papers published up to March 15, 2021, were considered, and the search terms included words relating to polyphenols, their classes and some more known compounds in association with the complications of diabetes.

There are numerous studies showing how polyphenols are active against endothelial damage induced by diabetes, oxidative stress and hyperinflammatory states that are at the origin of the complications of diabetes. Compounds such as flavonoids, but also anthocyanins, stilbenes or lignans slow the progression of kidney damage, prevent ischemic events and diabetic nephropathy. Many of these studies are preclinical, in cellular or animal models.

The role of polyphenols in the prevention and treatment of diabetes complications is undoubtedly promising. However, more clinical trials need to be implemented to understand the real effectiveness of these compounds.

Keywords: Polyphenols, phytochemicals, oxidative stress, diabetes, flavonoids, anthocyanins, stilbenes.

[1]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[2]
Lin, S.; Zhang, G.; Liao, Y.; Pan, J.; Gong, D. Dietary flavonoids as xanthine oxidase inhibitors: Structure-affinity and structure-activity relationships. J. Agric. Food Chem., 2015, 63(35), 7784-7794.
[http://dx.doi.org/10.1021/acs.jafc.5b03386] [PMID: 26285120]
[3]
Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int., 2019, 102(5), 1397-1400.
[http://dx.doi.org/10.5740/jaoacint.19-0133] [PMID: 31200785]
[4]
Aubert, C.; Chalot, G. Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.). Food Chem., 2018, 240, 524-533.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.152] [PMID: 28946307]
[5]
Bars-Cortina, D.; Macià, A.; Iglesias, I.; Garanto, X.; Badiella, L.; Motilva, M.J. Seasonal variability of the phytochemical composition of new red-fleshed apple varieties compared with traditional and new white-fleshed varieties. J. Agric. Food Chem., 2018, 66(38), 10011-10025.
[http://dx.doi.org/10.1021/acs.jafc.8b03950] [PMID: 30176730]
[6]
Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci., 2012, 196, 67-76.
[http://dx.doi.org/10.1016/j.plantsci.2012.07.014] [PMID: 23017900]
[7]
D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita, 2007, 43(4), 348-361.
[PMID: 18209268]
[8]
Ozdal, T.; Sela, D.A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients, 2016, 8(2), 78.
[http://dx.doi.org/10.3390/nu8020078] [PMID: 26861391]
[9]
García-Conesa, M.T.; Chambers, K.; Combet, E.; Pinto, P.; Garcia-Aloy, M.; Andrés-Lacueva, C.; de Pascual-Teresa, S.; Mena, P.; Konic Ristic, A.; Hollands, W.J.; Kroon, P.A.; Rodríguez-Mateos, A.; Istas, G.; Kontogiorgis, C.A.; Rai, D.K.; Gibney, E.R.; Morand, C.; Espín, J.C.; González-Sarrías, A. Meta-analysis of the effects of foods and derived products containing ellagitannins and anthocyanins on cardiometabolic biomarkers: Analysis of factors influencing variability of the individual responses. Int. J. Mol. Sci., 2018, 19(3), E694.
[http://dx.doi.org/10.3390/ijms19030694] [PMID: 29495642]
[10]
Lewandowska, U.; Szewczyk, K.; Hrabec, E.; Janecka, A.; Gorlach, S. Overview of metabolism and bioavailability enhancement of polyphenols. J. Agric. Food Chem., 2013, 61(50), 12183-12199.
[http://dx.doi.org/10.1021/jf404439b] [PMID: 24295170]
[11]
Belguendouz, L.; Frémont, L.; Gozzelino, M.T. Interaction of transresveratrol with plasma lipoproteins. Biochem. Pharmacol., 1998, 55(6), 811-816.
[http://dx.doi.org/10.1016/S0006-2952(97)00544-3] [PMID: 9586953]
[12]
Duthie, G.G.; Gardner, P.T.; Kyle, J.A. Plant polyphenols: Are they the new magic bullet? Proc. Nutr. Soc., 2003, 62(3), 599-603.
[http://dx.doi.org/10.1079/PNS2003275] [PMID: 14692595]
[13]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[14]
Satija, A.; Bhupathiraju, S.N.; Rimm, E.B.; Spiegelman, D.; Chiuve, S.E.; Borgi, L.; Willett, W.C.; Manson, J.E.; Sun, Q.; Hu, F.B. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: Results from three prospective cohort studies. PLoS Med., 2016, 13(6), e1002039.
[http://dx.doi.org/10.1371/journal.pmed.1002039] [PMID: 27299701]
[15]
Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I.; Shen, C.L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem., 2014, 25(1), 1-18.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.001] [PMID: 24314860]
[16]
Baratta, F.; Pastori, D.; Bartimoccia, S.; Cammisotto, V.; Cocomello, N.; Colantoni, A.; Nocella, C.; Carnevale, R.; Ferro, D.; Angelico, F.; Violi, F.; Del Ben, M. Poor adherence to mediterranean diet and serum lipopolysaccharide are associated with oxidative stress in patients with non-alcoholic fatty liver disease. Nutrients, 2020, 12(6), E1732.
[http://dx.doi.org/10.3390/nu12061732] [PMID: 32531941]
[17]
Baratta, F.; Pastori, D.; Polimeni, L.; Bucci, T.; Ceci, F.; Calabrese, C.; Ernesti, I.; Pannitteri, G.; Violi, F.; Angelico, F.; Del Ben, M. Adherence to mediterranean diet and non-alcoholic fatty liver disease: Effect on insulin resistance. Am. J. Gastroenterol., 2017, 112(12), 1832-1839.
[http://dx.doi.org/10.1038/ajg.2017.371] [PMID: 29063908]
[18]
Guo, X.F.; Ruan, Y.; Li, Z.H.; Li, D. Flavonoid subclasses and type 2 diabetes mellitus risk: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr., 2019, 59(17), 2850-2862.
[http://dx.doi.org/10.1080/10408398.2018.1476964] [PMID: 29768032]
[19]
Zamora-Ros, R.; Forouhi, N.G.; Sharp, S.J.; González, C.A.; Buijsse, B.; Guevara, M.; van der Schouw, Y.T.; Amiano, P.; Boeing, H.; Bredsdorff, L.; Fagherazzi, G.; Feskens, E.J.; Franks, P.W.; Grioni, S.; Katzke, V.; Key, T.J.; Khaw, K.T.; Kühn, T.; Masala, G.; Mattiello, A.; Molina-Montes, E.; Nilsson, P.M.; Overvad, K.; Perquier, F.; Redondo, M.L.; Ricceri, F.; Rolandsson, O.; Romieu, I.; Roswall, N.; Scalbert, A.; Schulze, M.; Slimani, N.; Spijkerman, A.M.; Tjonneland, A.; Tormo, M.J.; Touillaud, M.; Tumino, R. van der A, D.L.; van Woudenbergh, G.J.; Langenberg, C.; Riboli, E.; Wareham, N.J. Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations. J. Nutr., 2014, 144(3), 335-343.
[http://dx.doi.org/10.3945/jn.113.184945] [PMID: 24368432]
[20]
Guo, X.; Yang, B.; Tan, J.; Jiang, J.; Li, D. Associations of dietary intakes of anthocyanins and berry fruits with risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr., 2016, 70(12), 1360-1367.
[http://dx.doi.org/10.1038/ejcn.2016.142] [PMID: 27530472]
[21]
Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 1992, 339(8808), 1523-1526.
[http://dx.doi.org/10.1016/0140-6736(92)91277-F] [PMID: 1351198]
[22]
Minutolo, F.; Sala, G.; Bagnacani, A.; Bertini, S.; Carboni, I.; Placanica, G.; Prota, G.; Rapposelli, S.; Sacchi, N.; Macchia, M.; Ghidoni, R. Synthesis of a resveratrol analogue with high ceramide-mediated proapoptotic activity on human breast cancer cells. J. Med. Chem., 2005, 48(22), 6783-6786.
[http://dx.doi.org/10.1021/jm050528k] [PMID: 16250636]
[23]
Liu, Q.; Jin, W.; Zhu, Y.; Zhou, J.; Lu, M.; Zhang, Q. Synthesis of 3′-methoxy-E-diethylstilbestrol and its analogs as tumor angiogenesis inhibitors. Steroids, 2012, 77(5), 419-423.
[http://dx.doi.org/10.1016/j.steroids.2011.12.024] [PMID: 22280958]
[24]
Mulakayala, C.; Babajan, B.; Madhusudana, P.; Anuradha, C.M.; Rao, R.M.; Nune, R.P.; Manna, S.K.; Mulakayala, N.; Kumar, C.S. Synthesis and evaluation of resveratrol derivatives as new chemical entities for cancer. J. Mol. Graph. Model., 2013, 41, 43-54.
[http://dx.doi.org/10.1016/j.jmgm.2013.01.005] [PMID: 23500626]
[25]
Hoshino, J.; Park, E.J.; Kondratyuk, T.P.; Marler, L.; Pezzuto, J.M.; van Breemen, R.B.; Mo, S.; Li, Y.; Cushman, M. Selective synthesis and biological evaluation of sulfate-conjugated resveratrol metabolites. J. Med. Chem., 2010, 53(13), 5033-5043.
[http://dx.doi.org/10.1021/jm100274c] [PMID: 20527891]
[26]
Lu, C.; Guo, Y.; Yan, J.; Luo, Z.; Luo, H.B.; Yan, M.; Huang, L.; Li, X. Design, synthesis, and evaluation of multitarget-directed resveratrol derivatives for the treatment of Alzheimer’s disease. J. Med. Chem., 2013, 56(14), 5843-5859.
[http://dx.doi.org/10.1021/jm400567s] [PMID: 23799643]
[27]
Tavaf, Z.; Dangolani, S.K.; Yousefi, R.; Panahi, F.; Shahsavani, M.B.; Khalafi-Nezhad, A. Synthesis of new curcumin derivatives as influential antidiabetic α-glucosidase and α-amylase inhibitors with anti-oxidant activity. Carbohydr. Res., 2020, 494, 108069.
[http://dx.doi.org/10.1016/j.carres.2020.108069] [PMID: 32563890]
[28]
Kim, J.A.; Montagnani, M.; Chandrasekran, S.; Quon, M.J. Role of lipotoxicity in endothelial dysfunction. Heart Fail. Clin., 2012, 8(4), 589-607.
[http://dx.doi.org/10.1016/j.hfc.2012.06.012] [PMID: 22999242]
[29]
Kim, J.A.; Montagnani, M.; Koh, K.K.; Quon, M.J. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation, 2006, 113(15), 1888-1904.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.563213] [PMID: 16618833]
[30]
Dauchet, L.; Ferrières, J.; Arveiler, D.; Yarnell, J.W.; Gey, F.; Ducimetière, P.; Ruidavets, J.B.; Haas, B.; Evans, A.; Bingham, A.; Amouyel, P.; Dallongeville, J. Frequency of fruit and vegetable consumption and coronary heart disease in France and Northern Ireland: the PRIME study. Br. J. Nutr., 2004, 92(6), 963-972.
[http://dx.doi.org/10.1079/BJN20041286] [PMID: 15613259]
[31]
Joshipura, K.J.; Ascherio, A.; Manson, J.E.; Stampfer, M.J.; Rimm, E.B.; Speizer, F.E.; Hennekens, C.H.; Spiegelman, D.; Willett, W.C. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA, 1999, 282(13), 1233-1239.
[http://dx.doi.org/10.1001/jama.282.13.1233] [PMID: 10517425]
[32]
Larsson, S.C.; Wolk, A. Dietary fiber intake is inversely associated with stroke incidence in healthy Swedish adults. J. Nutr., 2014, 144(12), 1952-1955.
[http://dx.doi.org/10.3945/jn.114.200634] [PMID: 25411032]
[33]
Baron, A.D. Cardiovascular actions of insulin in humans. Implications for insulin sensitivity and vascular tone. Baillieres Clin. Endocrinol. Metab., 1993, 7(4), 961-987.
[http://dx.doi.org/10.1016/S0950-351X(05)80241-1] [PMID: 8304919]
[34]
Montagnani, M.; Ravichandran, L.V.; Chen, H.; Esposito, D.L.; Quon, M.J. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol. Endocrinol., 2002, 16(8), 1931-1942.
[http://dx.doi.org/10.1210/me.2002-0074] [PMID: 12145346]
[35]
Duarte, J.; Pérez-Palencia, R.; Vargas, F.; Ocete, M.A.; Pérez-Vizcaino, F.; Zarzuelo, A.; Tamargo, J. Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br. J. Pharmacol., 2001, 133(1), 117-124.
[http://dx.doi.org/10.1038/sj.bjp.0704064] [PMID: 11325801]
[36]
Galindo, P.; Rodriguez-Gómez, I.; González-Manzano, S.; Dueñas, M.; Jiménez, R.; Menéndez, C.; Vargas, F.; Tamargo, J.; Santos-Buelga, C.; Pérez-Vizcaíno, F.; Duarte, J. Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation. PLoS One, 2012, 7(3), e32673.
[http://dx.doi.org/10.1371/journal.pone.0032673] [PMID: 22427863]
[37]
Pérez-Vizcaíno, F.; Ibarra, M.; Cogolludo, A.L.; Duarte, J.; Zaragozá-Arnáez, F.; Moreno, L.; López-López, G.; Tamargo, J. Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in rat conductance and resistance arteries. J. Pharmacol. Exp. Ther., 2002, 302(1), 66-72.
[http://dx.doi.org/10.1124/jpet.302.1.66] [PMID: 12065701]
[38]
Anter, E.; Thomas, S.R.; Schulz, E.; Shapira, O.M.; Vita, J.A.; Keaney, J.F., Jr Activation of endothelial nitric-oxide synthase by the p38 MAPK in response to black tea polyphenols. J. Biol. Chem., 2004, 279(45), 46637-46643.
[http://dx.doi.org/10.1074/jbc.M405547200] [PMID: 15333638]
[39]
Loke, W.M.; Hodgson, J.M.; Proudfoot, J.M.; McKinley, A.J.; Puddey, I.B.; Croft, K.D. Pure dietary flavonoids quercetin and (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am. J. Clin. Nutr., 2008, 88(4), 1018-1025.
[http://dx.doi.org/10.1093/ajcn/88.4.1018] [PMID: 18842789]
[40]
Ko, F.N.; Huang, T.F.; Teng, C.M. Vasodilatory action mechanisms of apigenin isolated from Apium graveolens in rat thoracic aorta. Biochim. Biophys. Acta, 1991, 1115(1), 69-74.
[http://dx.doi.org/10.1016/0304-4165(91)90013-7] [PMID: 1659912]
[41]
Qin, C.X.; Chen, X.; Hughes, R.A.; Williams, S.J.; Woodman, O.L. Understanding the cardioprotective effects of flavonols: discovery of relaxant flavonols without antioxidant activity. J. Med. Chem., 2008, 51(6), 1874-1884.
[http://dx.doi.org/10.1021/jm070352h] [PMID: 18307286]
[42]
Chan, E.C.; Drummond, G.R.; Woodman, O.L. 3′, 4′-dihydroxyflavonol enhances nitric oxide bioavailability and improves vascular function after ischemia and reperfusion injury in the rat. J. Cardiovasc. Pharmacol., 2003, 42(6), 727-735.
[http://dx.doi.org/10.1097/00005344-200312000-00006] [PMID: 14639094]
[43]
Arredondo, F.; Echeverry, C.; Abin-Carriquiry, J.A.; Blasina, F.; Antúnez, K.; Jones, D.P.; Go, Y.M.; Liang, Y.L.; Dajas, F. After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic. Biol. Med., 2010, 49(5), 738-747.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.020] [PMID: 20554019]
[44]
Mahn, K.; Borrás, C.; Knock, G.A.; Taylor, P.; Khan, I.Y.; Sugden, D.; Poston, L.; Ward, J.P.; Sharpe, R.M.; Viña, J.; Aaronson, P.I.; Mann, G.E. Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo. FASEB J., 2005, 19(12), 1755-1757.
[http://dx.doi.org/10.1096/fj.05-4008fje] [PMID: 16107535]
[45]
Mann, G.E.; Rowlands, D.J.; Li, F.Y.; de Winter, P.; Siow, R.C. Activation of endothelial nitric oxide synthase by dietary isoflavones: role of NO in Nrf2-mediated antioxidant gene expression. Cardiovasc. Res., 2007, 75(2), 261-274.
[http://dx.doi.org/10.1016/j.cardiores.2007.04.004] [PMID: 17498676]
[46]
Hong, J.; Smith, T.J.; Ho, C.T.; August, D.A.; Yang, C.S. Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem. Pharmacol., 2001, 62(9), 1175-1183.
[http://dx.doi.org/10.1016/S0006-2952(01)00767-5] [PMID: 11705450]
[47]
Laughton, M.J.; Evans, P.J.; Moroney, M.A.; Hoult, J.R.; Halliwell, B. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability. Biochem. Pharmacol., 1991, 42(9), 1673-1681.
[http://dx.doi.org/10.1016/0006-2952(91)90501-U] [PMID: 1656994]
[48]
Kobuchi, H.; Roy, S.; Sen, C.K.; Nguyen, H.G.; Packer, L. Quercetin inhibits inducible ICAM-1 expression in human endothelial cells through the JNK pathway. Am. J. Physiol., 1999, 277(3), C403-C411.
[http://dx.doi.org/10.1152/ajpcell.1999.277.3.C403] [PMID: 10484327]
[49]
Chen, C.C.; Chow, M.P.; Huang, W.C.; Lin, Y.C.; Chang, Y.J. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure-activity relationships. Mol. Pharmacol., 2004, 66(3), 683-693.
[PMID: 15322261]
[50]
Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm., 2007, 2007, 45673.
[http://dx.doi.org/10.1155/2007/45673] [PMID: 18274639]
[51]
Comalada, M.; Ballester, I.; Bailón, E.; Sierra, S.; Xaus, J.; Gálvez, J.; de Medina, F.S.; Zarzuelo, A. Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure-activity relationship. Biochem. Pharmacol., 2006, 72(8), 1010-1021.
[http://dx.doi.org/10.1016/j.bcp.2006.07.016] [PMID: 16934226]
[52]
García-Mediavilla, V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol., 2007, 557(2-3), 221-229.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.014] [PMID: 17184768]
[53]
Kim, E.K.; Kwon, K.B.; Song, M.Y.; Han, M.J.; Lee, J.H.; Lee, Y.R.; Lee, J.H.; Ryu, D.G.; Park, B.H.; Park, J.W. Flavonoids protect against cytokine-induced pancreatic beta-cell damage through suppression of nuclear factor kappaB activation. Pancreas, 2007, 35(4), e1-e9.
[http://dx.doi.org/10.1097/mpa.0b013e31811ed0d2] [PMID: 18090225]
[54]
Jiang, F.; Guo, N.; Dusting, G.J. 3′,4′-Dihydroxyflavonol down-regulates monocyte chemoattractant protein-1 in smooth muscle: role of focal adhesion kinase and PDGF receptor signalling. Br. J. Pharmacol., 2009, 157(4), 597-606.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00199.x] [PMID: 19371329]
[55]
Kempuraj, D.; Madhappan, B.; Christodoulou, S.; Boucher, W.; Cao, J.; Papadopoulou, N.; Cetrulo, C.L.; Theoharides, T.C. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br. J. Pharmacol., 2005, 145(7), 934-944.
[http://dx.doi.org/10.1038/sj.bjp.0706246] [PMID: 15912140]
[56]
Kang, R.; Tang, D.; Schapiro, N.E.; Livesey, K.M.; Farkas, A.; Loughran, P.; Bierhaus, A.; Lotze, M.T.; Zeh, H.J. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ., 2010, 17(4), 666-676.
[http://dx.doi.org/10.1038/cdd.2009.149] [PMID: 19834494]
[57]
Yang, Y.S.; Wang, C.J.; Huang, C.N.; Chen, M.L.; Chen, M.J.; Peng, C.H. Polyphenols of Hibiscus sabdariffa improved diabetic nephropathy via attenuating renal epithelial mesenchymal transition. J. Agric. Food Chem., 2013, 61(31), 7545-7551.
[http://dx.doi.org/10.1021/jf4020735] [PMID: 23848500]
[58]
Ribaldo, P.D.; Souza, D.S.; Biswas, S.K.; Block, K.; Lopes de Faria, J.M.; Lopes de Faria, J.B. Green tea (Camellia sinensis) attenuates nephropathy by downregulating Nox4 NADPH oxidase in diabetic spontaneously hypertensive rats. J. Nutr., 2009, 139(1), 96-100.
[http://dx.doi.org/10.3945/jn.108.095018] [PMID: 19056645]
[59]
Faria, A.M.; Papadimitriou, A.; Silva, K.C.; Lopes de Faria, J.M.; Lopes de Faria, J.B. Uncoupling endothelial nitric oxide synthase is ameliorated by green tea in experimental diabetes by re-establishing tetrahydrobiopterin levels. Diabetes, 2012, 61(7), 1838-1847.
[http://dx.doi.org/10.2337/db11-1241] [PMID: 22586583]
[60]
Peixoto, E.B.; Papadimitriou, A.; Teixeira, D.A.; Montemurro, C.; Duarte, D.A.; Silva, K.C.; Joazeiro, P.P.; Lopes de Faria, J.M.; Lopes de Faria, J.B. Reduced LRP6 expression and increase in the interaction of GSK3β with p53 contribute to podocyte apoptosis in diabetes mellitus and are prevented by green tea. J. Nutr. Biochem., 2015, 26(4), 416-430.
[http://dx.doi.org/10.1016/j.jnutbio.2014.11.012] [PMID: 25655048]
[61]
Chung, S.S.; Chung, S.K. Aldose reductase in diabetic microvascular complications. Curr. Drug Targets, 2005, 6(4), 475-486.
[http://dx.doi.org/10.2174/1389450054021891] [PMID: 16026266]
[62]
Caldwell, R.B.; Bartoli, M.; Behzadian, M.A.; El-Remessy, A.E.; Al-Shabrawey, M.; Platt, D.H.; Liou, G.I.; Caldwell, R.W. Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. Curr. Drug Targets, 2005, 6(4), 511-524.
[http://dx.doi.org/10.2174/1389450054021981] [PMID: 16026270]
[63]
Aiello, L.P.; Bursell, S.E.; Clermont, A.; Duh, E.; Ishii, H.; Takagi, C.; Mori, F.; Ciulla, T.A.; Ways, K.; Jirousek, M.; Smith, L.E.; King, G.L. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes, 1997, 46(9), 1473-1480.
[http://dx.doi.org/10.2337/diab.46.9.1473] [PMID: 9287049]
[64]
Delmas, D.; Cornebise, C.; Courtaut, F.; Xiao, J.; Aires, V. New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. Int. J. Mol. Sci., 2021, 22(3), 1295.
[http://dx.doi.org/10.3390/ijms22031295] [PMID: 33525499]
[65]
Nabavi, S.F.; Barber, A.J.; Spagnuolo, C.; Russo, G.L.; Daglia, M.; Nabavi, S.M.; Sobarzo-Sánchez, E. Nrf2 as molecular target for polyphenols: A novel therapeutic strategy in diabetic retinopathy. Crit. Rev. Clin. Lab. Sci., 2016, 53(5), 293-312.
[http://dx.doi.org/10.3109/10408363.2015.1129530] [PMID: 26926494]
[66]
Ott, C.; Jacobs, K.; Haucke, E.; Navarrete Santos, A.; Grune, T.; Simm, A. Role of advanced glycation end products in cellular signaling. Redox Biol., 2014, 2, 411-429.
[http://dx.doi.org/10.1016/j.redox.2013.12.016] [PMID: 24624331]
[67]
Asadi, S.; Gholami, M.S.; Siassi, F.; Qorbani, M.; Sotoudeh, G. Beneficial effects of nano-curcumin supplement on depression and anxiety in diabetic patients with peripheral neuropathy: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res., 2020, 34(4), 896-903.
[http://dx.doi.org/10.1002/ptr.6571] [PMID: 31788880]
[68]
Pari, L.; Murugan, P. Tetrahydrocurcumin prevents brain lipid peroxidation in streptozotocin-induced diabetic rats. J. Med. Food, 2007, 10(2), 323-329.
[http://dx.doi.org/10.1089/jmf.2006.058] [PMID: 17651069]
[69]
Ji, C.; Xu, Y.; Han, F.; Sun, D.; Zhang, H.; Li, X.; Yao, X.; Wang, H. Quercetin alleviates thermal and cold hyperalgesia in a rat neuropathic pain model by inhibiting Toll-like receptor signaling. Biomed. Pharmacother., 2017, 94, 652-658.
[http://dx.doi.org/10.1016/j.biopha.2017.07.145] [PMID: 28787700]
[70]
Basu, P.; Maier, C.; Basu, A. Effects of curcumin and its different formulations in preclinical and clinical studies of peripheral neuropathic and postoperative pain: a comprehensive review. Int. J. Mol. Sci., 2021, 22(9), 4666.
[http://dx.doi.org/10.3390/ijms22094666] [PMID: 33925121]
[71]
Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 2010, 11(4), 1365-1402.
[http://dx.doi.org/10.3390/ijms11041365] [PMID: 20480025]
[72]
Berná, G.; Oliveras-López, M.J.; Jurado-Ruíz, E.; Tejedo, J.; Bedoya, F.; Soria, B.; Martín, F. Nutrigenetics and nutrigenomics insights into diabetes etiopathogenesis. Nutrients, 2014, 6(11), 5338-5369.
[http://dx.doi.org/10.3390/nu6115338] [PMID: 25421534]
[73]
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[74]
Johnson, R.; Dludla, P.; Joubert, E.; February, F.; Mazibuko, S.; Ghoor, S.; Muller, C.; Louw, J. Aspalathin, a dihydrochalcone C-glucoside, protects H9c2 cardiomyocytes against high glucose induced shifts in substrate preference and apoptosis. Mol. Nutr. Food Res., 2016, 60(4), 922-934.
[http://dx.doi.org/10.1002/mnfr.201500656] [PMID: 26773306]
[75]
Ortega, Á.; Berná, G.; Rojas, A.; Martín, F.; Soria, B. Gene-diet interactions in type 2 diabetes: the chicken and egg debate. Int. J. Mol. Sci., 2017, 18(6), E1188.
[http://dx.doi.org/10.3390/ijms18061188] [PMID: 28574454]
[76]
Vetterli, L.; Brun, T.; Giovannoni, L.; Bosco, D.; Maechler, P. Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism. J. Biol. Chem., 2011, 286(8), 6049-6060.
[http://dx.doi.org/10.1074/jbc.M110.176842] [PMID: 21163946]
[77]
Rouse, M.; Younès, A.; Egan, J.M. Resveratrol and curcumin enhance pancreatic β-cell function by inhibiting phosphodiesterase activity. J. Endocrinol., 2014, 223(2), 107-117.
[http://dx.doi.org/10.1530/JOE-14-0335] [PMID: 25297556]
[78]
Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I. Jr Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J., 2016, 473(24), 4527-4550.
[http://dx.doi.org/10.1042/BCJ20160503C] [PMID: 27941030]
[79]
Kampmann, U.; Christensen, B.; Nielsen, T.S.; Pedersen, S.B.; Ørskov, L.; Lund, S.; Møller, N.; Jessen, N. GLUT4 and UBC9 protein expression is reduced in muscle from type 2 diabetic patients with severe insulin resistance. PLoS One, 2011, 6(11), e27854.
[http://dx.doi.org/10.1371/journal.pone.0027854] [PMID: 22114711]
[80]
Schenk, S.; McCurdy, C.E.; Philp, A.; Chen, M.Z.; Holliday, M.J.; Bandyopadhyay, G.K.; Osborn, O.; Baar, K.; Olefsky, J.M. Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest., 2011, 121(11), 4281-4288.
[http://dx.doi.org/10.1172/JCI58554] [PMID: 21985785]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy