Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Neuroprotective Role of Nutritional Supplementation in Athletes

Author(s): Supriya Mishra, Vikram Jeet Singh, Pooja A Chawla and Viney Chawla*

Volume 15, Issue 1, 2022

Published on: 31 December, 2021

Article ID: e091221198710 Pages: 14

DOI: 10.2174/1874467214666211209144721

Price: $65

Abstract

Background: Neurodegenerative disorders belong to different classes of progressive/ chronic conditions that affect the peripheral/central nervous system. It has been shown through studies that athletes who play sports involving repeated head trauma and sub-concussive impacts are more likely to experience neurological impairments and neurodegenerative disorders in the long run

Aims: The aim of the current narrative review article is to provide a summary of various nutraceuticals that offer promise in the prevention or management of sports-related injuries, especially concussions and mild traumatic brain injuries.

Methods: This article reviews the various potential nutraceutical agents and their possible mechanisms in providing a beneficial effect in the injury recovery process. A thorough survey of the literature was carried out in the relevant databases to identify studies published in recent years. In the present article, we have also highlighted the major neurological disorders along with the associated nutraceutical(s) therapy in the management of disorders.

Results: The exact pathological mechanism behind neurodegenerative conditions is complex as well as idiopathic. However, mitochondrial dysfunction, oxidative stress as well as intracellular calcium overload are some common reasons responsible for the progression of these neurodegenerative disorders. Owing to the multifaceted effects of nutraceuticals (complementary medicine), these supplements have gained importance as neuroprotective. These diet-based approaches inhibit different pathways in a physiological manner without eliciting adverse effects. Food habits and lifestyle of an individual also affect neurodegeneration.

Conclusion: Studies have shown nutraceuticals (such as resveratrol, omega-3-fatty acids) to be efficacious in terms of their neuroprotection against several neurodegenerative disorders and to be used as supplements in the management of traumatic brain injuries. Protection prior to injuries is needed since concussions or sub-concussive impacts may trigger several pathophysiological responses or cascades that can lead to long-term complications associated with CNS. Thus, the use of nutraceuticals as prophylactic treatment for neurological interventions has been proposed.

Keywords: Neurodegeneration, calcium, oxidative stress, mild traumatic brain injury, nutraceuticals

Graphical Abstract

[1]
Di Pietro, V.; Yakoub, K.M.; Caruso, G.; Lazzarino, G.; Signoretti, S.; Barbey, A.K.; Tavazzi, B.; Lazzarino, G.; Belli, A.; Amorini, A.M. Antioxidant Therapies in Traumatic Brain Injury. Antioxidants, 2020, 9(3), 260.
[http://dx.doi.org/10.3390/antiox9030260] [PMID: 32235799]
[2]
Agnihotri, A.; Aruoma, O.I. Alzheimer’s disease and Parkinson’s disease: a nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals. J. Am. Coll. Nutr., 2020, 39(1), 16-27.
[http://dx.doi.org/10.1080/07315724.2019.1683379] [PMID: 31829802]
[3]
Chiu, H.F.; Venkatakrishnan, K.; Wang, C.K. The role of nutraceuticals as a complementary therapy against various neurodegenerative diseases: A mini-review. J. Tradit. Complement. Med., 2020, 10(5), 434-439.
[http://dx.doi.org/10.1016/j.jtcme.2020.03.008] [PMID: 32953558]
[4]
Pourhanifeh, M.H.; Shafabakhsh, R.; Reiter, R.J.; Asemi, Z. The effect of resveratrol on neurodegenerative disorders: possible protective actions against autophagy, apoptosis, inflammation and oxidative stress. Curr. Pharm. Des., 2019, 25(19), 2178-2191.
[http://dx.doi.org/10.2174/1381612825666190717110932] [PMID: 31333112]
[5]
Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J. Agric. Food Chem., 2019, 67(4), 1029-1043.
[http://dx.doi.org/10.1021/acs.jafc.8b06146] [PMID: 30653316]
[6]
Dadhania, V.P.; Trivedi, P.P.; Vikram, A.; Tripathi, D.N. Nutraceuticals against Neurodegeneration: A Mechanistic Insight. Curr. Neuropharmacol., 2016, 14(6), 627-640.
[http://dx.doi.org/10.2174/1570159X14666160104142223] [PMID: 26725888]
[7]
Abdel-Daim, M.M.; El-Tawil, O.S.; Bungau, S.G.; Atanasov, A.G. Applications of antioxidants in metabolic disorders and degenerative diseases: Mechanistic approach. Oxid. Med. Cell. Longev., 2019, 2019, 4179676.
[http://dx.doi.org/10.1155/2019/4179676] [PMID: 31467632]
[8]
Orlando, J.M. Behavioral nutraceuticals and diets. Vet. Clin. North Am. Small Anim. Pract., 2018, 48(3), 473-495.
[http://dx.doi.org/10.1016/j.cvsm.2017.12.012] [PMID: 29429599]
[9]
Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol., 2018, 9, 477.
[http://dx.doi.org/10.3389/fphys.2018.00477] [PMID: 29867535]
[10]
Van Der Burg, K.P.; Cribb, L.; Firth, J.; Karmacoska, D.; Sarris, J. Nutrient and genetic biomarkers of nutraceutical treatment response in mood and psychotic disorders: a systematic review. Nutr. Neurosci., 2019, 24(4), 279-295.
[http://dx.doi.org/10.1080/1028415X.2019.1625222] [PMID: 31397223]
[11]
Halstead, M.E.; Walter, K.D. American Academy of Pediatrics. Clinical report--sport-related concussion in children and adolescents. Pediatrics, 2010, 126(3), 597-615.
[http://dx.doi.org/10.1542/peds.2010-2005] [PMID: 20805152]
[12]
Bazarian, J.J.; Zhu, T.; Zhong, J.; Janigro, D.; Rozen, E.; Roberts, A.; Javien, H.; Merchant-Borna, K.; Abar, B.; Blackman, E.G. Persistent, long-term cerebral white matter changes after sports-related repetitive head impacts. PLoS One, 2014, 9(4), e94734.
[http://dx.doi.org/10.1371/journal.pone.0094734] [PMID: 24740265]
[13]
McCrory, P.; Meeuwisse, W.; Dvořák, J.; Aubry, M.; Bailes, J.; Broglio, S.; Cantu, R.C.; Cassidy, D.; Echemendia, R.J.; Castellani, R.J.; Davis, G.A.; Ellenbogen, R.; Emery, C.; Engebretsen, L.; Feddermann-Demont, N.; Giza, C.C.; Guskiewicz, K.M.; Herring, S.; Iverson, G.L.; Johnston, K.M.; Kissick, J.; Kutcher, J.; Leddy, J.J.; Maddocks, D.; Makdissi, M.; Manley, G.T.; McCrea, M.; Meehan, W.P.; Nagahiro, S.; Patricios, J.; Putukian, M.; Schneider, K.J.; Sills, A.; Tator, C.H.; Turner, M.; Vos, P.E. Consensus statement on concussion in sport-the 5th international conference on concussion in sport held in Berlin, October 2016. Br. J. Sports Med., 2017, 51(11), 838-847.
[PMID: 28446457]
[14]
Merege-Filho, C.A.; Otaduy, M.C.; de Sá-Pinto, A.L.; de Oliveira, M.O.; de Souza Gonçalves, L.; Hayashi, A.P.; Roschel, H.; Pereira, R.M.; Silva, C.A.; Brucki, S.M.; da Costa Leite, C.; Gualano, B. Does brain creatine content rely on exogenous creatine in healthy youth? A proof-of-principle study. Appl. Physiol. Nutr. Metab., 2017, 42(2), 128-134.
[http://dx.doi.org/10.1139/apnm-2016-0406] [PMID: 28079396]
[15]
Maas, A.I.R.; Menon, D.K.; Adelson, P.D.; Andelic, N.; Bell, M.J.; Belli, A.; Bragge, P.; Brazinova, A.; Büki, A.; Chesnut, R.M.; Citerio, G.; Coburn, M.; Cooper, D.J.; Crowder, A.T.; Czeiter, E.; Czosnyka, M.; Diaz-Arrastia, R.; Dreier, J.P.; Duhaime, A.C.; Ercole, A.; van Essen, T.A.; Feigin, V.L.; Gao, G.; Giacino, J.; Gonzalez-Lara, L.E.; Gruen, R.L.; Gupta, D.; Hartings, J.A.; Hill, S.; Jiang, J.Y.; Ketharanathan, N.; Kompanje, E.J.O.; Lanyon, L.; Laureys, S.; Lecky, F.; Levin, H.; Lingsma, H.F.; Maegele, M.; Majdan, M.; Manley, G.; Marsteller, J.; Mascia, L.; McFadyen, C.; Mondello, S.; Newcombe, V.; Palotie, A.; Parizel, P.M.; Peul, W.; Piercy, J.; Polinder, S.; Puybasset, L.; Rasmussen, T.E.; Rossaint, R.; Smielewski, P.; Söderberg, J.; Stanworth, S.J.; Stein, M.B.; von Steinbüchel, N.; Stewart, W.; Steyerberg, E.W.; Stocchetti, N.; Synnot, A.; Te Ao, B.; Tenovuo, O.; Theadom, A.; Tibboel, D.; Videtta, W.; Wang, K.K.W.; Williams, W.H.; Wilson, L.; Yaffe, K. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol., 2017, 16(12), 987-1048.
[http://dx.doi.org/10.1016/S1474-4422(17)30371-X] [PMID: 29122524]
[16]
Gardner, AJ; Zafonte, R Neuroepidemiology of traumatic brain injury. In: Handbook of clinical neurology; , 2016; 138, pp. 207-223.
[http://dx.doi.org/10.1016/B978-0-12-802973-2.00012-4]
[17]
Kochanek, P.M.; Dixon, C.E.; Mondello, S.; Wang, K.K.K.; Lafrenaye, A.; Bramlett, H.M.; Dietrich, W.D.; Hayes, R.L.; Shear, D.A.; Gilsdorf, J.S.; Catania, M.; Poloyac, S.M.; Empey, P.E.; Jackson, T.C.; Povlishock, J.T. Multi-center pre-clinical consortia to enhance translation of therapies and biomarkers for traumatic brain injury: Operation Brain Trauma Therapy and beyond. Front. Neurol., 2018, 9, 640.
[http://dx.doi.org/10.3389/fneur.2018.00640] [PMID: 30131759]
[18]
Kumar Sahel, D.; Kaira, M.; Raj, K.; Sharma, S.; Singh, S. Mitochondrial dysfunctioning and neuroinflammation: Recent highlights on the possible mechanisms involved in Traumatic Brain Injury. Neurosci. Lett., 2019, 710, 134347.
[http://dx.doi.org/10.1016/j.neulet.2019.134347] [PMID: 31229625]
[19]
American Association of Neurological Surgeons. Available from: https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Sports-related-Head-Injury
[20]
Kim, S.; Mortera, M.; Hu, X.; Krishnan, S.; Hoffecker, L.; Herrold, A.; Terhorst, L.; King, L.; Machtinger, J.; Zumsteg, J.M.; Negm, A.; Heyn, P. Overview of pharmacological interventions after traumatic brain injuries: impact on selected outcomes. Brain Inj., 2019, 33(4), 442-455.
[http://dx.doi.org/10.1080/02699052.2019.1565896] [PMID: 30694081]
[21]
Amorini, A.M.; Lazzarino, G.; Di Pietro, V.; Signoretti, S.; Lazzarino, G.; Belli, A.; Tavazzi, B. Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids. J. Cell. Mol. Med., 2017, 21(3), 530-542.
[http://dx.doi.org/10.1111/jcmm.12998] [PMID: 27696676]
[22]
Zhu, Y.; Wang, H.; Fang, J.; Dai, W.; Zhou, J.; Wang, X.; Zhou, M. SS-31 provides neuroprotection by reversing mitochondrial dysfunction after traumatic brain injury. Oxid. Med. Cell. Longev., 2018.
[23]
Abbas, K.; Shenk, T.E.; Poole, V.N.; Breedlove, E.L.; Leverenz, L.J.; Nauman, E.A.; Talavage, T.M.; Robinson, M.E. Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study. Brain Connect., 2015, 5(2), 91-101.
[http://dx.doi.org/10.1089/brain.2014.0279] [PMID: 25242171]
[24]
Gold, E.M.; Vasilevko, V.; Hasselmann, J.; Tiefenthaler, C.; Hoa, D.; Ranawaka, K.; Cribbs, D.H.; Cummings, B.J. Repeated mild closed head injuries induce long-term white matter pathology and neuronal loss that are correlated with behavioral deficits. ASN Neuro, 2018, 10, 1759091418781921.
[http://dx.doi.org/10.1177/1759091418781921] [PMID: 29932344]
[25]
Bigler, E.D.; Maxwell, W.L. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging Behav., 2012, 6(2), 108-136.
[http://dx.doi.org/10.1007/s11682-011-9145-0] [PMID: 22434552]
[26]
Baugh, C.M.; Stamm, J.M.; Riley, D.O.; Gavett, B.E.; Shenton, M.E.; Lin, A.; Nowinski, C.J.; Cantu, R.C.; McKee, A.C.; Stern, R.A. Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging Behav., 2012, 6(2), 244-254.
[http://dx.doi.org/10.1007/s11682-012-9164-5] [PMID: 22552850]
[27]
Messé, A.; Caplain, S.; Pélégrini-Issac, M.; Blancho, S.; Montreuil, M.; Lévy, R.; Lehéricy, S.; Benali, H. Structural integrity and postconcussion syndrome in mild traumatic brain injury patients. Brain Imaging Behav., 2012, 6(2), 283-292.
[http://dx.doi.org/10.1007/s11682-012-9159-2] [PMID: 22477019]
[28]
Lotocki, G.; de Rivero Vaccari, J.; Alonso, O.; Molano, J.S.; Nixon, R.; Dietrich, W.D.; Bramlett, H.M. Oligodendrocyte vulnerability following traumatic brain injury in rats: effect of moderate hypothermia. Ther. Hypothermia Temp. Manag., 2011, 1(1), 43-51.
[http://dx.doi.org/10.1089/ther.2010.0011] [PMID: 23336085]
[29]
Mohammed Sulaiman, A.; Denman, N.; Buchanan, S.; Porter, N.; Vijay, S.; Sharpe, R.; Graham, D.I.; Maxwell, W.L. Stereology and ultrastructure of chronic phase axonal and cell soma pathology in stretch-injured central nerve fibers. J. Neurotrauma, 2011, 28(3), 383-400.
[http://dx.doi.org/10.1089/neu.2010.1707] [PMID: 21190396]
[30]
Aggarwal, S.; Yurlova, L.; Simons, M. Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol., 2011, 21(10), 585-593.
[http://dx.doi.org/10.1016/j.tcb.2011.06.004] [PMID: 21763137]
[31]
Velumian, A.A.; Samoilova, M.; Fehlings, M.G. Visualization of cytoplasmic diffusion within living myelin sheaths of CNS white matter axons using microinjection of the fluorescent dye Lucifer Yellow. Neuroimage, 2011, 56(1), 27-34.
[http://dx.doi.org/10.1016/j.neuroimage.2010.11.022] [PMID: 21073961]
[32]
Smith, D.H.; Johnson, V.E.; Stewart, W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat. Rev. Neurol., 2013, 9(4), 211-221.
[http://dx.doi.org/10.1038/nrneurol.2013.29] [PMID: 23458973]
[33]
Kinnunen, K.M.; Greenwood, R.; Powell, J.H.; Leech, R.; Hawkins, P.C.; Bonnelle, V.; Patel, M.C.; Counsell, S.J.; Sharp, D.J. White matter damage and cognitive impairment after traumatic brain injury. Brain, 2011, 134(Pt 2), 449-463.
[http://dx.doi.org/10.1093/brain/awq347] [PMID: 21193486]
[34]
Oliver, J.M.; Anzalone, A.J.; Turner, S.M. Protection before impact: the potential neuroprotective role of nutritional supplementation in sports-related head trauma. Sports Med., 2018, 48(Suppl. 1), 39-52.
[http://dx.doi.org/10.1007/s40279-017-0847-3] [PMID: 29368186]
[35]
Soldán, MM; Pirko, I Biogenesis and significance of central nervous system myelin. Semin. Neurol., 2012, 32(1), 009-014.
[http://dx.doi.org/10.1055/s-0032-1306381]
[36]
Nualart-Marti, A.; Solsona, C.; Fields, R.D. Gap junction communication in myelinating glia. Biochim. Biophys. Acta, 2013, 1828(1), 69-78.
[http://dx.doi.org/10.1016/j.bbamem.2012.01.024] [PMID: 22326946]
[37]
Salameh, A.; Dhein, S. Effects of mechanical forces and stretch on intercellular gap junction coupling. Biochim. Biophys. Acta, 2013, 1828(1), 147-156.
[http://dx.doi.org/10.1016/j.bbamem.2011.12.030] [PMID: 22245380]
[38]
Lee, Y.; Morrison, B.M.; Li, Y.; Lengacher, S.; Farah, M.H.; Hoffman, P.N.; Liu, Y.; Tsingalia, A.; Jin, L.; Zhang, P.W.; Pellerin, L.; Magistretti, P.J.; Rothstein, J.D. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 2012, 487(7408), 443-448.
[http://dx.doi.org/10.1038/nature11314] [PMID: 22801498]
[39]
Fitzgerald, M.; Bartlett, C.A.; Harvey, A.R.; Dunlop, S.A. Early events of secondary degeneration after partial optic nerve transection: an immunohistochemical study. J. Neurotrauma, 2010, 27(2), 439-452.
[http://dx.doi.org/10.1089/neu.2009.1112] [PMID: 19852581]
[40]
Nawaz, S.; Kippert, A.; Saab, A.S.; Werner, H.B.; Lang, T.; Nave, K.A.; Simons, M. Phosphatidylinositol 4,5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. J. Neurosci., 2009, 29(15), 4794-4807.
[http://dx.doi.org/10.1523/JNEUROSCI.3955-08.2009] [PMID: 19369548]
[41]
Fu, X.Y.; Yang, M.F.; Cao, M.Z.; Li, D.W.; Yang, X.Y.; Sun, J.Y.; Zhang, Z.Y.; Mao, L.L.; Zhang, S.; Wang, F.Z.; Zhang, F.; Fan, C.D.; Sun, B.L. Strategy to suppress oxidative damage-induced neurotoxicity in PC12 cells by curcumin: the role of ROS- mediated DNA damage and the MAPK and AKT pathways. Mol. Neurobiol., 2016, 53(1), 369-378.
[http://dx.doi.org/10.1007/s12035-014-9021-1] [PMID: 25432891]
[42]
Keber, U.; Klietz, M.; Carlsson, T.; Oertel, W.H.; Weihe, E.; Schäfer, M.K.; Höglinger, G.U.; Depboylu, C. Striatal tyrosine hydroxylase-positive neurons are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Neuroscience, 2015, 298, 302-317.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.021] [PMID: 25892702]
[43]
Pugh, N.D.; Edwall, D.; Lindmark, L.; Kousoulas, K.G.; Iyer, A.V.; Haron, M.H.; Pasco, D.S. Oral administration of a Spirulina extract enriched for Braun-type lipoproteins protects mice against influenza A (H1N1) virus infection. Phytomedicine, 2015, 22(2), 271-276.
[http://dx.doi.org/10.1016/j.phymed.2014.12.006] [PMID: 25765832]
[44]
Kumar, A.; Leinisch, F.; Kadiiska, M.B.; Corbett, J.; Mason, R.P. Formation and implications of alpha-synuclein radical in maneb-and paraquat-induced models of Parkinson’s disease. Mol. Neurobiol., 2016, 53(5), 2983-2994.
[http://dx.doi.org/10.1007/s12035-015-9179-1] [PMID: 25952542]
[45]
Essa, M.M.; Subash, S.; Akbar, M.; Al-Adawi, S.; Guillemin, G.J. Long-term dietary supplementation of pomegranates, figs and dates alleviate neuroinflammation in a transgenic mouse model of Alzheimer’s disease. PLoS One, 2015, 10(3), e0120964.
[http://dx.doi.org/10.1371/journal.pone.0120964] [PMID: 25807081]
[46]
Cunningham, C. Microglia and neurodegeneration: the role of systemic inflammation. Glia, 2013, 61(1), 71-90.
[http://dx.doi.org/10.1002/glia.22350] [PMID: 22674585]
[47]
Moreno, J.A.; Halliday, M.; Molloy, C.; Radford, H.; Verity, N.; Axten, J.M.; Ortori, C.A.; Willis, A.E.; Fischer, P.M.; Barrett, D.A.; Mallucci, G.R. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med., 2013, 5(206), 206ra138.
[http://dx.doi.org/10.1126/scitranslmed.3006767] [PMID: 24107777]
[48]
Soto-Urquieta, M.G.; López-Briones, S.; Pérez-Vázquez, V.; Saavedra-Molina, A.; González-Hernández, G.A.; Ramírez-Emiliano, J. Curcumin restores mitochondrial functions and decreases lipid peroxidation in liver and kidneys of diabetic db/db mice. Biol. Res., 2014, 47(1), 74.
[http://dx.doi.org/10.1186/0717-6287-47-74] [PMID: 25723052]
[49]
Akram, M.; Shahab-Uddin, A.A.; Usmanghani, K.H.; Hannan, A.B.; Mohiuddin, E.; Asif, M. Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol., 2010, 55(2), 65-70.
[50]
Sheard, J.M.; Ash, S.; Mellick, G.D.; Silburn, P.A.; Kerr, G.K. Improved nutritional status is related to improved quality of life in Parkinson’s disease. BMC Neurol., 2014, 14(1), 212.
[http://dx.doi.org/10.1186/s12883-014-0212-1] [PMID: 25403709]
[51]
Fragoso, Y.D.; Stoney, P.N.; McCaffery, P.J. The evidence for a beneficial role of vitamin A in multiple sclerosis. CNS Drugs, 2014, 28(4), 291-299.
[http://dx.doi.org/10.1007/s40263-014-0148-4] [PMID: 24557746]
[52]
Farkhondeh, T.; Yazdi, H.S.; Samarghandian, S. The protective effects of green tea catechins in the management of neurodegenerative diseases: A review. Curr. Drug Discov. Technol., 2019, 16(1), 57-65.
[http://dx.doi.org/10.2174/1570163815666180219115453] [PMID: 29468975]
[53]
Venkatakrishnan, K.; Chiu, H.F.; Wang, C.K. Popular functional foods and herbs for the management of type-2-diabetes mellitus: A comprehensive review with special reference to clinical trials and its proposed mechanism. J. Funct. Foods, 2019, 57, 425-438.
[http://dx.doi.org/10.1016/j.jff.2019.04.039]
[54]
Venkatakrishnan, K.; Chiu, H.F.; Wang, C.K. Extensive review of popular functional foods and nutraceuticals against obesity and its related complications with a special focus on randomized clinical trials. Food Funct., 2019, 10(5), 2313-2329.
[http://dx.doi.org/10.1039/C9FO00293F] [PMID: 31041963]
[55]
Perrone, L.; Squillaro, T.; Napolitano, F.; Terracciano, C.; Sampaolo, S.; Melone, M.A.B. The Autophagy Signaling Pathway: A Potential Multifunctional Therapeutic Target of Curcumin in Neurological and Neuromuscular Diseases. Nutrients, 2019, 11(8), 1881.
[http://dx.doi.org/10.3390/nu11081881] [PMID: 31412596]
[56]
Limanaqi, F.; Biagioni, F.; Busceti, C.L.; Ryskalin, L.; Polzella, M.; Frati, A.; Fornai, F. Phytochemicals Bridging Autophagy Induction and Alpha-Synuclein Degradation in Parkinsonism. Int. J. Mol. Sci., 2019, 20(13), 3274.
[http://dx.doi.org/10.3390/ijms20133274] [PMID: 31277285]
[57]
Teter, B.; Morihara, T.; Lim, G.P.; Chu, T.; Jones, M.R.; Zuo, X.; Paul, R.M.; Frautschy, S.A.; Cole, G.M. Curcumin restores innate immune Alzheimer’s disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol. Dis., 2019, 127, 432-448.
[http://dx.doi.org/10.1016/j.nbd.2019.02.015] [PMID: 30951849]
[58]
Hatami, M.; Abdolahi, M.; Soveyd, N.; Djalali, M.; Togha, M.; Honarvar, N.M. Molecular mechanisms of curcumin in neuroinflammatory disorders: a mini review of current evidences. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(3), 247-258.
[http://dx.doi.org/10.2174/1871530319666181129103056] [PMID: 30488803]
[59]
Gomes, B.A.Q.; Silva, J.P.B.; Romeiro, C.F.R.; Dos Santos, S.M.; Rodrigues, C.A.; Gonçalves, P.R.; Sakai, J.T.; Mendes, P.F.S.; Varela, E.L.P.; Monteiro, M.C. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1. Oxid. Med. Cell. Longev., 2018, 2018, 8152373.
[http://dx.doi.org/10.1155/2018/8152373] [PMID: 30510627]
[60]
Sharma, S.; Zhuang, Y.; Ying, Z.; Wu, A.; Gomez-Pinilla, F. Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience, 2009, 161(4), 1037-1044.
[http://dx.doi.org/10.1016/j.neuroscience.2009.04.042] [PMID: 19393301]
[61]
Pivovarova, N.B.; Andrews, S.B. Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J., 2010, 277(18), 3622-3636.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07754.x] [PMID: 20659161]
[62]
Samini, F.; Samarghandian, S.; Borji, A.; Mohammadi, G.; bakaian, M. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat. Pharmacol. Biochem. Behav., 2013, 110, 238-244.
[http://dx.doi.org/10.1016/j.pbb.2013.07.019] [PMID: 23932920]
[63]
Ipsiroglu, O.S.; Stromberger, C.; Ilas, J.; Höger, H.; Mühl, A.; Stöckler-Ipsiroglu, S. Changes of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various animal species. Life Sci., 2001, 69(15), 1805-1815.
[http://dx.doi.org/10.1016/S0024-3205(01)01268-1] [PMID: 11665842]
[64]
Pu, Y.; Zhang, H.; Wang, P.; Zhao, Y.; Li, Q.; Wei, X.; Cui, Y.; Sun, J.; Shang, Q.; Liu, D.; Zhu, Z. Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway. Cell. Physiol. Biochem., 2013, 32(5), 1167-1177.
[http://dx.doi.org/10.1159/000354516] [PMID: 24335167]
[65]
Hui, Y.; Chengyong, T.; Cheng, L.; Haixia, H.; Yuanda, Z.; Weihua, Y. Resveratrol attenuates the cytotoxicity induced by amyloid-β 1–42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway. Neurochem. Res., 2018, 43(2), 297-305.
[http://dx.doi.org/10.1007/s11064-017-2421-7] [PMID: 29090409]
[66]
Vidoni, C.; Secomandi, E.; Castiglioni, A.; Melone, M.A.B.; Isidoro, C. Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem. Int., 2018, 117, 174-187.
[http://dx.doi.org/10.1016/j.neuint.2017.05.013] [PMID: 28532681]
[67]
Marx, W.; Kelly, J.T.; Marshall, S.; Cutajar, J.; Annois, B.; Pipingas, A.; Tierney, A.; Itsiopoulos, C. Effect of resveratrol supplementation on cognitive performance and mood in adults: a systematic literature review and meta-analysis of randomized controlled trials. Nutr. Rev., 2018, 76(6), 432-443.
[http://dx.doi.org/10.1093/nutrit/nuy010] [PMID: 29596658]
[68]
Dong, Y.; Xu, M.; Kalueff, A.V.; Song, C. Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin-1β administration. Eur. J. Nutr., 2018, 57(5), 1781-1791.
[http://dx.doi.org/10.1007/s00394-017-1462-7] [PMID: 28523372]
[69]
Avallone, R.; Vitale, G.; Bertolotti, M. Omega-3 fatty acids and neurodegenerative diseases: new evidence in clinical trials. Int. J. Mol. Sci., 2019, 20(17), 4256.
[http://dx.doi.org/10.3390/ijms20174256] [PMID: 31480294]
[70]
Wu, S.; Ding, Y.; Wu, F.; Li, R.; Hou, J.; Mao, P. Omega-3 fatty acids intake and risks of dementia and Alzheimer’s disease: a meta-analysis. Neurosci. Biobehav. Rev., 2015, 48, 1-9.
[http://dx.doi.org/10.1016/j.neubiorev.2014.11.008] [PMID: 25446949]
[71]
Sawmiller, D.; Li, S.; Shahaduzzaman, M.; Smith, A.J.; Obregon, D.; Giunta, B.; Borlongan, C.V.; Sanberg, P.R.; Tan, J. Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury. Int. J. Mol. Sci., 2014, 15(1), 895-904.
[http://dx.doi.org/10.3390/ijms15010895] [PMID: 24413756]
[72]
Boccardi, V.; Tinarelli, C.; Mecocci, P. Nutraceuticals and Cognitive Dysfunction. Neuroprotective Effects of Phytochem. Neurol. Disord., 2017, 561-579.
[http://dx.doi.org/10.1002/9781119155195.ch28]
[73]
Glevitzky, I.; Dumitrel, G.A.; Glevitzky, M.; Pasca, B.; Otrisal, P.; Bungau, S.; Cioca, G.; Pantis, C.; Popa, M. Statistical analysis of the relationship between antioxidant activity and the structure of flavonoid compounds. Rev Chim., 2019, 70, 3103-3107.
[http://dx.doi.org/10.37358/RC.19.9.7497]
[74]
Ceskova, E.; Silhan, P. Novel treatment options in depression and psychosis. Neuropsychiatr. Dis. Treat., 2018, 14, 741-747.
[http://dx.doi.org/10.2147/NDT.S157475] [PMID: 29559781]
[75]
Brown, H.E.; Roffman, J.L. Emerging treatments in schizophrenia: highlights from recent supplementation and prevention trials. Harv. Rev. Psychiatry, 2016, 24(2), e1-e7.
[http://dx.doi.org/10.1097/HRP.0000000000000101] [PMID: 26954600]
[76]
Savitz, A.J.; Xu, H.; Gopal, S.; Nuamah, I.; Ravenstijn, P.; Janik, A.; Schotte, A.; Hough, D.; Fleischhacker, W.W. Efficacy and safety of paliperidone palmitate 3-month formulation for patients with schizophrenia: a randomized, multicenter, double-blind, noninferiority study. Int. J. Neuropsychopharmacol., 2016, 19(7), pyw018.
[http://dx.doi.org/10.1093/ijnp/pyw018] [PMID: 26902950]
[77]
Cloutier, M.; Aigbogun, M.S.; Guerin, A.; Nitulescu, R.; Ramanakumar, A.V.; Kamat, S.A.; DeLucia, M.; Duffy, R.; Legacy, S.N.; Henderson, C.; Francois, C.; Wu, E. The economic burden of schizophrenia in the United States in 2013. J. Clin. Psychiatry, 2016, 77(6), 764-771.
[http://dx.doi.org/10.4088/JCP.15m10278] [PMID: 27135986]
[78]
Pierce, J.D.; Shen, Q.; Peltzer, J.; Thimmesch, A.; Hiebert, J.B. A pilot study exploring the effects of ubiquinol on brain genomics after traumatic brain injury. Nurs. Outlook, 2017, 65(5S), S44-S52.
[http://dx.doi.org/10.1016/j.outlook.2017.06.012] [PMID: 28755974]
[79]
Fodor, K.; Tit, D.M.; Pasca, B.; Bustea, C.; Uivarosan, D.; Endres, L.; Iovan, C.; Abdel-Daim, M.M.; Bungau, S. Long-term resveratrol supplementation as a secondary prophylaxis for stroke. Oxidative Med. Cell. Longev., 2018.
[http://dx.doi.org/10.1155/2018/4147320]
[80]
Weiner, M.W.; Crane, P.K.; Montine, T.J.; Bennett, D.A.; Veitch, D.P. Traumatic brain injury may not increase the risk of Alzheimer disease. Neurology, 2017, 89(18), 1923-1925.
[http://dx.doi.org/10.1212/WNL.0000000000004608] [PMID: 28978654]
[81]
Kawamoto, Y.; Akiguchi, I.; Nakamura, S.; Honjyo, Y.; Shibasaki, H.; Budka, H. 14-3-3 proteins in Lewy bodies in Parkinson disease and diffuse Lewy body disease brains. J. Neuropathol. Exp. Neurol., 2002, 61(3), 245-253.
[http://dx.doi.org/10.1093/jnen/61.3.245] [PMID: 11895039]
[82]
Wang, Y.; Hekimi, S. Understanding Ubiquinone. Trends Cell Biol., 2016, 26(5), 367-378.
[http://dx.doi.org/10.1016/j.tcb.2015.12.007] [PMID: 26827090]
[83]
Pierce, J.D.; Gupte, R.; Thimmesch, A.; Shen, Q.; Hiebert, J.B.; Brooks, W.M.; Clancy, R.L.; Diaz, F.J.; Harris, J.L. Ubiquinol treatment for TBI in male rats: Effects on mitochondrial integrity, injury severity, and neurometabolism. J. Neurosci. Res., 2018, 96(6), 1080-1092.
[http://dx.doi.org/10.1002/jnr.24210] [PMID: 29380912]
[84]
Purza, L.; Abdel-Daim, M.O.; Belba, A.; Iovan, C.; Bumbu, A.; Lazar, L.; Bungau, S.; Tit, D.M. Monitoring the effects of various combi-nation of specific drug therapies at different stages of Alzheimer’s dementia. Farmacia, 2019, 67, 477-481.
[http://dx.doi.org/10.31925/farmacia.2019.3.15]
[85]
Ghabaee, M.; Jabedari, B.; Al-E-Eshagh, N.; Ghaffarpour, M.; Asadi, F. Serum and cerebrospinal fluid antioxidant activity and lipid peroxidation in Guillain-Barre syndrome and multiple sclerosis patients. Int. J. Neurosci., 2010, 120(4), 301-304.
[http://dx.doi.org/10.3109/00207451003695690] [PMID: 20374079]
[86]
Saldanha, S.N.; Tollefsbol, T.O. The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes. J. Oncol., 2012, 2012, 192464.
[http://dx.doi.org/10.1155/2012/192464] [PMID: 22187555]
[87]
Grassi, D.; Ferri, C.; Desideri, G. Brain protection and cognitive function: cocoa flavonoids as nutraceuticals. Curr. Pharm. Des., 2016, 22(2), 145-151.
[http://dx.doi.org/10.2174/1381612822666151112145730] [PMID: 26561075]
[88]
Colín-González, A.L.; Ali, S.F.; Túnez, I.; Santamaría, A. On the antioxidant, neuroprotective and anti-inflammatory properties of S-allyl cysteine: An update. Neurochem. Int., 2015, 89, 83-91.
[http://dx.doi.org/10.1016/j.neuint.2015.06.011] [PMID: 26122973]
[89]
Lange, K.W.; Nakamura, Y.; Gosslau, A.M.; Li, S. Are there serious adverse effects of omega-3 polyunsaturated fatty acid supplements? J. Food Bioactives., 2019.
[90]
Blecher, R.; Elliott, M.A.; Yilmaz, E.; Dettori, J.R.; Oskouian, R.J.; Patel, A.; Clarke, A.; Hutton, M.; McGuire, R.; Dunn, R.; DeVine, J.; Twaddle, B.; Chapman, J.R. Contact sports as a risk factor for amyotrophic lateral sclerosis: A systematic review. Global Spine J., 2019, 9(1), 104-118.
[http://dx.doi.org/10.1177/2192568218813916] [PMID: 30775214]
[91]
Asan, Z. Spinal concussion in adults: transient neuropraxia of spinal cord exposed to vertical forces. World Neurosurg., 2018, 114, e1284-e1289.
[http://dx.doi.org/10.1016/j.wneu.2018.03.198] [PMID: 29626691]
[92]
Gatson, J.W.; Liu, M.M.; Abdelfattah, K.; Wigginton, J.G.; Smith, S.; Wolf, S.; Minei, J.P. Resveratrol decreases inflammation in the brain of mice with mild traumatic brain injury. J. Trauma Acute Care Surg., 2013, 74(2), 470-474.
[http://dx.doi.org/10.1097/TA.0b013e31827e1f51] [PMID: 23354240]
[93]
Lin, C.J.; Chen, T.H.; Yang, L.Y.; Shih, C.M. Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis., 2014, 5(3), e1147.
[http://dx.doi.org/10.1038/cddis.2014.123] [PMID: 24675465]
[94]
Mitchell, J.D. Amyotrophic lateral sclerosis: toxins and environment. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2000, 1(4), 235-250.
[http://dx.doi.org/10.1080/14660820050515061] [PMID: 11465017]
[95]
Hill, M.; Goldspink, G. Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J. Physiol., 2003, 549(Pt 2), 409-418.
[http://dx.doi.org/10.1113/jphysiol.2002.035832] [PMID: 12692175]
[96]
Hadžović-Džuvo, A.; Valjevac, A.; Lepara, O.; Pjanić, S.; Hadžimuratović, A.; Mekić, A. Oxidative stress status in elite athletes engaged in different sport disciplines. Bosn. J. Basic Med. Sci., 2014, 14(2), 56-62.
[http://dx.doi.org/10.17305/bjbms.2014.2262] [PMID: 24856375]
[97]
Myburgh, K.H. Polyphenol supplementation: benefits for exercise performance or oxidative stress? Sports Med., 2014, 44(Suppl. 1), S57-S70.
[http://dx.doi.org/10.1007/s40279-014-0151-4] [PMID: 24791917]
[98]
Barranco-Ruiz, Y.; Aragón-Vela, J.; Casals, C.; Martínez-Amat, A.; Villa-González, E.; Huertas, J.R. Lifelong amateur endurance practice attenuates oxidative stress and prevents muscle wasting in senior adults. J. Sports Med. Phys. Fitness, 2017, 57(5), 670-677.
[http://dx.doi.org/10.23736/S0022-4707.16.06286-1] [PMID: 27045740]
[99]
Becatti, M.; Mannucci, A.; Barygina, V.; Mascherini, G.; Emmi, G.; Silvestri, E.; Wright, D.; Taddei, N.; Galanti, G.; Fiorillo, C. Redox status alterations during the competitive season in élite soccer players: focus on peripheral leukocyte-derived ROS. Intern. Emerg. Med., 2017, 12(6), 777-788.
[http://dx.doi.org/10.1007/s11739-017-1653-5] [PMID: 28361355]
[100]
Arsic, A.; Vucic, V.; Glibetic, M.; Popovic, T.; Debeljak-Martacic, J.; Cubrilo, D.; Ahmetovic, Z.; Peric, D.; Borozan, S.; Djuric, D.; Barudzic, N.; Jakovljevic, V. Redox balance in elite female athletes: differences based on sport types. J. Sports Med. Phys. Fitness, 2016, 56(1-2), 1-8.
[PMID: 25812706]
[101]
Falone, S.; Mirabilio, A.; Pennelli, A.; Cacchio, M.; Di Baldassarre, A.; Gallina, S.; Passerini, A.; Amicarelli, F. Differential impact of acute bout of exercise on redox- and oxidative damage-related profiles between untrained subjects and amateur runners. Physiol. Res., 2010, 59(6), 953-961.
[http://dx.doi.org/10.33549/physiolres.931884] [PMID: 20533869]
[102]
Islam, M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res., 2017, 39(1), 73-82.
[http://dx.doi.org/10.1080/01616412.2016.1251711] [PMID: 27809706]
[103]
Carnevale, R.; Bartimoccia, S.; Nocella, C.; Di Santo, S.; Loffredo, L.; Illuminati, G.; Lombardi, E.; Boz, V.; Del Ben, M.; De Marco, L.; Pignatelli, P.; Violi, F. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism. Atherosclerosis, 2014, 237(1), 108-116.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.08.041] [PMID: 25238217]
[104]
Zhao, W.; Varghese, M.; Yemul, S.; Pan, Y.; Cheng, A.; Marano, P.; Hassan, S.; Vempati, P.; Chen, F.; Qian, X.; Pasinetti, G.M. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol. Neurodegener., 2011, 6(1), 51.
[http://dx.doi.org/10.1186/1750-1326-6-51] [PMID: 21771318]
[105]
Witherick, J.; Wilkins, A.; Scolding, N.; Kemp, K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmune dis, 2011. Article ID 164608.
[http://dx.doi.org/10.4061/2011/164608]
[106]
Judge, L.W.; Kumley, R.F.; Bellar, D.M.; Pike, K.L.; Pierson, E.E.; Weidner, T.; Pearson, D.; Friesen, C.A. Hydration and fluid replacement knowledge, attitudes, barriers, and behaviors of NCAA division 1 American football players. J. Strength Cond. Res., 2016, 30(11), 2972-2978.
[http://dx.doi.org/10.1519/JSC.0000000000001397] [PMID: 26950346]
[107]
Spronk, I.; Kullen, C.; Burdon, C.; O’Connor, H. Relationship between nutrition knowledge and dietary intake. Br. J. Nutr., 2014, 111(10), 1713-1726.
[http://dx.doi.org/10.1017/S0007114514000087] [PMID: 24621991]
[108]
Jahns, L.; Raatz, S.K.; Johnson, L.K.; Kranz, S.; Silverstein, J.T.; Picklo, M.J. Intake of seafood in the US varies by age, income, and education level but not by race-ethnicity. Nutrients, 2014, 6(12), 6060-6075.
[http://dx.doi.org/10.3390/nu6126060] [PMID: 25533013]
[109]
Abriat, A.; Brosset, C.; Brégigeon, M.; Sagui, E. Report of 182 cases of exertional heatstroke in the French Armed Forces. Mil. Med., 2014, 179(3), 309-314.
[http://dx.doi.org/10.7205/MILMED-D-13-00315] [PMID: 24594466]
[110]
Armstrong, L.E.; Lee, E.C.; Armstrong, E.M. Interactions of gut microbiota, endotoxemia, immune function, and diet in exertional heatstroke. J. Sports Med, 2018.
[111]
Alafuzoff, I.; Pikkarainen, M.; Neumann, M.; Arzberger, T.; Al-Sarraj, S.; Bodi, I.; Bogdanovic, N.; Bugiani, O.; Ferrer, I.; Gelpi, E.; Gentleman, S.; Giaccone, G.; Graeber, M.B.; Hortobagyi, T.; Ince, P.G.; Ironside, J.W.; Kavantzas, N.; King, A.; Korkolopoulou, P.; Kovács, G.G.; Meyronet, D.; Monoranu, C.; Nilsson, T.; Parchi, P.; Patsouris, E.; Revesz, T.; Roggendorf, W.; Rozemuller, A.; Seilhean, D.; Streichenberger, N.; Thal, D.R.; Wharton, S.B.; Kretzschmar, H. Neuropathological assessments of the pathology in frontotemporal lobar degeneration with TDP43-positive inclusions: an inter-laboratory study by the BrainNet Europe consortium. J. Neural Transm. (Vienna), 2015, 122(7), 957-972.
[http://dx.doi.org/10.1007/s00702-014-1304-1] [PMID: 25239189]
[112]
Hinz, F.I.; Geschwind, D.H. Molecular genetics of neurodegenerative dementias. Cold Spring Harb. Perspect. Biol., 2017, 9(4), a023705.
[http://dx.doi.org/10.1101/cshperspect.a023705] [PMID: 27940516]
[113]
McKee, A.C.; Stern, R.A.; Nowinski, C.J.; Stein, T.D.; Alvarez, V.E.; Daneshvar, D.H.; Lee, H.S.; Wojtowicz, S.M.; Hall, G.; Baugh, C.M.; Riley, D.O.; Kubilus, C.A.; Cormier, K.A.; Jacobs, M.A.; Martin, B.R.; Abraham, C.R.; Ikezu, T.; Reichard, R.R.; Wolozin, B.L.; Budson, A.E.; Goldstein, L.E.; Kowall, N.W.; Cantu, R.C. The spectrum of disease in chronic traumatic encephalopathy. Brain, 2013, 136(Pt 1), 43-64.
[http://dx.doi.org/10.1093/brain/aws307] [PMID: 23208308]
[114]
Mielke, M.M.; Savica, R.; Wiste, H.J.; Weigand, S.D.; Vemuri, P.; Knopman, D.S.; Lowe, V.J.; Roberts, R.O.; Machulda, M.M.; Geda, Y.E.; Petersen, R.C.; Jack, C.R., Jr Head trauma and in vivo measures of amyloid and neurodegeneration in a population-based study. Neurology, 2014, 82(1), 70-76.
[http://dx.doi.org/10.1212/01.wnl.0000438229.56094.54] [PMID: 24371306]
[115]
Harris, M.A.; Shen, H.; Marion, S.A.; Tsui, J.K.; Teschke, K. Head injuries and Parkinson’s disease in a case-control study. Occup. Environ. Med., 2013, 70(12), 839-844.
[http://dx.doi.org/10.1136/oemed-2013-101444] [PMID: 24142978]
[116]
Vann Jones, S.A.; Breakey, R.W.; Evans, P.J. Heading in football, long-term cognitive decline and dementia: evidence from screening retired professional footballers. Br. J. Sports Med., 2014, 48(2), 159-161.
[http://dx.doi.org/10.1136/bjsports-2013-092758] [PMID: 24026299]
[117]
Queipo-Ortuño, M.I.; Seoane, L.M.; Murri, M.; Pardo, M.; Gomez-Zumaquero, J.M.; Cardona, F.; Casanueva, F.; Tinahones, F.J. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One, 2013, 8(5), e65465.
[http://dx.doi.org/10.1371/journal.pone.0065465] [PMID: 23724144]
[118]
Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; Hotchkiss, R.S.; Levy, M.M.; Marshall, J.C.; Martin, G.S.; Opal, S.M.; Rubenfeld, G.D.; van der Poll, T.; Vincent, J.L.; Angus, D.C. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 2016, 315(8), 801-810.
[http://dx.doi.org/10.1001/jama.2016.0287] [PMID: 26903338]
[119]
Gianforcaro, A.; Hamadeh, M.J. Vitamin D as a potential therapy in amyotrophic lateral sclerosis. CNS Neurosci. Ther., 2014, 20(2), 101-111.
[http://dx.doi.org/10.1111/cns.12204] [PMID: 24428861]
[120]
Seidl, S.E.; Santiago, J.A.; Bilyk, H.; Potashkin, J.A. The emerging role of nutrition in Parkinson’s disease. Front. Aging Neurosci., 2014, 6, 36.
[http://dx.doi.org/10.3389/fnagi.2014.00036] [PMID: 24639650]
[121]
Duncan, R.S.; Goad, D.L.; Grillo, M.A.; Kaja, S.; Payne, A.J.; Koulen, P. Control of intracellular calcium signaling as a neuroprotective strategy. Molecules, 2010, 15(3), 1168-1195.
[http://dx.doi.org/10.3390/molecules15031168] [PMID: 20335972]
[122]
Ogle, W.O.; Speisman, R.B.; Ormerod, B.K. Potential of treating age-related depression and cognitive decline with nutraceutical approaches: a mini-review. Gerontology, 2013, 59(1), 23-31.
[http://dx.doi.org/10.1159/000342208] [PMID: 22947921]
[123]
Pocernich, C.B.; Lange, M.L.; Sultana, R.; Butterfield, D.A. Nutritional approaches to modulate oxidative stress in Alzheimer’s disease. Curr. Alzheimer Res., 2011, 8(5), 452-469.
[http://dx.doi.org/10.2174/156720511796391908] [PMID: 21605052]
[124]
Ardila, A.; Ostrosky-Solis, F.; Rosselli, M.; Gómez, C. Age-related cognitive decline during normal aging: the complex effect of education. Arch. Clin. Neuropsychol., 2000, 15(6), 495-513.
[PMID: 14590204]
[125]
Zhao, L.; Wang, J.L.; Wang, Y.R.; Fa, X.Z. Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res., 2013, 1492, 33-45.
[http://dx.doi.org/10.1016/j.brainres.2012.11.019] [PMID: 23178511]
[126]
Yu, S.; Zheng, W.; Xin, N.; Chi, Z.H.; Wang, N.Q.; Nie, Y.X.; Feng, W.Y.; Wang, Z.Y. Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Res., 2010, 13(1), 55-64.
[http://dx.doi.org/10.1089/rej.2009.0908] [PMID: 20230279]
[127]
Perry, V.H. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav. Immun., 2004, 18(5), 407-413.
[http://dx.doi.org/10.1016/j.bbi.2004.01.004] [PMID: 15265532]
[128]
Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr., 2017, 14(1), 18.
[http://dx.doi.org/10.1186/s12970-017-0173-z] [PMID: 28615996]
[129]
Greenwood, M.; Kreider, R.B.; Melton, C.; Rasmussen, C.; Lancaster, S.; Cantler, E.; Milnor, P.; Almada, A. Creatine supplementation during college football training does not increase the incidence of cramping or injury. Mol. Cell. Biochem., 2003, 244(1-2), 83-88.
[http://dx.doi.org/10.1023/A:1022413202549] [PMID: 12701814]
[130]
Federico, A.; Cardaioli, E.; Da Pozzo, P.; Formichi, P.; Gallus, G.N.; Radi, E. Mitochondria, oxidative stress and neurodegeneration. J. Neurol. Sci., 2012, 322(1-2), 254-262.
[http://dx.doi.org/10.1016/j.jns.2012.05.030] [PMID: 22669122]
[131]
Moreira, P.I.; Zhu, X.; Wang, X.; Lee, H.G.; Nunomura, A.; Petersen, R.B.; Perry, G.; Smith, M.A. Mitochondria: a therapeutic target in neurodegeneration. Biochim. Biophys. Acta, 2010, 1802(1), 212-220.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.007] [PMID: 19853657]
[132]
Nguyen, H.T.; Sawmiller, D.R.; Markov, O.; Chen, M. Elevated [Ca2+]i levels occur with decreased calpain activity in aged fibroblasts and their reversal by energy-rich compounds: new paradigm for Alzheimer’s disease prevention. J. Alzheimers Dis., 2013, 37(4), 835-848.
[http://dx.doi.org/10.3233/JAD-131001] [PMID: 24122005]
[133]
DaSilva, N.A.; Nahar, P.P.; Ma, H.; Eid, A.; Wei, Z.; Meschwitz, S.; Zawia, N.H.; Slitt, A.L.; Seeram, N.P. Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutr. Neurosci., 2019, 22(3), 185-195.
[http://dx.doi.org/10.1080/1028415X.2017.1360558] [PMID: 28784051]
[134]
Nielsen, C.H.; Balachandran, P.; Christensen, O.; Pugh, N.D.; Tamta, H.; Sufka, K.J.; Wu, X.; Walsted, A.; Schjørring-Thyssen, M.; Enevold, C.; Pasco, D.S. Enhancement of natural killer cell activity in healthy subjects by Immulina®, a Spirulina extract enriched for Braun-type lipoproteins. Planta Med., 2010, 76(16), 1802-1808.
[http://dx.doi.org/10.1055/s-0030-1250043] [PMID: 20560112]
[135]
Trivedi, P.P.; Jena, G.B. Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis. Food Chem. Toxicol., 2013, 59, 339-355.
[http://dx.doi.org/10.1016/j.fct.2013.06.019] [PMID: 23793040]
[136]
Trivedi, P.P.; Jena, G.B. Mechanistic insight into beta-carotene- mediated protection against ulcerative colitis-associated local and systemic damage in mice. Eur. J. Nutr., 2015, 54(4), 639-652.
[http://dx.doi.org/10.1007/s00394-014-0745-5] [PMID: 25074825]
[137]
Zheng, H.; Xiao, W.H.; Bennett, G.J. Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp. Neurol., 2012, 238(2), 225-234.
[http://dx.doi.org/10.1016/j.expneurol.2012.08.023] [PMID: 22947198]
[138]
Valpotić, H.; Gračner, D.; Turk, R.; Đuričić, D.; Vince, S.; Folnožić, I.; Lojkić, M.; Žura Žaja, I.; Bedrica, L.; Maćešić, N.; Getz, I. Zeolite clinoptilolite nanoporous feed additive for animals of veterinary importance: potentials and limitations. Period. Biol., 2017, 119(3), 159-172.
[http://dx.doi.org/10.18054/pb.v119i3.5434]
[139]
Bai, D.P.; Lin, X.Y.; Huang, Y.F.; Zhang, X.F. Theranostics aspects of various nanoparticles in veterinary medicine. Int. J. Mol. Sci., 19(11), 3299.
[http://dx.doi.org/10.3390/ijms19113299]
[140]
Chris, U.O.; Singh, N.B.; Agarwal, A. Nanoparticles as feed supplement on Growth behaviour of Cultured Catfish (Clarias gariepinus) fingerlings. Mater. Today Proc., 2018, 5(3), 9076-9081.
[http://dx.doi.org/10.1016/j.matpr.2017.10.023]
[141]
Podratz, J.L.; Knight, A.M.; Ta, L.E.; Staff, N.P.; Gass, J.M.; Genelin, K.; Schlattau, A.; Lathroum, L.; Windebank, A.J. Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol. Dis., 2011, 41(3), 661-668.
[http://dx.doi.org/10.1016/j.nbd.2010.11.017] [PMID: 21145397]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy